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stage stochastic programming problems
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Abstract. We develop methods that exploit the dual representation of coherent
risk measures to produce efficient algorithms that can solve nonlinear risk-averse
stochastic problems by solving a series of linear sub problems. Our main theoret-
ical tool is the development of duality theory for risk-averse two stage stochastic
problems. The basic model that we consider is:

min
x∈X

ρ1

(
c>x+ ρ2 [Q(x, ξ)]

)
, (1)

where ρ1, ρ2 are coherent risk measures and Q(x, ξ) is the optimal value of a second
stage linear problem with a random vector ξ ∈ Ω. We show methods that solve (1)
when the underlying probability space Ω is finite.
We also develop a new type of bundle method, called the truncated bundle method,
which exploits the topological properties of the domain of the functions to obtain
better running time than the classical bundle method. This algorithm solves general
two stage stochastic programs and has value and applicability on its own. As a
testbed for our methods we consider a problem in manufacturing and transportation
and implement in AMPL all of our methods for this problem. The numerical results
from problems with hundreds of first stage scenarios as well as hundreds of second
stage scenarios are compared across all the methods developed.
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1 Introduction

The traditional approach of optimizing the expectation operator in stochastic programs suc-
cessfully introduce uncertainty of events in the models but might fail to convey the element
of risk that certain modeling problems face. During the last decade researchers have de-
veloped the coherent risk measures as an alternative to the expectation operator in the
traditional stochastic programs. These operators are consistent with a systematized theory
of risk as presented in [2, 3] and by substituting the expectation operator give rise to risk-
averse programs. The coherent risk measures have a rich axiomatic theory including duality
and differentiability, thus allowing the development of efficient methods for the solution of
risk-averse programs (see for example [1, 4, 5]). In [10, 11, 9, 12] we can find a compre-
hensive treatment of the coherent risk measures and risk-averse optimization including the
development of multi stage risk-averse programs. See [8] for a general development of multi
staged stochastic problems.

In this article we will define a two stage risk-averse program utilizing coherent measures
of risk and develop its dual and differentiability properties. Then we will apply cutting plane
and bundle algorithms for its solution as well as a special version of the bundle method that
exploits the geometrical structure of the feasible region of the dual problem. Finally we
will consider a concrete application of our techniques and will show a comparison of the
performance of the different methods on it.

2 Basics

Let us first recall some basic concepts of the theory of coherent risk measures. We will follow
closely the development given in [10, 11, 9, 12].

Let (Ω,F , P ) be a probability space with sigma algebra F and probability measure P .
Also, let Z := Lp(Ω,F , P ), where p ∈ [1,+∞). Each element Z := Z(ω) of Z is viewed as
an uncertain outcome on (Ω,F) and it is by definition a random variable with finite p-th
order moment. For Z,Z ′ ∈ Z we denote by Z � Z ′ the pointwise partial order meaning
Z(ω) ≥ Z ′(ω) for a.e. ω ∈ Ω. We also assume that the smaller the realizations of Z, the
better; for example Z may represent a random cost.

Let R = R ∪ {+∞} ∪ {−∞}. A coherent risk measure is a proper function ρ : Z → R
satisfying the following axioms:

(A1) Convexity : ρ (tZ + (1− t)Z ′) ≤ tρ(Z)+(1−t)ρ(Z ′), for all Z,Z ′ ∈ Z and all t ∈ [0, 1];

(A2) Monotonicity : If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≤ ρ(Z ′);

(A3) Translation Equivalence: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a;

(A4) Positive Homogeneity : If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).
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A coherent risk measure of particular interest is the mean upper semideviation of first
order defined by

ρ(Z) = E[Z] + aE [Z − E[Z]]+ ,

for every Z ∈ Z and a fixed a ∈ [0, 1]. See [12] page 277 for the details showing that the
mean upper semideviation is a coherent risk measure and some of its applications.

