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Abstract.This report analyses the predictive performance of standard techniques
for the ‘logical analysis of data’ (LAD), within a probabilistic framework. Improv-
ing and extending earlier results, we bound the generalization error of classifiers
produced by standard LAD methods in terms of their complexity and how well
they fit the training data. We also obtain bounds on the predictive accuracy which
depend on the extent to which the underlying LAD discriminant function achieves
a large separation (a ‘large margin’) between (most of) the positive and negative
observations.
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1 Logical analysis of data

1.1 Boolean functions

A Boolean function (of n variables) is usually taken to be a function from {0, 1}n to {0, 1}.
Sometimes it is useful to regard a Boolean function as a mapping from {−1, 1}n to {0, 1}.
When taking the first approach, we say that we are using the standard convention, and
we shall refer to the latter as the nonstandard convention. Transforming from standard to
nonstandard conventions is simple. Recall that any Boolean function can be expressed by
a disjunctive normal formula (or DNF), using literals u1, u2, . . . , un, ū1, . . . , ūn, where the ūi

are known as negated literals. A disjunctive normal formula is one of the form

T1 ∨ T2 ∨ · · · ∨ Tk,

where each Tl is a term of the form

Tl =

(∧
i∈P

ui

)∧(∧
j∈N

ūj

)
,

for some disjoint subsets P, N of {1, 2, . . . , n}. A Boolean function is said to be an l-DNF if
it has a disjunctive normal formula in which, for each term, the number of literals, |P ∪N |,
is at most l; it is said to be a k-term-l-DNF if there is such a formula in which, furthermore,
the number of terms Ti is at most k.

1.2 Polynomial threshold functions

Let [n](d) denote the set of all subsets of at most d objects from [n] = {1, 2, . . . , n}. For any
x = (x1, x2, . . . , xn) ∈ {0, 1}n, xS shall denote the product of the xi for i ∈ S. For example,
x{1,2,3} = x1x2x3. When S = ∅, the empty set, we interpret xS as the constant 1. With this
notation, a Boolean function f defined on {0, 1}n is a polynomial threshold function of degree
(at most) d if there are real numbers wS, one for each S ∈ [n](d), such that

f(x) = 1⇐⇒
∑

S∈[n](d)

wSxS > 0.

This may be written

f(x) = sgn

 ∑
S∈[n](d)

wSxS

 ,
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where the sign function sgn is such that sgn(x) = 1 if x > 0 and sgn(x) = 0 if x ≤ 0.
The set of polynomial threshold functions on {0, 1}n of degree d will be denoted by P(n, d).
The class P(n, 1) is usually known simply as the set of threshold functions on {0, 1}n. It
is easy to see that any l-DNF f on {0, 1}n is in P(n, l), as follows. Given a term Tj =
ui1ui2 . . . uir ūj1ūj2 . . . ūjs of the DNF, we form the expression

Aj = xi1xi2 . . . xir(1− xj1)(1− xj2) . . . (1− xjs).

We do this for each term T1, T2, . . . , Tk and expand the algebraic expression A1+A2+· · ·+Ak

according to the normal rules of algebra, until we obtain a linear combination of the form∑
S∈[n](l) wSxS. Then, since f(x) = 1 if and only if A1 + A2 + · · ·+ Ak > 0, it follows that

f(x) = sgn

 ∑
S∈[n](l)

wSxS

 ,

so f ∈ P(n, l).

The class B(n, d) of binary-weight polynomial threshold functions to be the functions in
P(n, d) for which the weights wS all belong to {−1, 0, 1} for S 6= ∅, and for which w∅ ∈ N
(where N is the set of natural numbers). Next, for 1 ≤ j ≤

∑d
i=0

(
d
i

)
, define Pj(n, d) to

be the set of all functions in P(n, d) with at most j of the weights wS non-zero for S 6= ∅;
thus a function is in Pj(n, d) if and only if there are non-empty subsets S1, S2, . . . , Sj of
{1, 2, . . . , n}, each of cardinality at most d, and constants w0, w1, w2, . . . , wj such that

f(x) = 1⇐⇒w0 +

j∑
i=1

wixSi
> 0.

