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finite spaces in terms of (directed) graphs 1

Vladimir Gurvich Michael Vyalyi

Abstract. Given a complete directed graph (digraph) D = (V,A) and a positive
real weight function d : A → {d1, . . . , dk} ⊆ R+ such that 0 < d1 < . . . < dk, then,
for any i ∈ [k] = {1, . . . , k} let us set Ai = {a = (u,w) ∈ A | d(a) ≤ di} and assume
that every subgraph Di = (V,Ai), i ∈ [k], in the obtained nested family is transitive:
(u,w) ∈ Ai when (u, v), (v, w) ∈ Ai for some v ∈ V and for all u,w ∈ V and i ∈ [k].
It is not difficult to verify that the considered weighted digraph (D, d) defines a
quasi-ultrametric finite space (QUMFS), that is,
d(u,w) ≥ 0, d(u,w) = 0 iff u = w, and d(u,w) ≤ max(d(u, v), d(v, w)) ∀ u, v, w ∈ V .
Moreover, each QUMFS is uniquely (up to an isometry) realized in such a way.
This result implies that each QUMFS is realized by a multi-pole flow network.
In the symmetric case, d(u,w) = d(w, u) for all u,w ∈ V , we obtain the following
canonical representation of an ultrametric finite space (UMFS). Let T = (V,E) be
a rooted tree in which L ⊆ V is the set of leaves and v0 ∈ N = V \ L is the root.
For any leaf v ∈ L, there is a unique path p(v) from v0 to v. Furthermore, let
d : N → {d1, . . . , dk} ⊆ R+ be a positive weight function (0 < d1 < . . . < dk) whose
weights strictly monotone decrease along each path p(v), v ∈ L. Then, for every
two distinct leaves u,w ∈ L, let us set d(u,w) = d(v(u,w)), where v(u,w) ∈ N is
the lowest common ancestor of u and w, or in other words, the last common vertex
of the paths p(u) and p(w); standardly we set d(u,w) = 0 iff u = w. Again, it
is easy to see that d(u,w) = d(w, u) ≥ 0 and d(u,w) ≤ max(d(u, v), d(v, w)) for
all u, v, w ∈ L. Thus, (T = (V,E), d) forms an UMFS. Moreover, every UMFS is
uniquely (up to an isometry) realized in this way if we additionally assume that
deg(v0) ≥ 2 and deg(v) ≥ 3 for any other v ∈ N .
By this result, somewhat surprisingly, an UMFS can be viewed as a k-person
positional game of players {1, . . . , k} such that in every play p(v) from v0 to v the
corresponding players move in a monotone strictly decreasing order.

Keywords: distance, ultrametric, spanning tree, minimum cut, maximum flow,
Gomory-Hu tree, widest bottleneck path, decomposing n-graphs, positional game
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1 Introduction

1.1 Finite (quasi-)ultrametric spaces and their (directed) graphs

Given a finite set V and a mapping d : V × V → R+, let us consider three standard axioms:

• (i) d(u,w) = 0 iff u = w;

• (ii) d(u,w) = d(w, u) for all u,w ∈ V ;

• (iii) d(u,w) ≤ max(d(u, v), d(v, w)) for all u, v, w ∈ V .

A pair (V, d) satisfying (i, iii) or (i, ii, iii) is called QUMFS or UMFS, respectively, [6].
In both cases d(u,w) is called the distance between u and w.

It is easily seen that in an UMFS the equality in (iii) holds whenever d(u, v) 6= d(v, w);
in other words, the largest two distances are equal in any triangle u, v, w ∈ V . For this
reason, an UMFS is alternatively called an isosceles space; see, for example, [24, 25].

Example 1. However, the QUMFSs are not necessarily isosceles; let us set, for example,
d(u, v) = 1, d(v, w) = 3, d(u,w) = 2 and d(v, u) = d(w, v) = d(w, u) = 10.

An UMFS (respectively, QUMFS) is conveniently represented by a positively weighted
complete graph G = (V,E), d : E → R+ (respectively, digraph D = (V,A), d : A → R+),
where |V | = n, |E| = n(n−1)/2, |A| = n(n−1), and |im d| = k. We set im d = {d1, . . . , dk}
and assume that 0 < d1 < . . . dk <∞.

A pseudo-(Q)UMFS is defined by relaxation of these inequalities to 0 ≤ d1 < . . . dk ≤ ∞.
(For brevity, we write “a (Q)UMFS” to refer to both an UMFS or QUMFS simultaneously.)
Respectively, “iff” should be replaced by “if” in (i).

Remark 1. Obviously, the ultrametric inequality (iii) is respected by any change of the values
of d1, . . . , dk provided their order is preserved. In particular, all statements that hold for the
(Q)UMFSs are automatically extended to pseudo-(Q)UMFSs too, whenever the values d1 = 0
and dk = ∞ are allowed. E.g., in Example 1 we could set d(u, v) = 0 rather than 1 and/or
d(v, u) = d(w, v) = d(w, u) =∞ rather than 10 and get a pseudo-QUMFS.

For simplicity, we will restrict ourselves to the (Q)UMFSs (unless a pseudo-(Q)UMFS is
mentioned explicitly, like in Sections 4.1 and 4.2) but keep in mind that all statements hold
for the pseudo-(Q)UMFSs as well.

1.2 Main and related results

As it was announced in the title and explained in abstract, in this paper, we will characterize
(Q)UMFSs in terms of their (directed) graphs.

In case of UMFSs our characterization is closely related to the recent observations of
Demaine, Landau, and Weimann [5] that extend the fundamental results of Gomory and Hu
[10, 20, 21]; see the next Section for more details.
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On the other hand, our characterization of the UMFSs can be viewed as a restriction of
the one-to-one correspondence between the positional game structures and Π- and ∆-free k-
graphs, studied by the first author in [11, 12, 13, 14, 17]. Interestingly, the UMFSs correspond
to the structures in which players {1, . . . , k} move in a strictly monotone decreasing order in
every play p(v) from the initial position v0 to a terminal one v ∈ L; see Section 2 for details.

Let us recall that the semilattices were also characterized as special positional game
structures by Libkin and the first author in [30].

Here, we should also mention considerable contribution of A. Lemin and V. Lemin to
characterization of ultrametric spaces [24, 25, 26, 27, 28, 29]. In their works, mostly, general
(infinite) spaces are studied in an algebraic language. Yet, according to A. Lemin, in the
late 90s “Israel Gelfand set a problem to describe all finite ultrametric spaces up to isometry
using graph theory language”. In this paper we suggest a solution.

The QUMFSs are considered in the last two sections. In Section 3 they are characterized
as nested families of transitive digraphs. It is also shown that the number of pairwise distinct
distances in an n-element QUMFS is at most 1

2
(n− 1)(n+ 2) and this bound is precise.

In Section 4 we consider realization of (Q)UMFSs by networks. In 4.1 and 4.2 we recall
two classical problems (maximum flow and maximum bottleneck directed path) that result
in QUMFSs. It is easy to show that each QUMFS can be realized by a bottleneck network.
For the symmetric case (and UMFSs) this observation was mentioned by Leclerc in [23].

Even earlier, in [10, 20, 21], it was shown that each multi-pole maximum flow network
defines a QUMFS and that every UMFS can be realized by a symmetric flow network.

