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Abstract. An assignable matrix A = (aij) has the property that it is possible to assign
elements ri and cj to all rows and columns in such a way that every aij is either ri or
cj . A matrix is called totally tight if every 2× 2 submatrix has at least one constant line.
We show that every totally tight matrix is assignable.

A strongly assignable matrix has an assignment ri, cj such that such that every aij is
exactly one of ri or cj . In other words, the set of row labels is disjoint from the set of
column labels.

The classes AM and SAM of all assignable matrices and strongly assignable matri-
ces are hereditary, that is they are closed under taking submatrices. There are infinitely
many forbidden submatrices for AM. However, we show that the class SAM admits a
finite forbidden submatrix characterization. Moreover, we give explicitly such a charac-
terization for the case of matrices over {a, b, c}, where a, b and c are pairwise distinct.
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1. Introduction

Let A = (aij) be an m × n matrix over a set S. An assignment to A consists of
elements r1, r2, . . . , rm ∈ S and c1, c2, . . . , cn assigned to the rows and to the columns of
A, respectively, in such a way that

aij ∈ {rj , cj}

for every entry aij of A. We write an assignment as R = (r1, r2, . . . , rm) and C =
(c1, c2, . . . , cn). All elements ri and cj in R and C are called labels of the corresponding
rows and columns. A label ri (respectively, cj) satisfies all entries ri in row i (respectively,
all entries cj in row j).

Definition 1. An assignable matrix is a matrix that admits an assignment.

Every 2 × 2 matrix

A =

(

a b

c d

)

is assignable. Indeed, one can set R = (a, d) and C = (c, b), or R = (c, b) and C = (a, d).

Definition 2. A strongly assignable matrix has an assignment ri, cj such that such that

every aij is exactly one of ri or cj.

The following matrix

A =





1 1 1
2 3 1
1 2 1





has two different assignments, but it is not strongly assignable. The class AM of all
assignable matrices is closed under independent permutations of rows and columns, that
is if A is an assignable matrix, then PAQ ∈ AM for any permutations matrices P and Q

of appropriate dimensions. Also, AM is closed under transposition, i.e., A ∈ AM implies
that the transpose AT of A is an assignable matrix.

The classes AM and SAM of all assignable matrices and strongly assignable matrices
are hereditary, that they are closed under taking submatrices. There are infinitely many
forbidden submatrices for AM. Figure 1 shows an infinite series of minimal forbidden n×
submatrices, where n ≥ 3. The smallest among them is





1 2 1
3 1 2
2 2 1



 .

Thus, the class of all assignable matrices does not admit a finite forbidden submatrix
characterization.
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Figure 1. An infinite series of minimal forbidden submatrices, n ≥ 3.

However, we show that the class SAM admits a finite forbidden submatrix characteri-
zation. Moreover, we give explicitly such a characterization for the case of matrices over
{a, b, c}, where a, b, care pairwise distinct.

A submatrix is obtained from a matrix by deleting some columns and/or rows, possibly
none. A line in a matrix is either a row or a column.
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2. Assignability of totally tight matrices

A matrix is called totally tight if every 2× 2 submatrix has at least one constant line (a
row or a column).

Theorem 1. Every totally tight matrix is assignable.

Proof. Let A = (aij) be a minimal non-assignable totally tight m× n matrix. Minimality
of A means that every proper submatrix is assignable. Clearly, A does not have constant
lines or a pair of identical rows or columns.

Consider a row of A that contains the largest number of equal identical entries, say row
1 has

a11 = a12 = · · · = a1k = a,

a1j 6= a for all j > k, and no row has more than k identical entries.

Claim 1. There are no entries a in columns k + 1, k + 1, . . . , n.

Proof. Suppose aij = a for some j > k. By maximality of k, i ≥ 2. Let a1j = b 6= a. For
an arbitrary j′ ≤ k, rows 1, i and columns j′, j produce the submatrix

(

a b

aij′ a

)

,

and therefore aij′ = a. Thus, row i has at least k + 1 entries a, a contradiction to
maximality of k. �

Without loss of generality we may assume that column 1 has the largest number of
entries a, say

a11 = a21 = · · · = al1 = a,

ai1 6= a for all i > l, and no column has more than l entries a.

Claim 2. There are no entries a in rows l + 1, l + 1, . . . , m.

Proof. Suppose aij = a for some i > l. According to Claim 1, j ≤ k. By maximality of
l, j ≥ 2. Let ai1 = b 6= a. For an arbitrary i′ ≤ l, rows i′, i and columns 1, j produce the
submatrix

(

a ai′j

b a

)

,

and therefore ai′j = a. Thus, column j has at least l + 1 entries a, a contradiction to
maximality of l. �

Now we consider those entries in row 1 and column 1 which are distinct from a.

Claim 3. a1,k+1 = a1,k+2 = · · · = a1,n = c 6= a, and al+1,1 = al+2,1 = · · · = am,1 = c.
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Proof. Since column 1 is not constant, it contains an entry b 6= a. Similarly, row 1
contains an entry c 6= a. We show that b = c, which implies the statement. Suppose that
al+1 = b 6= c = a1,k+1. The entry al+1,k+1 must be either b or c.