We shall say that the functions in Pj(n, d) involve at most j product terms. In an analo-
gous way we can define Bj(n, d), the class of binary-weight polynomial threshold functions
involving at most j terms wS where S 6= ∅, and which have w∅ ∈ {0, 1, . . . , j − 1}. We
have remarked that any l-DNF function lies in P(n, l); in fact, it lies in the subclass B(n, l).
When using the standard convention for Boolean functions, it is not generally true that a
k-term-l-DNF lies in Bk(n, l); all that can be said is that it lies in B(n, l); however, if we
use the nonstandard convention, it is the case that f ∈ Pk(n, l). For, instead of replacing
a negated literal ūi in a term by the algebraic expression 1 − xi, we replace it simply by
−xi; it is clear that the product terms of the resulting polynomial threshold function are in
one-to-one correspondence with the terms of the DNF formula and that they have precisely
the same degree. (We take w∅ = j − 1 where j ≤ k is the number of terms in the DNF.)
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1.3 Standard LAD methods

In the simplest LAD framework, one is given some elements of {0, 1}n, observations classified
according to some hidden function t: a given x ∈ {0, 1}n in the data set is classified as positive
if t(x) = 1 and negative if t(x) = 0. The observations, together with the positive/negative
classifications will be denoted D. The aim is to find a function h of a particular, simple,
type (called a hypothesis) which fits the observations well. In a sense, such a hypotheses
‘explains’ the given data well and it is to be hoped that it generalises well to other data
points, so far unseen. That is, we should like it to be the case that for most y ∈ {0, 1}n

which are not in D, h classifies y correctly, by which we mean h(y) = t(y).

The observed error of a hypothesis on a data set D is the proportion of observations in D
incorrectly classified by the hypothesis:

erD(h) =
1

|D|
|{x ∈ D : h(x) 6= t(x)}| .

An extension of D (or a hypothesis consistent with D) is a hypothesis with zero observed
error.

In the basic LAD method described in [7], a DNF is produced. First, a support set of
variables is found. This is a set S = {i1, i2, . . . , is} such that no positive data point agrees
with a negative data point in the coordinates i1, i2, . . . , is. If S is a support set then there
is some extension of D which depends only on the literals ui, ūi for i ∈ S (and conversely).
In the technique described in [7], a small support set is found by solving a set-covering
problem derived from the data set D. Once a support set has been found, one then looks for
positive patterns. A (pure) positive pattern is a conjunction of literals which is satisfied by
at least one positive example in D but by no negative example. We then take as hypothesis
h the disjunction of a set of positive patterns. If these patterns together cover all positive
examples, then h is an extension of D. Suppose that the chosen support set has cardinality
s, that each positive pattern is a conjunction of at most d ≤ s literals, and that the number
of patterns is P ; then the resulting function is a P -term-d-DNF formula.

There are some variants on this method. In particular, we can also make use of negative
patterns. A (pure) negative pattern is a conjunction of literals which is satisfied by at least
one negative example and by no positive example. Suppose that T1, T2, . . . , Tq are patterns
covering all positive examples in D and that T ′

1, T
′
2, . . . , T

′
r are negative patterns covering all

negative examples in D. Then the function

h = sgn

(
q∑

i=1

Ti −
r∑

j=1

T ′
j

)
is easily seen to be an extension of D. If each pattern and negative pattern is a conjunction
of at most d literals, then the resulting extension lies in BP (n, d), where P = q + r is the
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number of patterns. More generally, we might consider ‘impure’ patterns. For instance, a
particular conjunction of literals may cover many positive observations (that is, they satisfy
the conjunction) but may also cover a small number of negative observations. We might well
want to make use of such a pattern.

There might be some advantage in ‘weighting’ the patterns, assigning positive weights to
the patterns and negative weights to the negative patterns; that is, we take as extension a
function of the form

h = sgn

(
q∑

i=1

wiTi −
r∑

j=1

w′
jT

′
j

)
,

where the wi, w
′
i are positive. For instance, we might take the weight associated to a pattern

to be proportional to the number of observations it covers. Such classifiers will lie in the
subclass of P(n, d) consisting of homogenous polynomial threshold functions, those in which
the constant term w∅ is 0. Without any loss, we may suppose that the weights are normalised
so that

∑q
i=1 |wi|+

∑r
j=1 |w′

j| = P . (The non-weighted discriminant can be thought of also as
a homogeneous polynomial threshold function having ±1 weights and will also be normalised
according to this definition.) If we use weights in this manner, it may be easier to ‘update’
the extension should we subsequently be presented with more classified data points. Note
that the total number of patterns used by the LAD method described above is certainly no
more than m, the number of data points.