We construct a QUMFS (D0, d0) which is not a flow QUMFS, that is, it cannot be realized
by the set of all vertices of a flow network. In fact, (D0, d0) is a unique minimal such QUMFS.
Moreover, given a QUMFS (D, d) we provide a polynomial algorithm recognizing whether it
is a flow QUMFS and providing a corresponding flow network in case of the positive answer.
In contrast, every QUMFS can be realized by a subset of vertices, or in other words, by a
multi-pole flow network. All these results are derived in Section 4.2 from the characterization
of a QUMFS (as a nested family of transitive digraphs) obtained in Section 3.

Then, it was shown in [18] (see also [19, 15, 16]) that the “flow” and “bottleneck” UMFSs
both can be realized as the UMFSs of resistances, by the corresponding choice of the two
parameters of a conductivity law; see Section 4.3 for more details. Finally, in Section 4.4,
we introduce reducible, universal, and complete families of (Q)UMFSs, give examples, and
study simple relations between these families.

1.3 Gomory-Hu’s representation of UMFSs

The seminal paper [10] begins with the following construction. Given an UMFS defined by
a weighted complete graph (G = (V,E), d : E → R+), by Kruskal’s greedy algorithm [22],
let us choose in (G, d) a lightest spanning tree T = (V,E ′), d′ : E ′ → R+), where d′ is the
restriction of d to E ′ ⊆ E. Then, for any u,w ∈ V there is a unique path p(u,w) in T
between u and w. (This path consists of a single edge (u,w) iff (u,w) ∈ E ′.)

Theorem 1. ([10]). For all u,w ∈ V , the equality d(u,w) = max(d(e) | e ∈ p(u,w)) holds.
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Proof. ≤ can be easily derived by induction from the ultrametric inequality (iii), while ≥
follows immediately from the the fact that T is a lightest spanning tree of (G, d).

Let us remark that such a tree may be not unique in (G, d). Nevertheless, all spanning
trees in graph G = (V,E) have |V | = n vertices and |E ′| = n−1 edges; moreover, all lightest
such trees have the same weight distribution, uniquely defined by the greedy algorithm [22];
see Section 2.2.3 for more details. The following two corollaries are obvious.

Corollary 1. ([10]). For any weighted tree T = (V,E ′), d′ : E ′ → R+) an UMFS is defined
by formula of Theorem 1. Conversely, any UMFS can be obtained from a lightest spanning
tree of its weighted graph by the construction of Theorem 1.

Proof. Given a weighted tree (T = (V,E ′), d′), let us verify the ultrametric inequality (iii).

For any two vertices u,w of a tree there is a unique path p(u,w) between them.

For any three vertices u, v, w of a tree there is a unique vertex o that belongs to all three
paths p(u, v), p(v, w), p(w, u). These three paths and p(o, u), p(o, v), p(o, w) consist of the
same edges but each edge appears twice and once in the first and last triplet, respectively.
Let e be a heaviest one among all these edges. Without any loss of generality, let us assume
that e is in p(o, v). Then, by construction, d(u, v) = d(v, w) ≥ d(u,w) and (iii) holds.

All other claims of the Corollary, as well as the next Corollary, are straightforward.

Corollary 2. ([10]). In an UMFS, the distances take at most n− 1 distinct values, that is,
|im d| ≤ n− 1, where n = |V |.

1.4 Cartesian binary trees of UMFSs

Recently, Demaine, Landau, and Weimann [5] applied Theorem 1 to assign a binary Cartesian
tree to an UMFS as follows: Delete from (T = (V,E ′), d′ : E ′ → R+) a heaviest edge, repeat
the same for each of the obtained two weighted subtrees, etc., until only vertices of T remain.
Obviously, this procedure will result in a binary rooted tree T ′ = (V ′, E ′′, v0) whose leaves
L ⊆ V ′ (respectively, all other vertices N = V ′ \L) are in one-to-one correspondence with V
(respectively, with E ′). It is easily seen that for any two u,w ∈ L = V the distance d(u,w)
is equal to the weight d(v(u,w)) of the lowest common ancestor v(u,w) of u and w in T ′.
Furthermore, these weights monotone decrease (perhaps, non-strictly) along each path p(v)
from the root v0 to a leaf v ∈ L.

u v w

9

7 8

5 4 7 4 3

Figure 1: d(u, v) = 7, d(u,w) = d(v, w) = 9
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2 Canonical representation of finite ultrametric spaces

2.1 Ultrametric spaces defined by labeled rooted trees

Let T = (V,E) be a finite rooted tree in which L ⊆ V is the set of leaves and v0 ∈ N = V \L
is the root. For any leaf v ∈ L, there is a unique path p(v) from v0 to v. Furthermore, let
d : N → {d1, . . . , dk} ⊆ R+ be a weight function such that 0 < d1 < . . . < dk.

Then, for each two distinct leaves u,w ∈ L let us set d(u,w) = d(v(u,w)), where
v(u,w) ∈ N is the lowest common ancestor of u and w, or in other words, the last common
vertex of paths p(u) and p(w). By definition, d(u,w) = d(w, u) ≥ 0 and standardly, we set
d(u,w) = 0 if (and only if) u = w. Finally, let us assume for convenience that

• (a) Each vertex v ∈ N has at least two immediate successors; or in other words,
deg(v0) ≥ 2, deg(u) ≥ 3 ∀ u ∈ N \ {v0} (and deg(v) = 1 ∀ v ∈ L, by definition).

Proposition 1. The ultrametric inequality, d(v′, v′′) ≤ max(d(v′, v), d(v, v′′)) ∀ v, v′, v′′ ∈ L
holds iff the weights (non-strictly) monotone decrease along each path p(v), v ∈ L.

Proof. If all three vertices coincide then all three distances equal 0. If two vertices coincide
then distance between them is 0, while two other distances are equal and non-negative.
Obviously, the ultrametric inequality holds in both cases. Let us assume that v, v′, v′′ ∈ L
are pairwise distinct and u′ = u(v, v′), u′′ = u(v, v′′), u = u(v′, v′′) ∈ N be the lowest common
ancestors of the corresponding three pairs of leaves. Obviously, for any tree, at least two
of them coincide, say, u′ = u′′. It is also clear that in this case u′ = u′′ ≥ u, that is,
u′ = u′′ is an ancestor of u. Hence, the ultrametric inequality holds for v, v′, v′′ ∈ L iff
d(u′) = d(u′′) ≥ d(u). Moreover, it holds for any three leaves of L iff d(u′) ≥ d(u) whenever
u′ is an ancestor of u for any u, u′ ∈ N .

Let us note that Proposition 1 is applicable to the Cartesian binary trees.

2.2 Canonical weighted tree of an UMFS and its applications

2.2.1 Main construction

Let us consider a (pseudo-)UMFS (G, d) given by a complete graph G = (V,E) and a positive
weight function d : E → {d1, . . . , dk} ⊆ R+ satisfying the ultrametric inequality; without
loss of generality, we assume that 0 < d1 < . . . < dk (recall Remark 1, yet).

For each i ∈ [k], let us set Di = {d1, . . . , di}, Ei = {e ∈ E | d(e) ∈ Di}, and Gi = (V,Ei);
in other words, Gi is the subgraph of G formed by the edges whose weights are at most di.

Proposition 2. For every i ∈ [k] = {1, . . . , k}, the subgraph Gi is transitive, that is,
(u,w) ∈ Ei whenever (u, v), (v, w) ∈ Ei for all u, v, w ∈ V ; in other words, Gi is the union
of pairwise vertex-disjoint cliques.
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Proof. Transitivity is just a reformulation of the ultrametric inequality (iii). Furthermore, a
connected graph is a clique iff with every two incident edges it contains the whole triangle.