First, let al+1,k+1 = b. For an arbitrary j ≤ k, rows 1, l+1 and columns j, k+1 produce
the submatrix

(

a c

al+1,j b

)

,

and therefore al+1,j is either a or b. Claim 2 shows that al+1,j 6= a, therefore al+1,j = b.
Thus, row l + 1 has at least k + 1 entries b, a contradiction to maximality of k.

Finally, let al+1,k+1 = c. For an arbitrary i ≤ l, rows i, l + 1 and columns 1, k + 1
produce the submatrix

(

a ai,k+1

b c

)

,

and therefore ai,k+1 is either a or c. Claim 1 shows that ai,k+1 6= a, therefore ai,k+1 = c.
Thus, a1,k+1 = a2,k+1 = · · · = al+1,k+1 = c. Column k + 1 is not constant, therefore
it contains some entry d 6= c. We may assume that al+2,k+1 = d. By Claim 1, d 6= a.
Considering rows 1 and l+2, one can easily show that al+2,1 = al+2,2 = · · · = al+2,k+1 = d,
a contradiction to maximality of k. �

Claim 3 implies that aij = c for all i ∈ {l +1, l +1, . . . , m} and j ∈ {k +1, k +1, . . . , n},
and the matrix A has the form

A =

























a a · · · a c c · · · c

a

· · ·
a

c c c · · · c

c c c · · · c

· · · · · · c

c c c · · · c

























.

Claim 4. There is a row without entries c.

Proof. Suppose aij = a for some i > l. According to Claim 1, j ≤ k. By maximality of
l, j ≥ 2. Let ai1 = b 6= a. For an arbitrary i′ ≤ l, rows i′, i and columns 1, j produce the
submatrix

(

a ai′j

b a

)

,

and therefore ai′j = a. Thus, column j has at least l + 1 entries a, a contradiction to
maximality of l. �

For a row i, let Ni denote the number of entries c in the columns k + 1, k + 2, . . . , n.
Permute rows 2, 3, . . . , l so that N2 ≤ N3 ≤ · · · ≤ Nl.

Claim 5. N2 = 0, that is row 2 does not have entries c in the columns k + 1, k + 2, . . . , n.



6 E. BOROS, O. ČEPEK, V. A. GURVICH, K. MAKINO, AND I. E. ZVEROVICH

Proof. Suppose that a2n = c. Since column n is not constant, we may assume that
a3n = d 6= c. The inequality N2 ≤ N3 shows that row 2 contains entry c, say a3,n−1 = c,
such that a2,n−1 6= c. We obtain a contradiction in rows 2, 3 and columns n − 1, n:

(

6= c c

c d 6= c

)

.

�

Row 2 has less entries a than row 1 has. Indeed, otherwise rows 1 and 2 are identical.
Therefore we may assume that a2k = b 6= a. Considering the submatrix in rows 1, 2 and
columns k, k′, where k′ > k:

(

a c

b d 6= c

)

,

we see that d = b. It follows that rows 1 and 2 induce a submatrix [after a suitable
permutation of columns 2, 3, . . . , k]:

(

a · · · a a · · · a c · · · c

a · · · a b · · · b b · · · b

)

.

Here a21 = a22 = · · · = a2p = a and a2,p+1 = a2,p+2 = · · · = a2n = b.
Now we consider row l + 1. For 2 ≤ j ≤ p, the submatrix in rows 2, l + 1 and columns

j, n is
(

a b

al+1,j c

)

,

which shows that al+1,j ∈ {a, c}. But row l + 1 does not contain a, therefore al+1,j = c,
2 ≤ j ≤ p. For p + 1 ≤ j ≤ k, the submatrix in rows 2, l + 1 and columns 1, p + 1 is

(

a b

c al+1,j

)

,

which shows that al+1,j ∈ {c, b}, p + 1 ≤ j ≤ k. Here at least one al+1,j is b, since row
l + 1 is not constant, but c is not necessary. It follows that rows 1, 2 and l + 1 induce the
following submatrix [after a suitable permutation of columns]:





a a a c
a b b b
c c b c



 ,

where x represents a line (x, x, . . . , x) of a suitable length. Column 2 here may be empty,
while the other three columns are non-empty. It is convenient to rearrange the four
columns as

D =





a a c a
a b b b
c b c c



 ,

Rows 1, 2 and 3 must have labels a, b and c, respectively, and we call them a-row, b-row

and c-row. Similarly, columns 1, 2 and 3 must have labels a, b and c, respectively, and we
call them a-part, b-part and c-part of A. Column 4 does not get a specific label, and it is
called ∗-part of A.

Now we consider an arbitrary row i of A which is not involved in D.
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Claim 6. Row i does not have an entry d 6∈ {a, b, c} in a-part or b-part or c-part.

Proof. Suppose that a-part contains d 6∈ {a, b, c}. Then b-row implies that all entries in
b-part, c-part and ∗-part are either b or d. Also, all entries in c-part are either c or d due
to the following submatrix

(

a c
d .

)

.

Hence all entries in c-part must be d. Then a-row implies that all entries in a-part, b-part
and ∗-part are either a or d. Therefore all entries in b-part and ∗-part must be d. Finally,
the submatrix

(

c b
. d

)

shows that all entries in a-part must be d. Thus, row i is constant, a contradiction. �

Claim 7. (1a) If row i contains b in its a-part, then

• its a-part consists of a and b only,

• its b-part consists of b only,

• its c-part consists of b only, and

• its ∗-part consists of b only.