2 Generalisation from random data

Given an extension of a fairly large data set determined by LAD techniques, it is important
to know how well it would classify further data points. We can apply some probabilistic
techniques to analyse the performance of LAD algorithms on random data. Following the
PAC model of computational learning theory, we assume that the data points are generated
randomly according to a fixed probability distribution µ on {0, 1}n and that they are classified
by some hidden function t. Thus, if there are m data points in D, then we may regard the
data points as a vector in ({0, 1}n)m, drawn randomly according to the product probability
distribution µm. Given any extension h of a data set D (which it will be presumed belongs
to some hypothesis space), we measure how well h performs on further examples by means
of its error

er(h) = µ ({x ∈ {0, 1}n : h(x) 6= t(x)}) ,

which is the probability that h incorrectly classifies an x ∈ {0, 1}n drawn randomly according
to µ. (Note that such a random x may be one of the data points of D.)

The following results are improvements of ones from [1].
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Theorem 2.1 Suppose that D is a data set of m points, each generated at random according
to a fixed probability distribution on {0, 1}n. Let δ be a positive number less than one. Then
the following holds with probability at least 1 − δ: for any d, P ≥ 1, if h is any extension
of D which is either a P -term-d-DNF or a binary-weight polynomial threshold function in
BP (n, d), then the error of h is less than

1

m

(
dP ln

(en

d

)
+ P ln

(
2e

P

)
+ ln

(
4

δ

)
+ 2 ln d + 3 ln P

)
,

for n ≥ 2.

Note that if P ≥ 5, then the second term in the bound is negative.

Theorem 2.2 Suppose that D is a data set of m points, each generated at random according
to a fixed probability distribution on {0, 1}n. Let δ be a positive number less than one. Then
the following holds with probability at least 1− δ: for any d, P ≥ 1 with P ≤ 2m, if h is an
extension of D which is a polynomial threshold function in PP (n, d), then the error of h is
less than

1

m

(
2dP log2

(en

d

)
+ 2P log2(2m) + 4P log2

( e

P

)
+ 2 log2

(
8

δ

)
+ 2 log2(dP )

)
.

Note that P and d are not specified in advance in these results, and may be observed after
learning. (Note also that since we certainly have P ≤ m for the standard LAD methods, the
restriction P ≤ 2m is benign.)

Proof of Theorem 2.1: We use a standard bound (which can be found in [6], for example):
given a class of hypotheses H, for a random data set D of m points, each generated according
to µ, the probability that there is some extension h ∈ H which has error at least ε is less than
|H| exp(−εm). We observe that, in the non-standard convention, the class of P -term-d-DNF
functions is a subclass of the class of binary-weight polynomial threshold functions BP (n, d).
We now bound the cardinality of this latter class. Recall that h ∈ BP (n, d) if for some j ≤ P
there are non-empty subsets S1, S2, . . . , Sj of {1, 2, . . . , n}, each of cardinality at most d, and
constants w1, w2, . . . , wj ∈ {−1, 1} and w0 ∈ {0, 1, . . . , P − 1} such that

h(x) = sgn

(
w0 +

j∑
i=1

wixSi

)
.

The number of possible such xS is

N =

(
n

≤ d

)
=

d∑
i=0

(
n

i

)
,
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which is at most (en/d)d. To count the number of functions in BP (n, d), we observe that,
given the (non-empty) product terms which such an h involves, there are two choices for the
weight assigned to each (either −1 or 1). Furthermore, there are P choices for w0. Therefore

|BP (n, d)| ≤ P
P∑

j=0

(
N

j

)
2j

< P 2P

P∑
j=0

(
N

j

)

≤ P 2P

(
eN

P

)P

.

It follows that

ln |BP (n, d)| ≤ ln P + P ln

(
2e

P

)
+ P ln N ≤ ln P + P ln

(
2e

P

)
+ Pd ln

(en

d

)
.

So, fixing P, d and taking H equal either to the class of P -term-d-DNF or to BP (n, d), with
probability at least 1− δ, if h ∈ H is an extension of a random data set D of size m, then

er(h) <
dP ln(en/d) + P ln(2e/P ) + ln (P/δ)

m
.