In particular, Gk is the total clique, while Gk−1 is the union of m ≥ 2 pairwise vertex-
disjoint cliques each of which defines an ultrametric strict subspace (G′, d′) of (G, d).

By construction, the largest weight dk appears in the latter but not in the former, that is,
dk ∈ im(d) \ im(d′); in other words, the dk-edges form a complete m-partite graph.

Each graph (G′, d′) can be similarly decomposed in its turn and we can proceed until
every considered clique becomes a single vertex of V . Obviously, the above procedure results
in a rooted tree T = (V ′, E ′) whose set of leaves L ⊆ V ′ is in one-to-one correspondence
with V and every other vertex u ∈ N = V ′ \ L is assigned to an intermediate clique of G
and labeled by some di; in particular, the root v0 ∈ N is labeled by dk.

By construction, T satisfies the assumption (a) as well as the following property:

• (b) Labels di strictly monotone decrease along each path p(v) from v0 to v ∈ L.

Thus, Propositions 1 and 2 imply the following canonical representation of the UMFSs.

Theorem 2. The above construction is a one-to-one correspondence between the UMFSs
and labeled trees satisfying (a) and (b).

An example illustrating this theorem is given in Figure 3.

2.2.2 Canonical and Cartesian trees

Clearly, the above canonical representation of an UMFS (G, d) is closely related to its Carte-
sian binary trees. Yet, the former is unique, while the latter may be numerous and not
satisfy (b).

It is also clear that for any i ∈ [k] the set of vertices labeled by di form a forest in a
Cartesian tree. Furthermore, contracting the subtrees of this forest for each i ∈ [k] we obtain
a tree that satisfies (b) and still defines the same UMFS (G, d). By Theorem 2, it must be
the canonical tree of (G, d). Thus, for all Cartesian trees, the above contraction results in
the same (canonical) tree. This statement is obvious for the Cartesian trees corresponding
to a fixed minimum weight spanning tree of (G, d). However, there might be many such
spanning trees and, hence, Theorem 2 is essential, in general.

The following inequalities and equalities result from Theorem 2 immediately:

Corollary 3. Let T be the canonical tree of an UMFS (G, d), then

k ≤ |NT | ≤ |LT | − 1 = n− 1.

Moreover, the second inequality holds with equality iff tree T is binary, while the first one iff
every label di, i ∈ [k], appears in T only once.
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2.2.3 Enumerating all minimum weight spanning trees of an UMFS
and counting the corresponding unique weight distribution

The canonical tree T = (V ′, E ′) is instrumental for efficient enumeration of all minimum
weight spanning trees in (G = (V,E), d). Let us recall that Gk−1 is the union of at least
two pairwise vertex-disjoint cliques C1, . . . , Cm ⊆ V of G such that every edge between two
distinct cliques is of the largest weight dk, while each edge within a clique is of a strictly
lesser weight; in other words, the dk-edges form the complete m-bipartite graph with parts
C1, . . . , Cm.

Let us choose in G any m − 1 edges that would form a spanning tree in the factor-
graph obtained from G by contracting each of the m cliques to a vertex. It is clear that
all m − 1 chosen edges are of weight dk and that every spanning tree on V must contain
such a selection. Then, let us repeat the same procedure for each of the cliques C1, . . . , Cm,
etc., until every obtained clique becomes a vertex. Obviously, this procedure results in a
minimum weight spanning tree; moreover, each one can be obtained in this way.

Combining these arguments with the Broder and Mayr [4] algorithm for counting the
minimum weight spanning trees in graphs, we obtain a very efficient enumeration procedure.
For any given k, it outputs the kth minimum weight spanning tree, with respect to the
lexicographic order, in time poly(logk, |V |).

Also, the above procedure makes it obvious that all minimum weight spanning trees of a
given UMFS (G = (V,E), d) have a unique weight distribution, which is explicitly determined
by the canonical tree T = (V ′, E ′) as follows.

Let S(v) denote the set of all immediate successors of a vertex v ∈ V ′ and s(v) = |S(v)|.
Clearly, s(v0) = degT (v0) for the root and s(v) = degT (v) − 1 for any other vertex v ∈ V ′;
in particular, s(v) = 0 for the leaves v ∈ L(T ). Then, it is also easy to see that for each
i ∈ [k] = {1, . . . , k} the corresponding weight di appears

∑
v∈N | d(v)=di

(s(v)− 1) times.

2.3 Canonical trees of UMFSs and positional game structures

We will show that the above representation of an UMFS (G, d) by its canonical labeled tree
is a special case of the following one-to-one correspondence between complete edge-colored
graphs and positional game structures studied in [11, 12, 13, 14, 17].

2.3.1 Complementary connected k-graphs

Let us label the edges of G by colors i ∈ [k] = {1, . . . , k} rather than by weights di.
A k-graph G = (V ;E1, . . . , Ek) is a complete graph on vertices V = {v1, . . . , vn} whose(

n
2

)
edges are partitioned into k subsets (colored by k colors) some of which might be empty.
A k-graph G is called complementary connected (CC) if k ≥ 2, n ≥ 2, and the complement

Gi to each of k chromatic components Gi = (V,Ei) of G is connected on V ; in other words,
for each u,w ∈ V and i ∈ [k] there is an i-free path between u and w in G.

By convention, we assume that G is not CC when n = 1. It is also easily seen that there
is no CC k-graph with n = 2. Yet, CC k-graphs exist for any k ≥ 2 and n ≥ 3.
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The following two examples Π and ∆ in Figure 2 will play an important role:

x

x

x

x

��

��

��

��
@@

@@

@@

@@

v1

v2 v3

v4

x x

x

�
�
�
�
�
�
�
�
�

T
T

T
T

T
T

v1

v2

v3

Figure 2: k-graphs Π and ∆.

Π is defined for any k ≥ 2 by V = {v1, v2, v3, v4};
E1 = {(v1, v2), (v2, v3), (v3, v4)}, E2 = {(v2, v4), (v4, v1), (v1, v3)}, and Ei = ∅ whenever i > 2;

∆ is defined for any k ≥ 3 by V = {v1, v2, v3},
E1 = {(v1, v2)}, E2 = {(v2, v3)}, E3 = {(v3, v1)}, and Ei = ∅ whenever i > 3.

In other words, ∆ is a three-colored triangle, while Π has two non-empty chromatic
components each of which is isomorphic to P4. It is easy to verify that Π and ∆ are CC but
their proper subgraphs are already not CC, for every k ≥ 2; in other words, Π and ∆ are
minimal CC k-graphs. It was shown in [11] that there are no others.

Theorem 3. ([11]; see also [13, 14]) Every CC k-graph contains a Π or ∆ as a subgraph.

2.3.2 Canonical decomposition of Π- and ∆-free k-graphs

Given a Π- and ∆-free k-graph G = (V ;E1, . . . , Ek), by Theorem 3, there is an i ∈ [k] such
that the complement Gi to the chromatic components Gi = (V,Ei) is not connected on V .
It is easy to show that such an i ∈ [k] is unique.

Lemma 1. Let G1 = (V,E1) and G2 = (V,E2) be two graphs on the common vertex-set
V such that both complementary graphs G1 = (V,E1) and G2 = (V,E2) are not connected.
Then E1 ∩ E2 6= ∅.

Proof. Let Vi ⊂ V be a connected component of Gi, then all edges between Vi and V \ Vi
belong to Ei, for both i = 1 and i = 2. Then E1 ∩E2 6= ∅, since Vi 6= ∅ and Vi 6= V for both
i = 1 and i = 2.