3 A Two Stage Problem

Most of this article will be devoted to the study of a two stage risk-averse problem of the
form

min
x∈X

ρ1

(
c>x+ ρ2 [Q(x, ξ)]

)
, (2)

where ρ1, ρ2 are coherent risk measures, X ⊆ Rn is compact and polyhedral, and Q(x, ξ) is
the optimal value of the second stage problem

min
y∈Rm

q>y

s.t. Tx+Wy = h, y ≥ 0.
(3)

Here ξ := (q, h, T,W ) is the data of the second stage problem. We view some or all elements
of the vector ξ as random and the ρ1 operator at the first stage problem (2) is taken with
respect to the probability distribution of c>x+ ρ2 [Q(x, ξ)].

If for some x and ξ the second stage problem (3) is infeasible, then by definition Q(x, ξ) =
+∞. It could also happen that the second stage problem is unbounded from below and hence
Q(x, ξ) = −∞. This is somewhat pathological situation, meaning that for some value of the
first stage decision vector and a realization of the random data, the value of the second stage
problem can be improved indefinitely. Models exhibiting such properties should be avoided.

In order to simplify our exposition, we will assume that the distribution of ξ has finite
support. That is, ξ has a finite number of realizations (called scenarios) ξk = (qk, hk, Tk,Wk)
with respective probabilities pk, k = 1, . . . , N . In this case we will let Z := L1(Ω,F , P )
which we will just identify with the space RN .

The following basic duality result for convex risk measures is a direct consequence of the
FenchelMoreau theorem (see [12] Theorem 6.4).

Theorem 1. Suppose that Ω is a finite probability space as described above and Z :=
Lp(Ω,F , P ), where [p ∈ 1,+∞). If ρ : Z → R is a proper, lower semicontinuous, and
coherent risk measure then for every random variable Z = (z1, . . . , zN):

ρ(Z) = max
µ∈∂ρ(0)

N∑
i=1

µipizi,

where

∂ρ(0) ⊆

{
µ ∈ RN

∣∣∣∣∣
N∑
i=1

piµi = 1, µ ≥ 0

}
.
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Theorem 1 is known as the representation theorem of coherent risk measures.
The representation theorem of coherent risk measures allow us to rewrite problem (2)-(3)

in the form

min
x∈X

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>x+ min

yi∈Rm
ρ2[q>i yi]

]
s.t. Tix+Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N.

(4)

For i = 1, . . . , N , let ci ∈ Rn and ρ2i be coherent risk measures. For the remaining of
this article we will focus on the following slight generalization of problem (4):

min
x∈X

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>i x+ min

yi∈Rm
ρ2i[q

>
i yi]

]
s.t. Tix+Wiyi = hi

yi ≥ 0 , i = 1, . . . , N.

(5)

4 The Dual

In this section we will obtain a dual formulation of problem (5).
Consider the following problem:

min
(x1,...,xN )∈XN

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>i xi + min

yi∈Rm
ρ2i[q

>
i yi]

]
s.t. Tixi +Wiyi = hi

yi ≥ 0, xi ∈ X, i = 1, . . . , N

(6)

with the extra nonanticipativity constraints

xi =
N∑
k=1

pkxk, i = 1, . . . , N. (7)

The nonanticipativity constraints (7) play a double role in the development of our theory
and methods. First, they ensure that the first decision variables of (6) do not depend on the
second stage realization of the random data and thus making problem (6)–(7) equivalent to
our main problem (5). Second, these extra constraints will help us obtain a dual formulation
of (5) through their appearance in the Lagrangian of (6)–(7). We aim to do this next.

Let X = Rn·N and L = {x = (x1, . . . , xN) |x1 = . . . = xN}. Equip the space X with the
scalar product

〈x, y〉 =
N∑
i=1

pix
>
i yi (8)
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and define the linear operator P : X → X as

Px =

(
N∑
i=1

pixi, . . . ,

N∑
i=1

pixi

)
.

The nonanticipativity constraints (7) can be compactly written as

x = Px.