It follows that with probability at most 1−δ/(4d2P 2), there will be some h ∈ BP (n, d) which
is an extension of D and which satisfies er(h) > ε(d, P, n, m) where

ε(d, P, n, m) =
1

m

(
dP ln(en/d) + P ln(2e/P ) + ln

(
4d2P 3

δ

))
.

So, the probability that for some d, P ≥ 1, there will be some such h is no more than

∞∑
d=1

∞∑
P=1

δ

4d2P 2
=

δ

4

∞∑
d=1

1

d2

∞∑
P=1

1

P 2
=

δ

4

(
π2

6

)2

< δ.

The result follows. ut

Proof of Theorem 2.2: We use a bound from [6], which follows [11]. With the notation
as above, the bound states that for any positive integer m ≥ 8/ε and any ε ∈ (0, 1), the
probability that there exists h ∈ H with er(h) ≥ ε and such that h is consistent with a
randomly generated data set of size m is less than 2ΠH(2m)2−εm/2, where for a positive
integer k, ΠH(k) is the maximum cardinality of H restricted to any k-subset of {0, 1}n.
(The function ΠH is known as the growth function.) We now bound the growth function of
H = PP (n, d).
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As usual, let [n](d) be the set of all subsets of {1, 2, . . . , n} of cardinality at most d and, for
R ⊆ [n](d), let HR be the set of polynomial threshold functions of the form

sgn

(∑
S∈R

wSxS

)
.

Then
H =

⋃
R⊆[n](d),|R|≤P

HR.

For a subset C of {0, 1}n, let H|C denote the restriction of H to domain C. Then, for any
subset C of {0, 1}n, of cardinality k,

|H|C | =

∣∣∣∣∣∣
⋃

R⊆[n](d),|R|≤P

HR|C

∣∣∣∣∣∣ ≤
∑

R⊆[n](d),|R|≤P

∣∣HR|C
∣∣ ≤ ∑

R⊆[n](d),|R|≤P

ΠHR(k),

from which it follows that
ΠH(k) ≤

∑
R⊆[n](d),|R|≤P

ΠHR(k).

The number of such R is
∑P

r=0

(
N
r

)
where N =

∑d
i=1

(
n
i

)
. Fix R ⊆ [n](d), of cardinality

r ≤ P . We can use the theory of the Vapnik-Chervonenkis dimension. This was introduced
in [12] and has been used extensively in computational learning theory. Given a set G of
functions from a (not necessarily finite) set X to {0, 1}, the VC-dimension of G, VCdim(G),
is defined to be the largest integer D such that for some set C of cardinality k, |G|C | = 2k.
From Sauer’s inequality [10], if k ≥ D ≥ 1, ΠG(k) ≤ (ek/D)D. It can be shown (see [2], for
example) that the VC-dimension of HR is |R| = r ≤ P , so, for each R under consideration,

ΠHR(k) ≤
(

ek

P

)P

.

Hence,

ΠH(k) ≤
∑

R⊆[n](d),|R|≤P

(
ek

P

)P

≤
P∑

r=0

(
N

r

)(
ek

P

)P

≤
(

eN

P

)P (
ek

P

)P

,

so
ln ΠH(k) ≤ P ln k + Pd ln

(en

d

)
+ 2P ln

( e

P

)
,

where we have used the fact that N ≤ (en/d)d.

So, with probability at least 1− δ, if h ∈ H is an extension of a random data set D of size
m, then

er(h) <
2Pd log2(en/d) + 2P log2(2m) + 4P log2(e/P ) + 2 log2 (2/δ)

m
.
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So, the probability that for some d, P ≥ 1, there will be some h ∈ PP (n, d) consistent with
D and with error at least

1

m

(
2Pd log2(en/d) + 2P log2(2m) + 4P log2(e/P ) + 2 log2

(
8d2P 2/δ

))
is less than δ/(4d2P 2). As above, the result then follows. ut

3 Bounds involving observed error

We now develop some more general results. In particular, we bound the error in terms
of the observed error for non-extensions. We also jettison the assumption that there is a
deterministic target concept giving correct classifications: we do this by assuming that D is
now a set of labeled data points and that the labeled data are generated by a fixed probability
distribution µ on the set Z = X ×{0, 1} (rather than just on X), where X = {0, 1}n. Then,
the error of a hypothesis h is simply er(h) = µ{(x, y) : h(x) 6= y} and the observed error is

erD(h) =
1

|D|
|{(x, y) ∈ D : h(x) 6= y}| .