So, let Gi = (V,Ei) be a unique not CC component of G. Let us decompose its com-
plement into connected components and consider the corresponding induced k-graphs (note
that there are at least two of them). Each such k-graph G ′ is still Π- and ∆-free. Hence, there
exists a unique j ∈ [k] (note that j 6= i, since Gi was decomposed into connected components)
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such that ... etc. Thus, we get a decomposition rooted tree T = T (G) = (V ′, E ′) whose
leaves L ⊆ V ′ are in one-to-one correspondence with V , while all other vertices N = V ′ \ L
are labeled by the colors of [k].

By construction, property (a) holds for T (G), yet, (b) should be weaken as follows:

• (b’) The labels are distinct for every two adjacent vertices of N .

The labeled rooted tree T (G) was interpreted in [11, 12, 13, 14] as a positional game
structure in which [k] is the set of players. Then, condition (a) means that there is no
position with a unique (forced) possible move, while (b’) means that no player has two
successive moves.

2.3.3 UMFSs as positional game structures

Given a complete labeled graph (G, d) that defines an UMFS, it is enough to replace each
label di by the color i for every i ∈ [k] to obtain a k-graph G.

Theorem 4. A k-graph G = (V ;E1, . . . , Ek) can be realized by an UMFS (G, d) iff G is
∆-free and has no m ≥ 2 triangles colored (ii, i2, i2), (i2, i3, i3), . . . (im−1, im, im), (im, i1, i1).

Proof. The existence of a three-colored triangle ∆ is in contradiction with the ultrametric
inequality, while a two-colored triangle (i`, i`, i`+1) may exist but then di` > di`+1

, by the
same inequality. Hence, the distances d1, . . . , dk corresponding to the colors 1, . . . , k can be
ordered iff G contains no cycle of m triangles mentioned in the theorem.

Remark 2. Let us notice that k-graph Π contains two triangles colored (ii, i2, i2), (i2, i1, i1).
Hence, the right-hand side of Theorem 4 implies that the k-graph G is Π- and ∆-free.

Then, according to the previous subsection, G can be represented by a unique tree T (G).
It remains to note that the labeling becomes special, since property (b) is stronger than (b’).
One can interpret an UMFS as a positional game structure in every play (a path from v0 to
a leave v ∈ L) of which each player makes at most one move.

2.3.4 CIS property of UMFSs

Given a k-graph G = (V ;E1, . . . , Ek), let Si ⊆ V be an inclusion-maximal independent set
of Gi = (V,Ei) and let S = ∩ki=1Si. It is easily seen that |S| ≤ 1. Indeed, if v, v′ ∈ S then
edge (v, v′) would have no color in G. We say that G is a CIS k-graph, or that it has the CIS
property, if S 6= ∅ for every selection {S1, . . . , Sk}.

Theorem 5. ([11]; see also [14]). Every Π- and ∆-free k-graph has the CIS property.

Remark 3. A new proof was recently obtained in [17]. It was also conjectured in [11] that
every non-CIS k-graph contains a ∆; this conjecture is still open; see [1] for more details.

It was shown in [2] that Π- and ∆ are the only (locally) minimal non-CIS k-graphs.

Applying Theorem 5 to the UMFSs we obtain the following statement.
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Corollary 4. Given an UMFS (G, d) with im(d) = {d1, . . . , dk}, for each i ∈ [k], let Si ⊆ V
be an inclusion-maximal vertex set in which no two vertices are at distance di.
Then, S = ∩ki=1Si 6= ∅, that is, every such k sets contain a unique common vertex.

3 Representing QUMFSs by nested transitive digraphs

3.1 Transitive directed graphs

A directed graph (digraph) D = (V,A) is called transitive if

for any u,w ∈ V we have: (u,w) ∈ A whenever (u, v), (v, w) ∈ A for a v ∈ V. (1)

Proposition 3. Let D = (V,A) be a transitive digraph.

• If C is a directed cycle then (u,w) ∈ A for any two vertices u and w of C, or in other
words, the vertices of C induce a complete subdigraph in D.

Furthermore, let D′ = (V ′, A′) and D′′ = (V ′′, A′′) be two complete subdigraphs of D.

• If V ′ ∩ V ′′ 6= ∅ then a complete digraph is induced by V ′ ∪ V ′′;

• If V ′ ∩ V ′′ = ∅ and there is an arc (v′, v′′) ∈ A such that v′ ∈ V ′, v′′ ∈ V ′′ then
(w′, w′′) ∈ A for all w′ ∈ V ′, w′′ ∈ V ′′.

Proof. All these three statements result immediately from the transitivity of D.

The above three claims completely clarify the structure of a transitive digraphD = (V,A).
It is uniquely defined by a partition V = V1 ∪ . . .∪Vm and acyclic digraph D′ = (V ′, A′),

where V ′ = {v1, . . . , vm}. A complete subdigraph is induced in D by each Vi and (wi, wj) ∈ A
whenever wi ∈ Vi, wj ∈ Vj, and (vi, vj) ∈ A′; here i, j ∈ [m] = {1, . . . ,m} and i 6= j.

In other words, the vertices of a transitive digraph are partitioned into several pairwise
disjoint classes (of equivalent vertices) on which a partial order is defined.

Let us notice that in the symmetric (non-directed) case [(u,w) ∈ A whenever (w, u) ∈ A]
the partial order becomes trivial. As we already know, a transitive graph is just the union
of m cliques; respectively, its complement is a complete m-partite graph.

3.2 Characterizing QUMFSs

Given a complete digraph D = (V,A) and a positive weighting d : A → {d1, . . . , dk} ⊆ R+

such that 0 < d1 < . . . < dk, then, for any i ∈ [k] = {1, . . . , k} let us set

Ai = {(u,w) ∈ A | d(u,w) ≤ di}

Theorem 6. The weighted digraph (D = (V,A), d) defines a QUMFS iff all subdigraph
Di = (V,Ai), i ∈ [k], of the corresponding nested family are transitive.
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Proof. Only if part: Assume that Di = (V,Ai) is not transitive for some i ∈ [k], that is,
d(u, v) ≤ di and d(v, w) ≤ di, while d(u,w) > di; then max(d(u, v), d(v, w)) < d(u,w).
If part: Conversely, let us assume that max(d(u, v), d(v, w)) < d(u,w) for some u, v, w ∈ V .
Then d(u, v) ≤ di and d(v, w)) ≤ di, while d(u,w) > di, where di = max(d(u, v), d(v, w)).
Hence, transitivity fails for Di.

Corollary 5. Every QUMFS is uniquely (up to an isometry) realized by Theorem 6

Proof. Given a QUMFS, let consider the complete digraph on its elements and introduce
the weights equal to the corresponding distances.

Example 2. Let us consider three vertices V = {u, v, w} and define the distances as follows:

d1 = d(u,w) = 1, d2 = d(u, v) = d(w, v) = 2, d3 = d(w, u) = 3, d4 = d(v, u) = d(v, w) = 4.

It is easy to verify the ultrametric inequality and that the next four nested arc-sets

A1 = {(u,w)}, A2 = {(u,w), (u, v), (w, v)}, A3 = {(u,w), (u, v), (w, v), (w, u), A4 = A

form transitive digraphs Di = (V,Ai), i = 1, 2, 3, 4.

3.3 Upper bound k ≤ 1
2(n− 1)(n+ 2) is precise for QUMFSs

First, let us recall that k ≤ n − 1 for an n-element UMFS and that this bound is precise.
From Theorem 6, we will derive a much larger, but also precise, upper bound for QUMFSs.