It can be verified that P is the orthogonal projection operator of X , equipped with the scalar
product (8), onto its subspace L.

For every x ∈ RN and i ∈ {1, . . . , N} define

F (x, ωi) , c>i x+ inf
y∈Rm

ρ2i[q
>
i y]

s.t. Tix+Wiy = hi

y ≥ 0.

(9)

The convexity property (A1) of the coherent risk measure ρ2i implies that F (·, ωi) is a
convex function. Also the assumptions made on the second stage problem Q(x, ξ) imply
that F (X,ωi) ⊂ R. Therefore the compactness of X implies that F (·, ωi) is continuous
relative to X (see [6] Theorem 10.4).

By assigning Lagrange multipliers λk ∈ Rn, k = 1, . . . , N , to the nonanticipativity con-
straints (7), we obtain that the Lagrangian of problem (6)–(7) is given by:

L(x, λ) , max
µ∈∂ρ1(0)

N∑
i=1

µipiF (xi, ωi) +
N∑
j=1

pjλ
>
j

(
xj −

N∑
t=1

ptxt

)
,

where x = (x1, . . . , xN) ∈ XN and λ> = (λ>1 , . . . , λ
>
N). Note that since P is an orthogonal

projection, I − P is also an orthogonal projection (onto the space orthogonal to L), and
hence

N∑
j=1

pjλ
>
j

(
xj −

N∑
t=1

ptxt

)
= 〈λ, (I − P )x〉 = 〈(I − P )λ, x〉 .

Therefore the above Lagrangian can be written in the following equivalent form

L(x, λ) = max
µ∈∂ρ1(0)

N∑
i=1

µipiF (xi, ωi) +
N∑
j=1

pj

(
λj −

N∑
t=1

ptλt

)>
xj.

Observe that shifting the multipliers λj, j = 1, . . . , N , by a constant vector does not

change the value of the Lagrangian, because the expression λj −
∑N

t=1 ptλt is invariant to
such shifts. Therefore, with no loss of generality we can assume that

N∑
j=1

pjλj = 0
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or equivalently, that Pλ = 0. Under the condition Pλ = 0, the Lagrangian can be written
simply as

L(x, λ) = max
µ∈∂ρ1(0)

N∑
i=1

pi
[
µiF (xi, ωi) + λ>i xi

]
.

Putting everything together we obtain the following dual formulation of problem (6)–(7):

max
λ∈Rn·N

min
x∈XN

max
µ∈∂ρ1(0)

N∑
i=1

pi
[
µiF (xi, ωi) + λ>i xi

]
(10)

s.t.
N∑
j=1

pjλj = 0.

Note that X is polyhedral, ∂ρ1(0) is convex and compact, and µiF (xi, ωi) + λ>i xi is linear
in µ and convex in x. Therefore we can interchange the innermost max by the min in (10)
and obtain the following equivalent formulation for the dual of (6)–(7):

max
λ∈Rn·N
µ∈∂ρ1(0)

N∑
i=1

pi min
xi∈X

[
µiF (xi, ωi) + λ>i xi

]
(11)

s.t.
N∑
j=1

pjλj = 0.

We will require that our problem satisfies the Slater’s constraint qualification condition
and in this way guaranteeing that the duality gap will be zero. We should first point out
that the convexity of the functions F (·, ωi) imply that the primal objective function

max
µ∈∂ρ1(0)

N∑
i=1

µipi F (x, ωi)

is convex too. Due to this fact and the relative to X continuity of F (·, ωi), problem (6)–(7)
satisfies the Slater’s constraint qualification condition if there is x = (x1, . . . , xN) ∈ intXN

such that

xi =
N∑
k=1

pkxk, i = 1, . . . , N.

In this case the duality gap is zero ( see [7] Theorem 4.7) and so, the solution of the primal
problem (6)–(7) is the same as the solution of the dual problem (11).