We present two types of results. The first type of (high-probability) bound takes the form
er(h) < erD(h) + ε1 and the second er(h) < 3 erD(h) + ε2 where, generally, ε2 < ε1.

Theorem 3.1 Suppose that D is a data set of m labeled points, each generated at random
according to a fixed probability distribution on Z = {0, 1}n×{0, 1}. Let δ be a positive number
less than one. Then the following holds with probability at least 1− δ: for any d, P ≥ 1, if h
is any P -term-d-DNF or a binary-weight polynomial threshold function in BP (n, d), then

er(h) < erD(h) +

√
1

2m

(
dP ln

(en

d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
8P

δ

))
.

Proof: We use the fact (which follows from a Hoeffding bound: see [4] for instance) that,
for a finite hypothesis class H, with probability at least 1 − 2|H|e−2mε2 , for all h ∈ H, we
have |er(h)− erD(h)| < ε. Using the fact that when H = BP (n, d),

ln |H| ≤ ln P + P ln

(
2e

P

)
+ Pd ln

(en

d

)
,
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we see that, for any d, P , with probability only at most 1 − δ/(4d2P 2) will there be some
h ∈ BP (n, d) with er(h) ≥ erD(h) + ε, where

ε =

√
1

2m

(
dP ln

(en

d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
8P

δ

))
.

The result follows since
∑∞

d,P=1 δ/(4d2P 2) < δ. ut

Theorem 3.2 Suppose that D is a data set of m labeled points, each generated at random
according to a fixed probability distribution on Z = {0, 1}n×{0, 1}. Let δ be a positive number
less than one. Then the following holds with probability at least 1− δ: for any d, P ≥ 1 with
P ≤ 2m, if h is a polynomial threshold function in PP (n, d), then

er(h) < erD(h) +

√
8

m

(
dP ln

(en

d

)
+ P ln(2m) + 2P ln

( e

P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.

Proof: We use the following result of Vapnik and Chervonenkis [12, 4]: with probability
at least 1− 4ΠH(2m)e−ε2m/8, for all h ∈ H, |er(h)− erD(h)| < ε. Using the fact that when
H = PP (n, d),

ln ΠH(k) ≤ P ln k + Pd ln
(en

d

)
+ 2P ln

( e

P

)
,

we see that, for any d, P , with probability only at most 1 − δ/(4d2P 2) will there be some
h ∈ PP (n, d) with er(h) ≥ erD(h) + ε′, where

ε′ =

√
8

m

(
dP ln

(en

d

)
+ P ln(2m) + 2P ln

( e

P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.

The result follows.

We now remove the square roots in the second (more general) bound, at the expense of
replacing erD(h) by 3 erD(h). If the observed error is small, the resulting bound will be
better. We use the following result.

Theorem 3.3 Suppose H is some set of functions from a domain X into {0, 1}. Suppose D
is a data set of m labeled points (x, b) of Z = X×{0, 1}, each generated at random according
to a fixed probability distribution on Z. Let δ be any positive number less than one. Then
the following holds with probability at least 1− δ: for all h ∈ H,

er(h) < 3 erD(h) +
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
where ΠH is the growth function of H.
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Proof: A theorem of Vapnik [11] shows that, for any η, with probability at least 1 −
4 ΠH(2m) e−mη2/4, for all h ∈ H,

er(h)− erD(h)√
er(h)

< η.

It follows, therefore, that with probability at least 1− δ, for all h ∈ H,

er(h) < erD(h) + α
√

er(h),

where

α =

√
4

m

(
ln(ΠH(2m)) + ln

(
4

δ

))
.

This means

er(h)− α
√

er(h)− erD(h) < 0.

Thinking of this as a quadratic inequality in the nonnegative quantity
√

er(h), we therefore
must have √

er(h) <
α

2
+

√
α2 + 4 erD(h)

2
,

and so

er(h) <

(
α

2
+

√
α2 + 4 erD(h)

2

)2

=
α2

4
+

1

4

(
α2 + 4 erD(h)

)
+

α

2

√
α2 + 4 erD(h)

≤ α2

2
+ erD(h) +

1

2

(
α2 + 4 erD(h)

)
= α2 + 3 erD(h),

as required. ut

We then have the following bounds.