Theorem 7. The number k of pairwise distinct distances in a QUMFS on n elements is at
most

(
n
2

)
+ n− 1 = 1

2
(n− 1)(n+ 2).

Proof. Let QUMFS (D, d) be standardly given by a complete digraph D = (V,A) and
weighting d : A → {d1, . . . , dk} such that d1 < . . . < dk. Each arc (u,w) belongs to n − 2
triangles (u, v), (v, w), (u,w), where v ∈ V \{u,w}. If d(u,w) = dk then value dk must appear
at least n − 2 times more among {d(u, v), d(v, w) | v ∈ V \ {u,w}} ⊆ Dk = {d1, . . . , dk},
by the ultrametric inequality. Furthermore, if d(u0, w0) = dk and d(u1, w1) = dk−1 then the
values dk and dk−1 must appear at least (n− 2) + (n− 3) = 2n− 5 times more among

D0∪D1 = {d(u0, v0), d(v0, w0) | v0 ∈ V \{u0, w0}}∪{d(u1, v1), d(v1, w1) | v1 ∈ V \{u1, w1}} ⊆ Dk.

Indeed, it is enough to notice that |D0| = |D1| = n − 2 and |D0 ∩ D1| = 1 whenever
u0 = u1 or w0 = w1; otherwise D0 ∩D1 = ∅ and, hence, |D0 ∪D1| ≥ 2n− 5, by Theorem 6.

In general, for any j ∈ {1, . . . , n − 2}, if d(ui, wi) = dk−i for all i ∈ Ij = {0, . . . , j} then
the values {dk−i | i ∈ Ij} must appear at least

j∑
i=0

(n− 2− i) = (j + 1)(n− 2− j/2)

times more among

j⋃
i=0

Di =

j⋃
i=0

{d(ui, vi), d(vi, wi) | vi ∈ V \ {ui, wi}}.
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Indeed, it is enough to notice that Dj and ∪j−1i=1Di have at most j elements in common,
which happens when u0 = u1 = . . . = uj or w0 = w1 = . . . = wj.

In particular, substituting j = n− 2, we conclude that there are at least 1
2
(n− 1)(n− 2)

repetitions among the distances d(u,w) for u,w ∈ V . Hence, for the number k of pairwise
distinct distances we obtain k ≤ n(n− 1)− 1

2
(n− 1)(n− 2) = 1

2
(n− 1)(n+ 2).

It is also not difficult to demonstrate that this bound is precise.

Example 3. Given V = {v1, . . . , vn}, first, let us consider the
(
n
2

)
ordered pairs vi, vj ∈ V

such that i < j in the lexicographic order and assign the distinct values 1, . . . ,
(
n
2

)
to the

(
n
2

)
corresponding distances d(v1, v2), . . . , d(v1, vn), d(v2, v3), . . . , d(v2, vn), . . . , d(vn−1, vn).

Then, let us consider the remaining
(
n
2

)
pairs vi, vj ∈ V , for which i > j, in the inverse

lexicographic order and set: d(vn, vn−1) =
(
n
2

)
+1, d(vn, vn−2) = d(vn−1, vn−2) =

(
n
2

)
+2, . . . ,

d(vn, v1) = . . . = d(v2, v1) =
(
n
2

)
+ n− 1 = 1

2
(n− 1)(n+ 2).

Thus, k = 1
2
(n− 1)(n+ 2) and it is easy to verify that the ultrametric inequality holds.

Moreover, it was shown by Frank and Frisch in [9] that the equality k = 1
2
(n− 1)(n+ 2)

may hold already for the flow QUMFSs; see Section 4.2 for the definitions.

4 Realizing (Q)UMFSs by networks

4.1 Bottleneck QUMFSs

Let (D, c) be a network defined by a strongly connected digraph (D = (V,A)) and strictly
positive weight function, c : A→ {c1, . . . , ck} ∈ R+, where 0 < c1 < . . . < ck.

We will interpret c(u,w) as a width of the arc (u,w) ∈ A, that is, the largest size of on
object that can pass (u,w). Then, obviously, the width of a directed path (dipath) p(u,w)
from u to w is the minimum of the widths of its arcs C(p(u,w)) = min{c(e) | e ∈ p(u,w)}.

Let us define the width C(u,w) as the largest size of on object that can pass from u to w
for all u,w ∈ V (not necessarily (u,w) ∈ A). Obviously, C(u,w) = max{C(p(u,w) | p(u,w)}
is the width of a max min (or widest bottleneck) dipath from u to w.

By definition, function C : V ×V → R+ takes only the (strictly positive) values c1, . . . , ck;
it cannot be equal to 0, since D is a strongly connected digraph; see Remark 4 below.

Lemma 2. The inequality C(u,w) ≥ min(C(u, v), C(v, w)) holds for all u, v, w ∈ V .

Proof. If an object can pass from u to v and from v to w then it can pass from u to w.

Let d(u,w) = C−1(u,w) be the inverse width and d(v, v) = 0 for all u, v, w ∈ V .

Proposition 4. • Mapping d is a QUMFS for any network (D, c).

• Furthermore, d is an UMFS whenever (D, c) is symmetric, that is,
(u,w) ∈ A iff (w, u) ∈ A and c(u,w) = c(u,w) for all u,w ∈ V .

• Moreover, all (Q)UMFSs can be realized in this way.
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Proof. It is easily seen that the inequality of Lemma 2 for C is equivalent with the ultrametric
inequality for d and the first statement follows. The second one is obvious.

To realize a given QUMFS d by a network (D, c) it is enough to define D = (V,E) as the
complete digraph on V and set c(u,w) = d−1(u,w) for all u,w ∈ V . Obviously, the obtained
network (D, c) is symmetric whenever d is an UMFS.

For the UMFSs, the above two statements were mentioned by Leclerc in [23].

Remark 4. According to Remark 1, we can easily adjust the above definitions and statements
for the case of pseudo-(Q)UMFSs: It is sufficient to allow for functions d, c and C the values
0 and∞ (assuming standardly that they are mutually inverse, 0−1 =∞ and∞−1 = 0). Also
we should include all, not only strongly connected, digraphs D = (V,A) into consideration
and set d(u,w) =∞ (and C(u,w) = 0) whenever there is no dipath from u to w.

4.2 Flow QUMFSs

4.2.1 Ultrametric inequality for inverse capacities

Given a network (D, c), let us now interpret c(u,w) as a capacity of the arc (u,w) ∈ A, that
is, the largest amount of a material that can be transported along (u,w) per a unit time.

Then, obviously, the capacity of a dipath p(u,w) from u to w is again the minimum of the
capacities of its arcs, C(p(u,w)) = min{c(e) | e ∈ p(u,w)}. Furthermore, for all u,w ∈ V
(not necessarily (u,w) ∈ A), let us define the capacity C(u,w) as the largest amount of a
material that can be transported in a unit time from u to w, assuming that all other vertices
are transient and the conservation law holds for each of them.

Function C : V ×V → R+ can take only the (strictly positive) values c1, . . . , ck and their
sums. (It cannot be equal to 0, since D is a strongly connected digraph; see Remark 4, yet).

Lemma 3. ([10]). The inequality C(u,w) ≥ min(C(u, v), C(v, w)) holds for all u, v, w ∈ V .