(1b) If row i contains c in its b-part, then

• its a-part consists of c only,

• its b-part consists of b and c only,

• its c-part consists of c only, and

• its ∗-part consists of c only.

(1c) If row i contains a in its c-part, then

• its a-part consists of a only,

• its b-part consists of a only,

• its c-part consists of a and c only, and

• its ∗-part consists of a only.

(2a) If row i contains c in its a-part, but (1b) does not take place, then

• its a-part consists of a and c only,

• its b-part consists of b only,

• its c-part consists of c only, and

• its ∗-part consists of b and c only.

(2b) If row i contains a in its b-part, but (1c) does not take place, then

• its a-part consists of a only,

• its b-part consists of a and b only,

• its c-part consists of c only, and

• its ∗-part consists of a and c only.

(2b) If row i contains b in its c-part, but (1a) does not take place, then

• its a-part consists of a only,

• its b-part consists of b only,

• its c-part consists of b and c only, and
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• its ∗-part consists of a and b only.

Proof. First we prove (1a). b-row shows that all entries in b-part, c-part and ∗-part are b.
The submatrix formed by a column in a-part, a column in c-part, rows 1 and i is

(

a c

. b

)

,

and therefore a-part of row i consists of a and b only. The statements (1b) and (1c) are
similar.

Now we prove (2a). b-row shows that all entries in b-part, c-part and ∗-part are either b

or c. Since (1b) does not take place, there are no c in b-part, and therefore b-part consists
of b only. The submatrix

(

a c

c .

)

[formed by rows 1, i and columns from a-part and c-part] shows that c-part of row i consists
of c only. The submatrix

(

a b

. c

)

[formed by rows 2, i and columns from a-part and c-part] shows that a-part of row i

consists of a and c only. The statements (2b) and (2c) are similar. �

If we have situation (1a) of Claim 7, then we delete row i [which is (a/b, b, b,b)]. The
resulting submatrix is assignable by minimality of A. Moreover, rows 1, 2, 3 force label a

for a-part. Therefore we can assign b to row i, a contradiction. Situations (1b) and (1c) of
Claim 7 are similar. If we have situation (2a) of Claim 7, then we delete row 3 [which is (c,
b, c,c)]. The resulting submatrix is assignable by minimality of A. Moreover, rows 1, 2, i

force label b for b-part. Therefore we can assign c to row 3, a contradiction. Situations
(2b) and (2c) of Claim 7 are similar.

We have proved that the six situations of Claim 7 are impossible. Hence the matrix is

A =









a a c a
a b b b
c b c c
a b c A′









,

where A′ is a totally tight matrix. By minimality of A, A′ is assignable, and so is A, a
contradiction. �

3. Strongly assignable matrices

A forbidden submatrix for a hereditary class P of matrices is an arbitrary matrix that
dies not belong to P. A minimal forbidden submatrix for P is a forbidden submatrix A

such that every proper submatrix of A is in P. Here we prove that the set of all minimal
forbidden submatrices for the class of all strongly assignable matrices is finite. Note that



SEPARABLE DISCRETE FUNCTIONS 9

matrices are distinguished up to row/column permutations, up to transposition, and up
to renaming of entries (without identification).

Let A = (aij) be a matrix for which we want to find a strong assignment. A vertical

a-forcing in A is a submatrix

V (a, b, c) =

(

a b

a c

)

, (1)

or

V (a, b, c) =

(

a . b

. a c

)

, (2)

where a, b, c are pairwise distinct. Vertical a-forcings (1) and (2) produce label a for the
(two) column(s) containing a. Similarly, a horizontal a-forcing in A is a submatrix

H(a, b, c) =

(

a a

b c

)

, (3)

or

H(a, b, c) =





a .

. a

b c



 , (4)

where a, b, c are pairwise distinct. Horizontal a-forcings (3) and (4) produce label a for
the (two) row(s) containing a.

If some row (respectively, some column) is already assigned a label a, then implied

forcing assign a to all rows (respectively, all columns) that contain a. Indeed, by the
definition the sets of all row labels and of all column labels are disjoint. Based on this
observation, it is easy to create some forbidden submatrices.

Definition 3. An orthogonal a-forcing in A is a submatrix containing a vertical a-forcing

V (a, b, c) and a horizontal a-forcing H(a, b′, c′) with the same a.

The largest size of an orthogonal a-forcing without redundant lines is 5 × 5:












. . a . b

. . . a c

a . . . .

. a . . .

b′ c′ . . .













,

but of course can be smaller, like
(

a b a a

a c b c

)

.

Thus, all minimal forbidden submatrices with an orthogonal a-forcing are of bounded
dimensions.

Definition 4. A row obstruction in A is a submatrix RO(a, b, c; a′, b′, c′) that contains a

horizontal a-forcing H(a, b, c), a horizontal a′-forcing H(a′, b′, c′), with a 6= a′, and a row

containing both a and a′.
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The forcings H(a, b, c) and H(a′, b′, c′) make both a and a′ to be row labels, and the row
containing both a and a′ produces a contradiction, since it may have just one label, but
implied forcing produces two distinct labels a and a′. The largest size of a row obstruction
without redundant lines is 7 × 6:





















a . . . . .