Suppose that once we are in scenario i there are exactly Ni possible sub-scenarios that
could occur each with probability πij, j = 1, . . . , Ni and its own vector qij. Clearly πij > 0

and
∑Ni

j=1 πij = 1. The representation theorem of coherent risk measures shows that

ρ2i[q
>
i y] = max

δ∈∂ρ2i(0)

Ni∑
j=1

δjπijq
>
ijy, (12)



RRR 2-2012 Page 7

where

∂ρ2i(0) ⊆

{
δ ∈ RNi

∣∣∣∣∣
Ni∑
j=1

δjπij = 1, δ ≥ 0

}
.

From (9), (11), and (12) we obtain that the dual of the main problem is equivalent to

max
λ∈Rn·N
µ∈∂ρ1(0)

min
x∈XN

N∑
i=1

pi

[
µic
>
i xi + µi min

yi∈Rm

[
max

δi∈∂ρ2i(0)

Ni∑
j=1

δijπijq
>
ijyi

]
+ λ>i xi

]
(13)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

This, in turn, is equivalent to

max
λ∈Rn·N
µ∈∂ρ1(0)

min
x∈XN

y∈Rm·N

max
δ∈∂ρ2(0)

N∑
i=1

pi

[
µic
>
i xi + µi

Ni∑
j=1

δijπijq
>
ijyi + λ>i xi

]
(14)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0,

where ∂ρ2(0) := ∂ρ21(0)×· · ·×∂ρ2N(0), y = (y1, . . . , yN), and δ = (δ1, . . . , δN). As before, we
can interchange the innermost max and min and obtain the following equivalent formulation

max
λ∈Rn·N
µ∈∂ρ1(0)
δ∈∂ρ2(0)

min
x∈XN

y∈Rm·N

N∑
i=1

pi

[
µic
>
i xi + µi

Ni∑
j=1

δijπijq
>
ijyi + λ>i xi

]
(15)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

Let

S :=




π11µ1δ11

...
πijµiδij

...
πNNNµNδNNN



∣∣∣∣∣∣∣∣∣∣∣
µi ∈ [∂ρ1(0)]i ,

 δi1
...
δiNi

 ∈ ∂ρ2i(0), i = 1, . . . , N


,
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where [∂ρ1(0)]i is the projection of ∂ρ1(0) on the ith axis. In other words, S = π • ∂ρ2(0) •⊗N
i=1 [∂ρ1(0)]i, where • denotes the Hadamard product of vectors. Note that S is a convex

and compact set. Then (15) is equivalent to:

max
λ∈Rn·N
µ∈∂ρ1(0)
σ∈S

min
x∈XN

y∈Rm·N

N∑
i=1

pi

[
µic
>
i xi +

Ni∑
j=1

σijq
>
ijyi + λ>i xi

]
(16)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

Ni∑
j=1

σij = µi , i = 1, . . . , N

Let RÑ := RN1 × · · · × RNN . For every scenario i = 1, . . . , N define the function χi :
Rn·N × RN × RÑ → R such that

χi(λ, µ, σ) , min
x,y

µic
>
i x+

Ni∑
j=1

σijq
>
ijy + λ>i x (17)

s.t. Tix+Wiy = hi (18)

x ∈ X, y ∈ Rm, y ≥ 0.

Then the dual of our main problem is given by:

max
λ,µ,σ

N∑
i=1

pi χi(λ, µ, σ) (19)

s.t.
N∑
j=1

pjλj = 0

Ni∑
j=1

σij = µi , i = 1, . . . , N

λ ∈ Rn·N , µ ∈ ∂ρ1(0), σ ∈ S.

At this point we add the condition that the sets Yi := {y ∈ Rm | ∃x ∈ X s.t. Tix+Wiy = hi}
be compact for every i = 1, . . . , N . Then χi(λ, µ, σ) ∈ R, for every (λ, µ, σ) ∈ Rn·N×RN×RÑ

and χi is proper, concave, and Lipschitz continuous (see [6] Theorem 10.4). Also the set Ai
of pairs (x, y) satisfying the system of constraints (18) is compact.