This is an exact copy of Lemma 2. However, the proof cannot be just copied. Indeed,
assuming that C(u, v) ≥ x and C(v, w) ≥ x we have to show that C(u,w) ≥ x. It would
suffice just to sum up two x-flows that realize C(u, v) and C(v, w). Yet, by this operation,
the capacity of an edge can be exceeded. However, the result can be easily derived from the
maximum flow and minimum cut theorem [7].

For the symmetric networks and UMFSs the proof was given by Gomory and Hu [10].
The same arguments work for the digraphs and QUMFSs as follows.

Proof. By the Ford-Fulkerson theorem, C(u,w) is equal to the capacity of a critical (directed)
cut (U, V ) of u from w, where V = U ∪W , U ∩W = ∅, u ∈ U and w ∈ W . Obviously, the
same (U, V ) cuts v from w (respectively, u from v) whenever v ∈ U (respectively, v ∈ W ).
It is easily seen that in both cases the inequality follows.

Again, let d(u,w) = C−1(u,w) be the inverse capacity and d(v, v) = 0 for all u, v, w ∈ V .
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Proposition 5. ([10]).

• Mapping d defines a QUMFS for every network (D, c).

• Furthermore, d is an UMFS whenever (D, c) is symmetric.

• Moreover, any UMFS (but not any QUMFS) can be realized in this way.

Proof. As in Proposition 3, the first statement immediately follows from Lemma 3, while
the second one is obvious. Finally, the last one results from Corollary 1 as follows.

Given an UMFS (G, d), where G = (V,E) is the complete graph on V , let us construct a
lightest spanning tree T = (V,E ′) in (G, d) and set c(e) = d−1(e) for all e ∈ E ′. It is easily
seen that the obtained symmetric flow network (T, c) defines the original UMFS (G, d).

Remark 5. Here, we should repeat Remark 4, word to word.

4.2.2 Not every QUMFS is a flow QUMFS

A (Q)UMFS generated by a bottleneck or flow network is naturally called a bottleneck or
flow (Q)UMFS, respectively. By Proposition 3, every (Q)UMFS is a bottleneck (Q)UMFS.
Furthermore, by Proposition 5, every UMFS is a flow UMFS. However, it is not difficult to
construct a non-flow QUMFS. It appears even simpler to start with a pseudo-QUMFS.

Example 4. Let us consider pseudo-QUMFS (D0, d0) defined by the following (not complete)
digraph D0 = (V 0, A0), given in Figure 3, and unit weight function d0 : A0 → {1} :

V 0 = {u, v′, v′′, w}, A0 = {(u, v′), (u, v′′), (v′, w), (v′′, w), (u,w)}, d0(a) ≡ 1 ∀ a ∈ A. (2)

Obviously, digraph D0 is transitive and, by convention, d(a, b) = ∞ (that is, C(a, b) = 0)
whenever (a, b) 6∈ A. Yet, (D0, d0) cannot be realized by a flow network. Indeed, to have
d(u, v′) = d(u, v′′) = d(v′, w) = d(v′′, w) = 1 we must set c(u, v′) = c(u, v′′) = c(v′, w) =
c(v′′, w) = 1. But then, C(u,w) ≥ 2 and d(u,w) ≤ 0.5, while d0(u,w) = 1; a contradiction.

Remark 6. Let us notice, however, that we obtain a flow pseudo-QUMFS just replacing
d0(u,w) = 1 by any d0(u,w) ∈ [0; 0.5] and keeping all other distances as in Example 4.

Example 5. To get a non-flow QUMFS, let us extend D0 to a complete digraph on V 0 and
introduce large enough d(a, b), say d(a, b) = 10, for all a, b ∈ V 0 such that (a, b) 6∈ A0.



RRR –7–2011 Page 15

4.2.3 Yet, every QUMFS can be realized by a multi-pole flow network

First, let us show that the pseudo-QUMFS (D0, d0) of Example 4 can be easily realized by
a flow network on a slightly larger vertex-set.

To do so, let us replace u by a new arc (u, v), as in Figure 4, and consider the network
(D = (V,A), c) in which

V = {u, v, v′, v′′, w}, A = {(u, v), (v, v′), (v, v′′), (v′, w), (v′′, w), (v, w)}, and c(a) = 1 ∀ a ∈ A.

It is not difficult to verify that

C(u, v′) = C(u, v′′) = C(v′, w) = C(v′′, w) = C(u,w) = 1 and C(a, b) = 0 for all other
a, b ∈ V 0 = {u, v, v′, v′′, w}. Hence, d(u, v′) = d(u, v′′) = d(v′, w) = d(v′′, w) = d(u,w) = 1,
as requested. Let us notice that C(v, w) = 3 and d(v, w) = 1/3 but it does not matter.

A still larger multi-pole network is needed to realize the similar QUMFS in which ∞ is
replaced, say, by 10. We leave this analysis to the reader. Instead, let us demonstrate how
the procedure works in general implying that every QUMFS is a subspace of a flow QUMFS.

Theorem 8. Each pseudo-QUMFS given by a weighted digraph (D = (V,A), d) can be
realized by a multi-pole flow network (D′ = (V ′, A′), V ⊆ V ′, c), where V ⊆ V ′ is a set of
poles and d(u,w) = C−1(u,w) for all u,w ∈ V .

For the beginning, let us consider the case k = 1, that is, 0 ≤ d1 ≤ ∞.
Let us replace in the digraph D = (V,A1) each vertex v ∈ V by an arc (v, v1), every arc

(v, u) ∈ A1 by an arc (v1, u), and set c(e) = d−11 (e) for every obtained arc e. Since A1 is
transitive, in the obtained weighted digraph, we get C(u,w) = d−11 for all (u,w) ∈ A1 and
C(u,w) = 0 for all other pairs u,w ∈ V .

Proof of Theorem 8. In general, from i = k to i = 0 do: For each vertex v ∈ V
introduce a new vertex vi and arc (v, vi), then, replace every arc (v, u) ∈ Ai by (vi, u), and
set c(e) = d−1i − d−1i+1 for all new arcs. Standardly, we assume that 0 ≤ d1 < . . . < dk ≤ ∞
and set d0 = 0, dk+1 =∞. Then, by transitivity of Ai for all i ∈ [k], we obtain

C(u,w) =
∑

i | (u,w)∈Ai

d−1i − d−1i+1 = d−1i(u,w) = d−1(u,w) (3)

for every ordered pair u,w ∈ V , where i(u,w) = max(i | (u,w) ∈ Ai).

In particular, these arguments work for a complete digraph D, that is, for a QUMFS.

4.2.4 Recognizing flow QUMFSs and realizing them by flow networks; k = 1

Given a QUMFS (D, d) in which D = (V,A) is a complete digraph and d : A→ {d1, . . . , dk}
is a weight function such that 0 < d1 < . . . < dk <∞, assume for the beginning that k = 1.
In this case, QUMFS (D, d) is defined by d1 and the corresponding (typically, not complete)
digraph D1 = (V,A1). Then, the results of subsections 4.2.2 and 4.2.3 provide the following
characterization of the flow QUMFSs.
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Proposition 6. A QUMFS (D, d) (of k = 1) is realized by a flow network iff digraph
D1 = (V,A1) does not contain D0 = (V 0, A0) from Example 4 as an induced subdigraph.