. a . . . .

b c . . . .

. . a′ . . .

. . . a′ . .

. . b′ c′ . .

. . . . a a′





















.

A column obstruction is defined similarly: there are vertical a-forcing V (a, b, c) and a′-
forcing V (a′, b′, c′) with a 6= a′, and and a column containing both a and a′. The largest
size of a column obstruction without redundant lines is 6 × 7.

Theorem 2. The class SAM can be characterized by finitely many forbidden submatrices.

Proof. Let A = (aij) be a minimal forbidden submatrix for the class SAM. Suppose that
A has size m × n, where m ≥ 8 and n ≥ 8. Denote by C(x) the set of all entries aij = x

in A.

Case 1. Every non-empty set C(a) contains a pair of entries involved in a horizontal
a-forcing H(a, b, c) or in a vertical a-forcing V (a, b, c).

By minimality, A does not contain an orthogonal a-forcing for every a. First we assign
multiple labels to the lines of A in the following way. Consider an arbitrary class C(x).
Since there are no orthogonal x-forcings, we may assume that C(x) is involved in horizontal
x-forcings only. Using implied forcing, we assign label x to every row that contains x.
Thus, every class C(x) produces |C(x)| row labels or |C(x)| column labels. As a result,
every entry of A is covered by a row label or by a column label.

Suppose that some line has at least to labels, say row i has distinct labels a and a′.
It means that A contains a row obstruction RO(a, b, c; a′, b′, c′), which is impossible by
minimality.

We have constructed a legal assignment for A, and it satisfies all entries, since every
entry produces a label in its row or in its column. Thus, A is strongly assignable, a
contradiction.

Case 2. A has an entry aij = a such that the set C(a) does not contain a pair of entries
involved in a horizontal a-forcing or in a vertical a-forcing.
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Let Ra 6= ∅ be the set of all rows that contain a. For simplicity, Ra contains rows
1, 2, . . . , k. Consider an arbitrary truncated column j:

c′j =

















a1j

a2j

.

.

.

akj

















.

If c′j contains some b 6= c, both distinct from a, then a is involved in a horizontal a-forcing

H(a, b, c), a contradiction to the condition of Case 2. Therefore c′j is column over {a, bj},
where bj 6= a.

To get a contradiction we try to construct a strong assignment for A. First we assign
labels a to all rows in Ra. As a result every column j such that

c′j 6=

















a

a

.

.

.

a

















is forced to have label bj .

Claim 8. Every column, except at most one, obtain a label.

Proof. Suppose that distinct columns p and q do not have labels. It means that a1p =
a2p = · · · = akp = a and a1q = a2q = · · · = akq = a. It is easy to see that a minimal
forbidden submatrix may not have a pair of identical columns. Therefore aip 6= aiq for
some i ≥ k + 1. Since Ra = {1, 2, . . . , k}, both aip and aiq are distinct from a. Thus,
a1p, a1q, aip, aiq form a horizontal a-forcing H(a, aip, aiq), a contradiction to the condition
of Case 2. �

The only possible column that does not have label (Claim 8) will be called exceptional.
Here is an example









a b1 b2 a

a a b2 b1

a a b2 b1

. . . .









,

where k = 3, column 1 is exceptional, both b1 and b2 are distinct from a, and therefore
column 1, 2, 3 obtain labels b1, b2, b1, respectively. Now we extend the current partial
assignment, enumerating all arising contradictions.

Contradiction 1. Suppose that column j with label bj contains some column label
bl 6= bj as an entry. Then bl becomes a row label, which is impossible. The largest size of



12 E. BOROS, O. ČEPEK, V. A. GURVICH, K. MAKINO, AND I. E. ZVEROVICH

such a contradiction is 3 × 4:




a . bj .

. a . bl

. . bl .



 .

Contradiction 2. Suppose that the exceptional column 1 contains some distinct col-
umn labels bj and bl as entries. Then at least one of bj , bl becomes a row label, which is
impossible. The largest size of such a contradiction is 4 × 3:









a bj .

a . bl

bj . .

bl . .









.

If the exceptional column 1 contains just one column label, say bj , as an entry, then bj

becomes a label of column 1. If the exceptional column 1 does not contain column labels
as an entries, then it remains unlabelled. In all cases, every entry that coincide with some
column label is currently covered by its column label. All currently uncovered entries must
become either row labels or a label of the exceptional column.

Contradiction 3. Suppose that distinct non-exceptional columns labelled bj and bl

(possibly, bj = bl) contain entries c 6= bj and d 6= bl, c 6= d, in the same row. Then the row
obtains two labels c and d, which is impossible. The largest size of such a contradiction is
3 × 4:





a . bj .

. a . bl

. . c d



 .

Contradiction 4. Let the exceptional column 1 have label bj (since bj occurs as
a label of another column and as an entry of column 1). Suppose that column 1 and
another column labelled bl (possibly, bj = bl) contain entries c 6= bj and d 6= bl, c 6= d, in
the same row. Then the row obtains two labels c and d, which is impossible. The largest
size of such a contradiction is 4 × 3:









a bj .

a . bl

bj . .

c . d









.