Theorem 3.4 Suppose that D is a data set of m labeled points, each generated at random
according to a fixed probability distribution on Z = {0, 1}n×{0, 1}. Let δ be a positive number
less than one. Then the following holds with probability at least 1− δ: for any d, P ≥ 1, if h
is any P -term-d-DNF or a binary-weight polynomial threshold function in BP (n, d), then

er(h) < 3 erD(h) +
4

m

(
dP ln

(en

d

)
+ P ln

(
2e

P

)
+ 2 ln(dP ) + ln

(
16P

δ

))
.
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Proof: We first note that ΠH(2m) ≤ |H| and then observe that, by Theorem 3.3, and
using our earlier bound for the cardinality of H, the following holds: for each possible choice
of d, P , with probability only at most δ/(4d2P 2) will there be some h ∈ H = BP (n, d) such
that er(h) ≥ 3 erD(h) + ε where

ε =
4

m

(
dP ln

(en

d

)
+ P ln

(
2e

P

)
+ ln

(
16P 3d2

δ

))
.

ut

Theorem 3.5 Suppose that D is a data set of m labeled points, each generated at random
according to a fixed probability distribution on Z = {0, 1}n×{0, 1}. Let δ be a positive number
less than one. Then the following holds with probability at least 1− δ: for any d, P ≥ 1 with
P ≤ 2m, if h is a polynomial threshold function in PP (n, d), then

er(h) < 3 erD(h) +
4

m

(
dP ln

(en

d

)
+ P ln(2m) + 2P ln

( e

P

)
+ 2 ln(dP ) + ln

(
16

δ

))
.

Proof: We observe that, by Theorem 3.3, and using our earlier bound on growth function,
for each possible choice of d, P , with probability only at most δ/(4d2P 2) will there be some
h ∈ PP (n, d) such that er(h) ≥ 3 erD(h) + ε where

ε =
4

m

(
dP ln

(en

d

)
+ P ln(2m) + 2P ln

( e

P

)
+ ln

(
16d2P 2

δ

))
.

ut

4 Margin-based results

We now turn attention to bounding the error when we take into account the margin, which
involves the value (and not just the sign) of the discriminant

f =

q∑
i=1

Ti −
r∑

j=1

T ′
j

or, more generally, the discriminant obtained when weighting the patterns:

f =

q∑
i=1

wiTi −
r∑

j=1

w′
jT

′
j .
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Suppose, then, that h = sgn(f) where f =
∑q

i=1 wiTi −
∑r

j=1 w′
jT

′
j . For γ > 0, we define the

error of h on D at margin γ to be

erγ
D(h) =

1

|D|
|{(x, y) ∈ D : yf(x) < γ}| .

So, this is the proportion of data points in D for which either h(x) = sgn(f(x)) 6= y, or for
which h(x) = y but |f(x)| < γ. (So, for (x, y) to contribute nothing to the margin error
we need not only that the sign of f(x) be correct, but that its value |f(x)| be at least γ.)
Clearly, erγ

D(h) ≥ erD(h).

We can bound the generalization error of homogeneous polynomial threshold classifiers in
terms of their margin error. However, it is possibly more useful to obtain a different type of
error bound which doesn’t involve the ‘hard’ margin error just described, but which instead
takes more account of the distribution of the margins among the sample points. (A bound
involving standard margin error then directly follows.)

For a fixed γ > 0, let φγ : R → [0, 1] be given by

φγ(z) =


1 if z ≤ 0
1− z/γ if 0 < z < γ
0 if z ≥ γ,

For a data-set D of size m, consisting of labeled points (xi, yi) and for a hypothesis h =
sgn(f), let

φ̂γ
D(h) =

1

m

m∑
i=1

φγ(yif(xi)).

If h misclassifies (xi, yi) (that is, h(xi) 6= yi), then φγ(yif(xi)) = 1. If h classifies (xi, yi)
correctly and with margin at least γ, so that yif(xi) ≥ γ, then φγ(yif(xi)) = 0. If, however,
h classifies (xi, yi) correctly but not with margin at least γ, so that 0 < yif(xi) < γ,
then φγ(yif(xi)) = 1 − (yif(xi))/γ, which is strictly between 0 and 1. For this reason,
φ̂γ

D(h) ≤ erγ
D(h). For, in the case where 0 < yif(xi) < γ, we obtain a contribution of

1/m to erγ(h) but only a contribution of (1/m)(1 − yif(xi)/γ) to φ̂γ
D(h). We now obtain

(high-probability) generalization error bounds of the form

er(h) < φ̂γ
D(h) + ε.