Proof. The “only if” part was already shown in Example 4; let us prove the inverse statement.
By Theorem 6, digraph D1 = (V,A1) is transitive and hence, by Proposition 3, its

structure is described as follows: D1 is uniquely defined by a partition V = V1 ∪ . . . ∪ Vm
and by an acyclic transitive digraph D′ = (V ′, A′) such that V ′ = {v1, . . . , vm}, a complete
subdigraph is induced in D1 by each Vi; furthermore, (wi, wj) ∈ A1 iff wi ∈ Vi, wj ∈ Vj, and
(vi, vj) ∈ A′, for any i, j ∈ [m] = {1, . . . ,m} such that i 6= j. In other words, A′ defines a
partial order P over V ′; see Section 3.1.

It is easily seen that D1 contains D0 as an induced subdigraph if and only if D′ does.

Finally, let D′′ = (V ′, A′′) denote the so-called Hasse diagram of P ; in other words,
D′′ = (V ′, A′′) is a (unique) subdigraph of D′ = (V ′, A′) such that (vi, vj) ∈ A′′ iff vj is a
cover of vi in D′, that is, (vi, vj) ∈ A′ but (vi, v), (v, vj) ∈ A′ holds for no v ∈ V ′.

Now, for each arc (u,w) ∈ A1 let us introduce its capacity c(u,w) as follows:

c(u,w) =


(d1(ni − 1))−1 if u,w ∈ Vi for some i ∈ [m],where ni = |Vi|;
(d1ninj)

−1 if u ∈ Vi , w ∈ Vj , and vj is a cover of vi;

0 otherwise.

(4)

We will show that the total capacity C(u,w) = d−11 whenever (u,w) ∈ A1 and C(u,w) = 0
otherwise. Let us assume that u ∈ Vi, w ∈ Vj and consider the following three cases:

Case 1: i = j. In this case (u,w) ∈ A1 and, hence, there are ni − 1 dipaths from u to w
in D1, one of which consists of 1 arc, while the remaining ni − 2 consist of 2 arcs each.
By (4), each of these ni − 1 dipaths is of capacity ((ni − 1)d1)

−1 and, hence, C(u,w) = d−11 .

Case 2: i 6= j and (u,w) ∈ A1, i.e., vj is a successor (but not necessarily a cover) of vi.
Let us suppose that (t) there are (at least) two dipaths from vi to vj in D′′.
Then, each of them contains at least two arcs, by the definition of the Hasse diagram.
Hence, by transitivity, (tt) D′ (or equivalently, D1) contains D0 as an induced subdigraph,

in contradiction with the main assumption of the theorem.

Remark 7. In fact, the converse is also true, that is, statements (t) and (tt) are equivalent.

Thus, (ttt) there is a unique dipath from vi to vj in D′. In this case again C(u,w) = d−11

for every u ∈ Vi and w ∈ Vj, by (4). Indeed, cut (Vi, Vj) contains ninj arcs of capacity
(ninjd1)

−1 each and, by (ttt), there are no other dipaths from Vi to Vj. Hence, C(u,w) ≤ d−11 .
On the other hand, ni(ni − 1) arcs of Vi of capacity (d1(ni − 1))−1 each, nj(nj − 1) arcs of
Vj of capacity (d1(nj − 1))−1 each, and ninj arcs from Vi to Vj of capacity (ninjd1)

−1 each
are, obviously, sufficient to transport d−11 from u to w.

Case 3: i 6= j and (u,w) 6∈ A1, that is, vj is not a successor of vi in D′. Then, there is no
dipath from vi to vj in D′′, D′, or D and hence C(u,w) = 0.
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Remark 8. Standardly, we extend Proposition 6 to pseudo-QUMFSs just assuming that
0 ≤ d1 ≤ ∞ rather than 0 < d1 <∞.

Let us underline that, in Proposition 6, only an induced subdigraph D0 is an obstruction.

Example 6. If we extend the digraph D0 = (V 0, A0) from Example 4 by one new arc (v′, v)
and define d(a) = 1 for all a ∈ A′, while d(a) = ∞ for all a 6∈ A′, we will not get a
pseudo-QUMFS, since the obtained digraph D′ = (V,A′) is not transitive.

To get a transitive digraph D = (V,A), we have to add one more arc (v′, v′′).
Then, to get a pseudo-QUMFS (D, d), we just extend d by setting d(v′, v′′) = 1, too.
By Proposition 6, the obtained pair (D, d) is a flow pseudo-QUMFS and the capacities of

the corresponding flow network are defined by (4) as follows:

c(u, v′) = c(v′, u) = c(v′′, w) = 1, c(u, v′′) = c(v′, v′′) = 1
2

and c(x, y) = 0 for other x, y ∈ V .

Example 7. Similarly, if we extend D0 = (V 0, A0) by two new arcs (v′, u) and (v′′, u) and
standardly define d(a) = 1 for all a ∈ A′, while d(a) = ∞ for all a 6∈ A′, we will not get a
pseudo-QUMFS, since the obtained digraph D′ = (V,A′) is not transitive.

To get a transitive digraph D = (V,A), we add two more arcs (v′, v′′) and (v′′, v′). Then,
to get a pseudo-QUMFS (D, d), we just extend d by setting d(v′, v′′) = d(v′′, v′) = 1, too.
By Proposition 6, (D, d) is a flow pseudo-QUMFS. The capacities of the corresponding flow
network are defined by (4) as follows:

c(x, y) = 1
2
, c(x,w) = 1

3
for any distinct x, y ∈ {u, v′, v′′}, while c = 0 for all remaining arcs.

Example 8. Finally, let us extend D0 = (V 0, A0) by two new arcs (v′, u) and (w, v′′) and
in the obtained digraph D′ = (V,A′) standardly define d(a) = 1 for all a ∈ A′ and d(a) =∞
for all a 6∈ A′. Again, to get a transitive digraph D = (V,A), we add the arc (v′, v′′) and,
to get a pseudo-QUMFS (D, d), we extend d by setting d(v′, v′′) = 1. Then, by Proposition
6, (D, d) is a flow pseudo-QUMFS and the capacities of the corresponding flow network are
defined by (4) as follows:

c(x, y) = 1
4

for all x ∈ {u, v′}, y ∈ {v′′, w}, while c(u, v′) = c(v′, u) = c(v′′, w) = c(w, v′′) = 1,
and c = 0 for all remaining arcs.

In three above examples, it is not difficult to compute the effective capacities and verify
the equality C(x, y) = d−1(x, y) for every pair of distinct vertices x, y ∈ V = {u, v′, v′′, w}.

4.2.5 Recognizing flow QUMFSs and realizing them by flow networks

Now, let us consider the general case: k ≥ 1. Given a pseudo-QUMFS (D = (V,A), d) in
which d : A → {d1, . . . , dk} and 0 ≤ d1 < . . . < dk ≤ ∞, we wish either to construct on the
same digraph a flow network (D = (V,A), c) whose effective capacities C(u,w) are equal to
the inverse distances d−1(u,w) for all u,w ∈ V , or to prove that there is no such network.

We will need several iterations. The first one is as follows. Let us consider the (transitive)
digraph Dk = (V,Ak) and define the acyclic transitive digraph D′ = (V ′, A′) and Hasse
diagram D′′ = (V ′, A′′) as in the previous subsection, in which we had k = 1.
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Furthermore, let us assign the capacity c(a) = d−1k to each a ∈ A′′ and compute the
effective capacity C ′(vi, vj) for all vi, vj ∈ V ′ in the obtained flow network (D′′, c).

Then, let us recall the original digraph Dk, define c(u,w) for all (u,w) ∈ Ak by formula
(4) (in which k = 1), and compute the effective capacities C(u,w) for all u,w ∈ V . Finally,
in the QUMFS (D, d), let us compare C(u,w) and C ′(vi, vj) for all u ∈ Vi, w ∈ Vj.