Contradiction 5. Let the exceptional column 1 do not have label. Suppose that a
column labelled bj forces a label c for row i, that is c 6= bj is the ith entry of that column.
Suppose that another column labelled bl forces a label d for row i′ 6= i. If ai1 = e 6= c,
ai′1 = f 6= d and e 6= f , then we cannot cover both e and f , since the only possibility is
to assign one label to the exceptional column 1. The largest size of such a contradiction
is 4 × 3:









a bj .

a . bl

e c .

f . d









.
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Now consider an arbitrary uncovered entry, say c, in row i. Clearly, i ≥ k + 1. Suppose
that the entry c belongs to a column labelled bj 6= c. Then row i obtains label c, and
the three possible contradictions (Contradictions 3, 4, 5) arising with such assignment
were already considered. If all columns have labels, then every uncovered row is just the
sequence of column labels. Since a minimal forbidden submatrix may not have a pair of
identical rows, there is at most one uncovered row, and we can assign label a to it, thus
obtaining a strong assignment for A. (In this situation, a is just a formal label that does
not cover any entry). The only unlabelled column may be the exceptional column 1, in
which case every uncovered row has the form

ai1, bi2 , bi3 , . . . , bin ,

where ai1 is distinct from all row labels (otherwise the exceptional column would be
assigned) and bij is the label of column j ≥ 2. We assign label ai1 to every uncovered row
i, thus obtaining a strong assignment for A.

Since A is a forbidden submatrix, it does not admit a strong assignment, therefore one
of the Contradictions 1, 2, 3, 4, 5 must take place.

Claim 9. Assuming that all entries a are covered by row labels, the largest size of a

contradiction is 3 × 4 or 4 × 3.

By symmetry, an analogue of Claim 9 holds if we cover all entries a by column labels:
a contradiction of size at most 3 × 4 or 4 × 3 arises. Thus, a total contradiction for row
a-assignment and for column a-assignment is of size at most 6 × 8, 7 × 7 or 8 × 6. Recall
that A was assumed to be an m × n matrix with m ≥ 8 and n ≥ 8. Thus, A is not
minimal, a final contradiction. Note that renaming of entries guarantees that the number
of matrices of bounded size is finite. �

4. A particular characterization

Here we give explicitly such a finite forbidden submatrix characterization of strongly
assignable matrices for the case of matrices over {a, b, c}, where a, b, c are pairwise distinct.
This class will be denoted by the class SAM(3). Note that every matrix over {a, b} is
strongly assignable: one can assign a to all rows and b to all columns, or conversely.

We distinguish matrices up to row/column permutations, up to transposition, and up
to renaming of entries (without identification). For example, the smallest forbidden sub-
matrix

F1 =

(

a b c

b c a

)

represents twelve 2 × 3 matrices
(

a b c

b c a

)

,

(

a b c

c a b

)

,

(

a c b

b a c

)

,

(

a c b

c b a

)

,

(

b a c

a c b

)

,

(

b a c

c b a

)

,

(

b c a

a b c

)

,

(

b c a

c a b

)

,

(

c a b

a b c

)

,

(

c a b

b c a

)

,

(

c b a

a c b

)

,

(

c b a

b a c

)

,
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and their transposes.
Below A = aij is an arbitrary minimal forbidden submatrix for the class SAM(3). We

assume that all entries of A belong to the set {a, b, c}, where a, b, c are pairwise distinct.
Minimality of A means that deleting at least one line (a row or a column) produces a
strongly assignable matrix. Every matrix in SAM(3) admits a semi-constant assignment,
that is an assignment where all row labels are the same or all column labels are the same.
Assigning a to all rows of A cannot be extended to a strong assignment, therefore some
column jbc of A contains both b and c. Similarly, there is a column jac containing both
a and c, and there is a column jab containing both a and b. One possibility is that some
column contains a, b and c, and we may assume that jbc = jac = jab. If it is not the case,
then the three columns jbc, jac and jab are pairwise distinct. A similar situation takes
place for rows. There must be rows ibc, iac and iab containing both b and c, both a and
c, and both a and b, respectively. One may happen that ibc = iac = iab, or the three rows
are pairwise distinct. Accordingly, we consider four cases.

Case 1. There is a row containing a, b, c, and there is a column containing a, b, c.

Without loss of generality we may assume that a11 = a, a12 = b, and a13 = c. Let
column j contains a, b, c. By symmetry, we may assume that j = 1 or j = 4. If j = 1 then

A =









a b c .

b . . .

c . . .

. . . .









,

since the variant

A =













a b c .

a . . .

b . . .

c . . .

. . . .













is redundant (one can delete row 2). Now let j = 4. We have two possibilities:

A =









a b c a .

. . . b .

. . . c .

. . . . .









where column 1 is redundant, and

A =













a b c . .

. . . a .

. . . b .

. . . c .

. . . . .












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which is also redundant (if a14 = a then both row 2 and column 1 can be deleted, etc.).
Thus,

A =





a b c

b . .

c . .



 .

There are 34 = 81 possibilities to specify the missing entries a22, a23, a32 and a33, but
some of them contain the forbidden submatrix F1, namely

P1 =





a b c

b c a

c . .