RRR 2-2012 Page 9

5 The Subgradient

Define the sets

Λ ,

{
λ ∈ Rn·N

∣∣∣∣∣
N∑
i=1

piλi = 0

}
, (20)

∆ ,

{
(µ, σ) ∈ ∂ρ1(0)× S

∣∣∣∣∣
Ni∑
j=1

σij = µi , i = 1, . . . , N

}
,

and the function ϑi(·, ·) :
(
Rn·N × RN × RÑ

)
×Ai → R by

ϑi [(λ, µ, σ), (x, y)] , µic
>
i x+

Ni∑
j=1

σijq
>
ijy + λ>i x. (21)

The above definition implies that for every (λ, µ, σ) ∈ Rn·N × RN × RÑ

χi(λ, µ, σ) = min
(x,y)∈Ai

ϑi [(λ, µ, σ), (x, y)] . (22)

Let

χ(λ, µ, σ) ,
N∑
i=1

pi χi(λ, µ, σ). (23)

Then, we can rewrite our main dual problem (19) as

max
(λ,µ,σ)∈Λ×∆

χ(λ, µ, σ), (24)

where λ ∈ λ and (µ, σ) ∈ ∆.

The main purpose of this section is to calculate the subdifferential of χ, which is key in
the development of methods to solve efficiently problem (24). Notice first that by definition
χ(·, ·) is a proper, concave, and continuous function. Therefore we can apply the Moreau-
Rockafellar theorem and obtain

∂χ(λ, µ, σ) =
N∑
i=1

pi∂χi(λ, µ, σ). (25)

Because of this we will focus on the subdifferentials of the χi’s. Definition (21) allows us to
see that the following proposition holds.

Proposition 2. The function ϑi [ · , (x, y)] is concave for every (x, y) ∈ Ai. Also, the function

ϑi [(λ, µ, σ), · ] is lower semicontinuous for every (λ, µ, σ) ∈ Rn·N × RN × RÑ .
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Let ∂ϑi [(λ0, µ0, σ0), (x, y)] be the subdifferential of ∂ϑi [ · , (x, y)] at the point (λ0, µ0, σ0)
and let Qi be the Ni ×m matrix with rows q>ij . Then

∂ϑi [(λ0, µ0, σ0), (x, y)]> =
(
x̂>i , e

>
i · c>i x,Qiy

>
)
, (26)

where x̂>i := (0, . . . , 0, x>, 0, . . . , 0) ∈ Rn·N such that the x is in the ith position and each 0

is a vector of Rn, and Qiy
>

:=
(
0, . . . , 0, (Qiy)>, 0, . . . , 0

)
∈ RÑ such that the (Qiy)> is in

the ith position and a 0 in position t is a vector of RNt . For every (λ, µ, σ) ∈ Rn·N×RN×RÑ

define

Ai(λ, µ, σ) , arg min
(x,y)∈Ai

{
µic
>
i x+

Ni∑
j=1

σijq
>
ijy + λ>i x

}
.

The set Ai(λ, µ, σ) is the set of optimal solutions to the right hand side of (22). Then, since
the function χi is a minimum function (see (22) and [7] Theorem 2.87), we get

∂χi(λ0, µ0, σ0)> = conv

 ⋃
(x,y)∈Ai(λ0,µ0,σ0)

∂ϑi [(λ0, µ0, σ0), (x, y)]>

 (27)

=
{(
x̂>i , e

>
i · c>i x,Qiy

>
) ∣∣∣ (x, y) ∈ Ai(λ0, µ0, σ0)

}
.

Using (25) and (27), we obtain

∂χ(λ0, µ0, σ0)> =
N∑
i=1

pi

{(
x̂>i , e

>
i · c>i x,Qiy

>
) ∣∣∣ (x, y) ∈ Ai(λ0, µ0, σ0)

}
. (28)

Usually we need to find a subgradient of χ at a given point (λ0, µ0, σ0). From (28) we
can derive a simple procedure to accomplish this:

Step 1. For every i = 1, . . . , N , solve the linear program

min
(x,y)∈Ai

(µ0)i c
>
i x+

Ni∑
j=1

(σ0)ij q
>
ij y + (λ0)>i x

and call the obtained optimal solution (xi, yi). Note that (xi, yi) ∈ Ai(λ0, µ0, σ0), for
every i = 1, . . . , N .