If C(u,w) < C ′(vi, vj) for some u,w ∈ V then, obviously, (D, d) is not a flow QUMFS.

Otherwise, let us update d(u,w) by setting d1(u,w) = (C(u,w)− C ′(vi, vj))−1.
In particular, d1(u,w) =∞ if and only if C(u,w) = C ′(vi, vj). Obviously, this equality holds
whenever (vi, vj) ∈ A′′. Then, let us repeat the whole procedure for the obtained pseudo-
QUMFS (D1 = (V,A1), d1), etc., getting (D` = (V,A`), d`) after each iteration ` = 0, 1, . . . , L
(assuming that d0 = dk, D

0 = Dk, and A0 = Ak for the initial iteration).
Let us note that the distances d`(u,w) are monotone non-decreasing in ` and at least one

of them becomes ∞ in each step. Hence, the arc-sets A` are strictly monotone decreasing in
` implying that L < n(n− 1) where n = |V |. After L iterations we either prove that (D, d)
is not a flow pseudo-QUMFS, or realize it by a flow network introducing the cumulative
capacities: c(a) =

∑L
`=0 c

`(a) for all a ∈ A. Obviously, the obtained algorithm is polynomial
for the pseudo-QUMFSs and for QUMFSs, in particular.

Remark 9. Let us notice that, unlike the arc-sets A`, the numbers of pairwise distinct
distances may not decrease in `, that is, strict inequalities k` < k`+1 may hold.

4.3 Finite ultrametric spaces of resistances

Both bottleneck and flow UMFS can be realized as resistance distances [18]; see also [19, 16].
Given a (non-directed) connected graph G = (V,E) in which each edge e ∈ E is an

isotropic conductor with the monomial conductivity law

y∗e = yre/µ
s
e.

Here ye is the voltage, or potential difference, y∗e current, and µe is the resistance of e, while
r and s are two strictly positive real parameters independent of e ∈ E.

In particular, the case r = 1 corresponds to Ohm’s low in electricity, while r = 0.5 is the
standard square law of resistance typical for hydraulics or gas dynamics. Parameter s, in
contrast to r, is redundant; yet, it will play an important role too.

It is not difficult to see that for any two arbitrary nodes u,w ∈ V the obtained two-pole
circuit (G, u, w) satisfies the same monomial conductivity law y∗u,w = yru,w/µ

s
u,w, where y∗u,w

is the total current and yu,w voltage between u and w, while µu,v is the effective resistance of
(G, u, w). In other words, (G, u, w) can be effectively replaced by a single edge e = (u,w) of
resistance µu,w with the same r and s. Obviously, µu,w = µw,u, due to symmetry (isotropy)
of the conductivity functions; it is also clear that µu,w > 0 whenever u 6= w; finally, by
convention, we set µu,w = 0 for u = w.

In [18], it was shown that for arbitrary three nodes u, v, w the following inequality holds
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µs/r
u,w ≤ µs/r

u,v + µs/r
v,w.

In [19] it was also shown that it holds with equality if and only if node v belongs to every
path between u and w.

Clearly, if s ≥ r then we obtain the standard triangle inequality µu,w ≤ µu,v + µv,w and
the ultrametric inequality µu,w ≤ max(µu,v, µv,w) appears when s/r →∞.

Thus, a circuit can be viewed as a metric space in which the distance between any two
nodes u and w is the effective resistance µu,w. Playing with parameters r and s, one can
get several interesting examples. Let r = r(t) and s = s(t) depend on a real parameter t; in
other words, these two functions define a curve in the positive quadrant r ≥ 0, s ≥ 0.

It is shown in [18, 16] that for the next four limit transitions, as t → ∞, for all pairs of
poles u,w ∈ V , the limits µu,w = limt→∞ µu,w(t) exist and can be interpreted as follows:

• (i) The effective Ohm resistance between poles u and w, when s(t) = r(t) ≡ 1, or
more generally, whenever s(t)→ 1 and r(t)→ 1.

• (ii) The standard length (travel time or cost) of a shortest route between terminals u
and w, when s(t) = r(t)→∞, or more generally, s(t)→∞ and s(t)/r(t)→ 1.

• (iii) The inverse width of a maxmin path between terminals u and w when s(t)→∞
and r(t) ≡ 1, or more generally, r(t) ≤ const, or even more generally s(t)/r(t)→∞.

• (iv) The inverse capacity between terminals u and w, when s(t) ≡ 1 and r(t)→ 0; or
more generally, when s(t)→ 1, while r(t)→ 0.

Obviously, all four example define metric spaces, since in all cases s(t) ≥ r(t) for any
sufficiently large t. Moreover, for the last two examples the ultrametric inequality holds for
any u, v, w ∈ V , because s(t)/r(t)→∞, as t→∞, in the cases (iii) and (iv).

These examples allow us to interpret s and r as parameters of a transportation problem.

In particular, s can be viewed as a measure of divisibility of a transported material;
s(t)→ 1 in examples (i) and (iv), because liquid, gas, or electrical charge are fully divisible;
in contrast, s(t)→∞ for (ii) and (iii), because a car, ship, or individual transported from u
to w are indivisible. Furthermore, the ratio s/r can be viewed as a measure of subadditivity
of the transportation cost; so s(t)/r(t) → 1 in examples (i) and (ii), because in these cases
the cost of transportation along a path is additive, i.e., is the sum of the costs of the edges
that form this path; in contrast, s(t)/r(t)→∞ for (iii) and (iv), because in these cases only
edges of the maximum cost (capacity or of the bottleneck width) matter. Other values of
parameters s and s/r, between 1 and ∞, correspond to an intermediate divisibility of the
transported material and subadditivity of the transportation cost, respectively.
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4.4 Reducible, universal, and complete families of (Q)UMFSs

Given two (Q)UMFSs (D′ = (V ′, A′), d′) and (D′′ = (V ′′, A′′), d′′) with a common vertex-
set V ⊆ V ′ ∩ V ′′, let us call (D′, d′) and (D′′, d′′) V -isometric if d′(u,w) = d′′(u,w) for all
(ordered) pairs u,w ∈ V .

A family F of (Q)UMFSs will be called:

• reducible if for any (D′ = (V ′, A′), d′) ∈ F and V ⊆ V ′ there is a (D = (V,A), d) ∈ F
such that (D, d) and (D′, d′) are V -isometric;

• universal if for any (Q)UMFS (D = (V,A), d)) there is a (Q)UMFS
(D′ = (V ′, A′), d′) ∈ F such that V ⊆ V ′ and restriction of the latter (Q)UMFS to V
coincide with the former one;

• complete if F contains all (Q)UMFSs.

Obviously, a complete family is universal and a universal one is reducible; moreover, both
these containments are strict.

In the last section of [16], it was shown that every k-pole n-vertex network, k ≤ n,
can be replaced by an equivalent k-vertex network when r = s = 1; in other words, the
corresponding family of the resistance UMFSs is reducible.

In fact, the same arguments work for r = 1 and any s > 0. In particular, the symmetric
bottleneck networks (for which r = 1, s→∞) generate reducible UMFSs too. Moreover, this
family of UMFSs is complete, as well as the family of UMFSs generated by the symmetric
flow networks (for which s = 1, r → 0); see Sections 4.1 and 1.3, respectively.

As for the families FB and FC of QUMFSs generated by the general (not necessarily
symmetric) bottleneck and flow networks, FB is complete, while FC is universal but not
complete, by the results of Sections 4.1 and 4.2, respectively.
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