 ,

where row 3 is redundant,

P2 =





a b c

b . .

c a b



 ,

where row 2 is redundant,

P3 =





a b c

b a c

c b a



 ,

where row 1 is redundant,

P4 =





a b c

b c .

c a .



 ,

where column 3 is redundant,

P5 =





a b c

b . a

c . b



 ,

where column 2 is redundant, and

P6 =





a b c

b a b

c c a



 .

where column 1 is redundant.
One can directly check that there are 54 matrices avoiding the patterns P1, P2, P3, P4, P5

and P6.
We classify them according to their cardinality sets S = {Na, Nb, Nc}, where Nx is the

number of entries equal to x.
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S Additional Number
property of matrices

{6, 2, 1} 2 matrices
{5, 3, 1} no constant line 2 matrices
{5, 3, 1} a constant line 6 matrices
{5, 2, 2} two constant lines 2 matrices
{5, 2, 2} no constant line 3 matrices
{4, 4, 1} two constant lines 2 matrices
{4, 4, 1} no constant line 4 matrices
{4, 3, 2} a constant line 12 matrices
{4, 3, 2} no constant line 16 matrices
{3, 3, 3} 5 matrices

The two matrices with S = {6, 2, 1} are

F2 =





a b c

b c c

c c c





and





a b c

b b b

c b b



 , which is essentially the same as F2 (permute rows 2 and 3, permute

columns 2 and 3, and rename b as c and c as b).
The 2 matrices with S = {5, 3, 1} and without constant line are

F3 =





a b c

b c c

c c b



 ,





a b c

b c b

c b b



, which is essentially the same as F3 (permute rows 2 and 3, permute columns

2 and 3, and rename b as c and c as b).
The 6 matrices having S = {5, 3, 1} and a constant line are

F4 =





a b c

b b c

c c c



 ,





a b c

b b b

c b c



, which is essentially the same as F4 (permute rows 2 and 3, permute columns

2 and 3, and rename b as c and c as b),

F5 =





a b c

b c b

c c c



 ,
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



a b c

b c c

c b c



 = F T
5 , the transpose of F5,





a b c

b b b

c c b



, which is essentially the same as

F5 (permute rows 2 and 3, permute columns 2 and 3, and rename b as c and c as b),

and





a b c

b b c

c b b



, which is the transpose of previous matrix. The matrices F4 and F5 are

distinct, since b in F4 does not appear in a row and in a column, while b in F5 appears in
all columns.

The 2 matrices with S = {5, 2, 2} and two constant lines are

F6 =





a b c

b a c

c c c





and





a b c

b b b

c b a



, which is essentially the same as F6 (permute rows 2 and 3, permute

columns 2 and 3, and rename b as c and c as b),
The 3 matrices with S = {5, 2, 2} and without constant lines are

F7 =





a b c

b a a

c a a



 ,

F8 =





a b c

b a b

c b b



 ,

and





a b c

b c c

c c a



, which is essentially the same as F8 (permute rows 2 and 3, permute

columns 2 and 3, and rename b as c and c as b). The matrices F7 and F8 are distinct, since
b and c in F7 occupy just one row and and one column, while the corresponding elements
a and c in F8 appear in all rows and columns.

The 2 matrices with S = {4, 4, 1} and with two constant lines are

F9 =





a b c

b b b

c c c





and





a b c

b b c

c b c



 = F T
9 .

The 4 matrices with S = {4, 4, 1} and without constant lines are

F10 =





a b c

b c c

c b b



 ,
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



a b c

b c b

c c b



 = F T
10,

F11 =





a b c

b b c

c c b



 ,

and





a b c

b c b

c b c



, which is essentially the same as F11 (permute rows 2 and 3, permute

columns 2 and 3, and rename b as c and c as b). The matrices F10 and F11 are distinct,
since c in F11 can be covered by one row and and one column, while neither b nor c in F10

do not have this property.
The 12 matrices with S = {4, 3, 2} and a constant line are

F12 =





a b c

b b a

c c c



 ,





a b c

b b c

c a c



 = F T
12,





a b c

b b b

c a c



, which is essentially the same as F12 (permute rows 2 and

3, permute columns 2 and 3, and rename b as c and c as b),





a b c

b b a

c b c



, which is the

transpose of the previous matrix,

F13 =





a b c

b a b

c c c



 ,





a b c

b a c

c b c



 = F T
13,





a b c

b b b

c a a



, which is essentially the same as F13 (permute rows 2

and 3, arrange columns as 3, 1, 2, and rename a as b, b as c and c as a),





a b c

b b a

c b a



,

which is the transpose of the previous matrix,





a b c

b a a

c c c



, which is essentially the same

as F13 (permute columns 1 and 2 and rename a as b and b as a),





a b c

b a c

c a c



, which is

the transpose of the previous matrix,





a b c

b b b

c c a



, which is essentially the same as F13
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(permute rows 1 and 2, columns 1 and 2 and rename b as c and c as b), and





a b c

b b c

c b a



,

which is the transpose of the previous matrix. The difference between F12 and F13 is that
b in F12 can be covered by 2 rows or by 2 columns, while b in F12 does not have this
property.