Such bounds are potentially more useful when h achieves a large margin on many (though
not all) of the data points.

We have the following result, obtained using results from [8, 5, 9]. This bound is better
than the comparable bound, that of Theorem 3.2, if we can take γ to be larger than of order√

P , while having φ̂γ
D(h) close to erD(h), as will be the case, for instance, if we are using an

unweighted discriminant and most observations are covered by many of the patterns.
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Theorem 4.1 Suppose that D is a data set of m points, each generated at random according
to a fixed probability distribution on {0, 1}n. Let δ be a positive number less than one. Then
the following holds with probability at least 1 − δ: for any d, P ≥ 1 and for any γ > 0, if h
is a homogeneous polynomial threshold function in PP (n, d), then

er(h) < φ̂γ
D(h) + ε′(m, d, P, n, γ),

where

ε′(m, d, P, n, γ) =
4P

γ

√
2d

m
ln

(
2en

d

)
+

√
1

2m

(
ln

(
8

δ

)
+ 2 ln log2

(
4P

γ

)
+ 2 ln(dP )

)
.

Proof: Let H be the set of all homogeneous polynomial threshold functions. Let Fd,P

denote the set of normalised discriminants involving at most P patterns, of degree at most
d. Thus, it is the set of all functions of the form f =

∑q
i=1 wiTi−

∑r
j=1 w′

jT
′
j where q+r = P ,

each Ti and T ′
j is of degree at most d, and

∑q
i=1 |wi| +

∑r
j=1 |w′

j| = P . As noted in [8], a
result from [5] implies (on noting that φγ has a Lipschitz constant of 1/γ) that, for fixed
γ, d, P , and for any δ ∈ (0, 1), the following holds with probability at least 1 − δ: for all
h ∈ H,

er(h) < φ̂γ
D(h) +

2

γ
Rm(Fd,P ) +

√
ln(2/δ)

2m
,

where Rm(Fd,P ) is the Rademacher complexity of Fd,P . Consider, for x ∈ {0, 1}n, the vector
x(d) whose entries are (in some prescribed order) xS for all non-empty S of cardinality at
most d. The set of all such x(d) forms a subset of {0, 1}N where N =

∑d
i=1

(
n
i

)
. We may

consider the function

f(x) =

q∑
i=1

wiTi −
r∑

j=1

w′
jT

′
j

as being of the form

f(x) =
∑

1≤|S|≤d

αSxS,

where the αS are ±wi or ±w′
j. Thus the set Fd,P can be thought of as a (domain-restriction

of) a subset of the set G of all linear functions defined on {0, 1}N defined by weight vectors
α with ‖α‖1 = P (this because of normalisation). It will then follow by the definition of
Rademacher complexity and the fact that it is non-decreasing with respect to containment
of the function class [5] that Rm(Fd,P ) ≤ Rm(G). To bound Rm(G) we use a result from [8].
This shows that

Rm(G) ≤ P

√
2 ln(2N)

m
,

which, since N ≤ (en/d)d, gives

Rm(Fd,P ) ≤ P

√
2d

m
ln

(
2en

d

)
.
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To obtain a result that holds simultaneously for all γ, one can use the technique deployed
in the proof of Theorem 2 in [8], or use Theorem 9 of [3]. Note that we may assume γ ≤ P
since if γ > P , then φ̂γ

D(h) = 1 (by the normalisation assumption) and the error bound is
then trivially true. We obtain the following, for fixed d, P : with probability at least 1 − δ,
for all γ ∈ (0, P ], if h = sgn(f) where f ∈ Fd,P then

er(h) < φ̂γ
D(h) +

4P

γ

√
2d

m
ln

(
2en

d

)
+

√
1

2m

(
ln

(
2

δ

)
+ 2 ln log2

(
4P

γ

))
.

The theorem now follows by using the same sort of methods as before to move to a bound
in which d, P are not prescribed in advance: we simply replace δ by δ/(4d2P 2). ut
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