The 16 matrices with S = {4, 3, 2} and without constant lines are

F14 =





a b c

b c c

c b a



 ,





a b c

b c b

c c a



 = F T
14,





a b c

b a c

c b b



, which is essentially the same as F14 (permute rows 1 and

2, columns 1 and 2 and rename b as c and c as b),





a b c

b a b

c c b



, which is the transpose of

the previous matrix,





a b c

b a a

c b a



, which is essentially the same as F14 (permute rows 1

and 3, and rename a as c and c as a),





a b c

b a b

c a a



, which is the transpose of the previous

matrix,





a b c

b a c

c a a



, which is essentially the same as F14 (arrange rows as 2, 3, 1, permute

columns 2 and 3 and rename a as c, b as a and c as b),





a b c

b a a

c c a



, which is the transpose

of the previous matrix,

F15 =





a b c

b b c

c c a



 ,





a b c

b a b

c b c



, which is essentially the same as F15 (permute rows 2 and 3, columns 2 and 3

and rename b as c and c as b),

F16 =





a b c

b b a

c a a



 ,
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



a b c

b a a

c a c



, which is essentially the same as F17 (permute rows 2 and 3, columns 2 and

3, and rename b as c and c as b).

F17 =





a b c

b a c

c c b



 ,





a b c

b a b

c b a



, which is essentially the same as F17 (arrange rows as 3, 1, 2, permute columns

2 and 3 and rename a as b, b as c and c as a),





a b c

b c b

c b a



, which is essentially the same as

F17 (permute rows 2 and 3 columns 2 and 3 and rename b as c and c as b), and





a b c

b a c

c c a



,

which is essentially the same as F17 (permute rows 1 and 2, columns 1 and 2, and rename
a as b and b as a).

To see the difference between the matrices F14, F15, F14 and F17 we look at the pattern
of the element that occurs exactly twice (a in F14, F15, F17, and c in F16). For every line
which contains this element, we specify cardinalities of the other two entries. For example,
row 1 in F14 is a, b, c, and the elements occur 2, 3 and 4, respectively, therefore row 1 will
contribute {3, 4} in the pattern of F14. The whole pattern of F14 is

{{3, 4}, {3, 4}} and {{3, 4}, {4, 4}}.

Similarly, the patterns of F15, F16 and F17 are

{{3, 4}, {3, 4}} and {{4, 4}, {4, 4}},

{{3, 4}, {4, 4}} and {{3, 4}, {4, 4}},

{{3, 4}, {3, 4}} and {{3, 4}, {3, 4}},

respectively. Since the patterns are pairwise distinct, the matrices are also pairwise dis-
tinct.

The 5 matrices with S = {3, 3, 3} are

F18 =





a b c

b b a

c a c



 ,

F19 =





a b c

b a b

c a c



 ,
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



a b c

b a a

c b c



 = F T
19,





a b c

b b a

c c a



, which is essentially the same as F19 (permute rows 2 and

3, columns 2 and 3, and rename b as c and c as b), and





a b c

b b c

c a a



, which is the transpose

of the previous matrix.
The element a in F18 occurs in all lines, while F19 does not have such an element,

therefore F18 and F19 are distinct.

Case 2. There is a row containing a, b, c, and there are three columns containing {a, b},
{a, c}, and {b, c}, respectively.

Without loss of generality, the matrix has the form

A =

(

a b c .

. . . .

)

.

A binary line is a non-constant line over a 2-element set, say {x, y}. We may assume that
every column is either constant or binary, otherwise we have Case 1. We refer to such a
line as xy-line. There must be ab-column, ac-column and bc-column.

Subcase 2.1. ab-column, ac-column and bc-column are columns 1, 2 and 3.

Clearly, A has exactly three columns. Let a21 = b, and consider all possible variants for
a22 and a23:

A1 =





a b c

b b a

. . .



 ,

A2 =





a b c

b b b

. . .



 ,

A3 =





a b c

b b c

. . .



 ,

A4 =





a b c

b c c

. . .



 ,

A5 =





a b c

b c a

. . .



 .

In A1, column 2 is a bc-column, and we may assume that a32 = c. Depending on a31 ∈
{a, b} and a33 ∈ {a, c}, there are four variants:

F20 =





a b c

b b a

a c a



 ,
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F21 =





a b c

b b a

a c c



 ,





a b c

b b a

b c a



, which contains F1 in rows 1 and 3, and





a b c

b b a

b c c



, which is essentially the

same as F20 (permute rows 2 and 3, arrange columns as 2, 3, 1, and rename a as c, b as a

and c as b). The matrices F20 and F21 are distinct, since they have different cardinality
sets: {4, 3, 2} and {3, 3, 3}.

The variant A2 is impossible, since there is no ac-column. among columns 1, 2, 3.
In A3 column 1 is a bc-column, and column 3 is an ac-column. We may assume that

a32 = c, and either a33 = b or a33 = c and a43 = b. Here are all possible variants:

F22 =





a b c

b b c

a c b



 ,

F23 =





a b c

b b c

b c b



 ,









a b c

b b c

. c c

. c b









, which is redundant (row 3 can be deleted),









a b c

b b c

. c c

. b b









, which is redundant

unless a31 = a41 = a (row 2 can be deleted), and

F24 =









a b c

b b c

a c c

a b b









.

The matrices F21 and F22 are distinct, since they have different cardinality sets: {3, 3, 3}
and {4, 3, 2}. The matrices F20 and F22 are distinct, since c in F20 are not in the same line,
while the corresponding element a in F22 occurs twice in a column. F23 has cardinality
set {5, 3, 1}, and therefore differs from F20, F21 and F22.

In A4, we may assume that a33 = a, and we have the following variants:





a b c

b c c

a b a



,

which is essentially the same as F21 (arrange columns as 2, 3, 1, and rename a as c, b as

a and c as b),





a b c

b c c

a c a



, which is essentially the same as F20 (permute rows 2 and 3,

arrange columns as 3, 1, 2, and rename a as b, b as c and c as a),





a b c

b c c

b b a



, which is
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essentially the same as F20 (arrange columns as 2, 3, 2, and rename a as c, b as a and c as

b), and





a b c

b c c

b c a



, which contains F1 in rows 1 and 3.

Finally, A5 contains F1 in rows 1 and 2.

Subcase 2.2. ab-column and ac-column are among columns 1, 2 and 3, while bc-column
is column 4.

Let columns 1 and 3 be an ab-column and an ac-column, respectively. We may assume
that a21 = b, and either a23 = a or a23 = c and a33 = a. If a14 = b then column 2 is
redundant, therefore a14 = c. The are no c in column 2 (this situation was considered in
Subcase 2.1). Now we specify all possibilities:

F25 =

(

a b c c

b a a b

)

,

F26 =

(

a b c c

b b a b

)

,





a b c c

b . a c

. . . b



, which is redundant (column 2 can be deleted),





a b c c

b a c b

. . a .



, which is

redundant (column 1 can be deleted),





a b c c

b b c b

b . a .



, which is redundant (column 2 can

be deleted),





a b c c

b b c b

a . a b



, which is redundant (column 2 can be deleted),





a b c c

b b c b

a b a c



,

which is redundant (row 1 can be deleted),

F27 =





a b c c

b b c b

a a a c



 ,





a b c c

b . c c

. . a b



, which is redundant (column 2 can be deleted),









a b c c

b . c c

. . a c

. . . b









, which

is redundant unless a31 = a41 = a and a32 = a42 = b (row 2 can be deleted), and








a b c c

b . c c

a b a c

a b . b









, which is redundant (row 1 can be deleted).

Subcase 2.3. ab-column is column 1, while, ac-column and bc-column are columns 4 and
5.

Since a15 is either b or c, one of the columns 2, 3 can be deleted, and therefore the
matrix is redundant.
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Subcase 2.4. ab-column, ac-column and bc-column are columns 4, 5 and 6, respectively.

We may assume that columns 1, 2 and 3 are constant, otherwise we have one of the
previous subcases. By symmetry, let a14 = a and a24 = b:

A =





a b c a .

a b c b .

. . . . .



 .

We can delete column 1, obtaining one of the previous subcases.

Case 3. There is a column containing a, b, c, and there are three rows containing {a, b},
{a, c}, and {b, c}, respectively.

This case is essentially the same as Case 2, and it does not produce new forbidden
submatrices.

Case 4. There are three rows containing {a, b}, {a, c}, and {b, c}, respectively, and there
are three columns containing {a, b}, {a, c}, and {b, c}, respectively.

Let rows 1, 2, 3 be an ab-row, an ac-row, and a bc-row, respectively. Similarly, let
columns 1, 2, 3 be an ab-column, an ac-column, and a bc-column, respectively. Therefore
a12 = a, a13 = b, a21 = a, a23 = c, a31 = b, a32 = c, and

A =





. a b

a . c

b c .



 .

Thus, we obtain 23 = 8 variants:

F28 =





a a b

a a c

b c b



 ,





a a b

a a c

b c c



, which is essentially the same as F28 (permute rows 1 and 2, columns 1 and

2, rename b as c and c as b),

F29 =





a a b

a c c

b c b



 ,





a a b

a c c

b c c



, which is essentially the same as F28 (arrange rows as 2, 3, 1 columns as 2, 3, 1,

and rename a as b, b as c and c as a),





b a b

a a c

b c b



, which is essentially the same as F28

(permute rows 2 and 3, columns 2 and 3, and rename a as b and b as a),





b a b

a a c

b c c



, which

is essentially the same as F29 (permute rows 1 and 2, columns 1 and 2, rename b as c and



SEPARABLE DISCRETE FUNCTIONS 25

c as b),





b a b

a c c

b c b



, which is essentially the same as F28 (arrange rows as 3, 1, 2 columns

as 3, 1, 2, and rename a as c, b as a and c as b), and





b a b

a c c

b c c



, which is essentially the

same as F28 (arrange rows as 3, 1, 2 columns as 3, 1, 2, and rename a as c and c as a).
The matrices F28 and F29 are distinct, since they have different cardinality sets.

Thus, all cases are considered, and we can formulate the result.

Theorem 3. The class SAM(3) is characterized by the set {F1, F2, . . . , F29} of minimal

forbidden submatrices.

Open Problem 1. Find all minimal forbidden submatrices for the class SAM.

Open Problem 2. Find forbidden submatrix characterization of the class AM.
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