Step 2. Compute α :=
∑N

i=1 pi

(
(x̂i)

>
i , e

>
i · c>i (xi), Qi(yi)

>
i

)
.

Then (28) implies that α ∈ ∂χ(λ0, µ0, σ0), as we wanted. Notice that the obtained subgra-
dient α has the following structure:
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α =



p1x1
...
pNxN
p1c
>
1 x1

...
pNc

>
NxN

p1Q1y1
...
pNQnyn


. (29)

6 Duality And Differentiability of the Two Stage risk-

averse Problem With Mean Upper Semideviation of

First Order

It is possible to obtain different formulations of the dual problem when we restrict to con-
sider specific risk measures in formulation (5). In this section we will consider problem
(5) where ρ1 and ρ2 are both mean upper semideviations of first order. Let ρ1(Z) :=
E[Z] + a1 E [Z − E[Z]]+ and ρ2i(Z) := E[Z] + bi E [Z − E[Z]]+, where i = 1, . . . , N and
a1, bi ∈ [0, 1].

The structure of the subdifferential of the mean upper semideviation of first order is well
known (see [12] page 278), namely, for every Z ∈ RN

∂ρ1(Z) = {1− E[ξ] + ξ | ξ ∈ arg maxY } , (30)

where
Y = {〈ξ, Z − E[Z]〉 | ‖ξ‖∞ ≤ a1, ξ ≥ 0} .

If Z = 0 then Y = {0} and clearly arg maxY = Y . Therefore

arg maxY = {ξ | ‖ξ‖∞ ≤ a1, ξ ≥ 0} (31)

= {ξ | 0 ≤ ξi ≤ a1,∀ i = 1, . . . , N} ,

here we are using that ξ = (ξ1, . . . , ξN). Relations (30) and (31) show that

∂ρ1(0) =

{
1−

N∑
i=1

piξi + ξ

∣∣∣∣∣ 0 ≤ ξi ≤ a1

}
. (32)

Applying the representation theorem of the coherent risk measures (Theorem 1), we obtain
that

ρ2i(q
>
i y) = max

δ∈∂ρ2i(0)

Ni∑
j=1

δjπijq
>
ijy, (33)
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where as before

∂ρ2i(0) =

{
1−

Ni∑
j=1

πijξj + ξ

∣∣∣∣∣ 0 ≤ ξj ≤ bi

}
. (34)

Substituting (34) into(33) gives

ρ2i(q
>
i y) = max

ξ∈[0,bi]Ni

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

ξkπik

[
q>iky −

Ni∑
j=1

πijq
>
ijy

]
. (35)

Since πik > 0 and ξ ∈ [0, bi]
Ni , the maximum on the right hand side of (35) is given by ξ

such that

ξk =

{
bi if q>iky −

∑Ni
j=1 πijq

>
ijy ≥ 0

0 otherwise
,

k = 1, . . . , Ni. Therefore, we can obtain ρ2i(q
>
i y) by solving the following linear program

minimize

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk (36)

subject to: dk ≥ 0,

dk ≥ biπik
[
q>iky − E[q>i y]

]
,

for all k = 1, . . . , Ni.

where E[q>i y] :=
∑Ni

j=1 πijq
>
ijy.

For every scenario i = 1, . . . , N define the function ϕi : Rn·N × RN → R such that

ϕi(λ, µ) , min
x∈X

[
µiF (x, ωi) + λ>i x

]
,

where λ = (λ1, . . . , λN). Then by (11), the dual of our problem is given by:

max
λ∈Rn·N
µ∈∂ρ1(0)

N∑
i=1

pi ϕi(λ, µ) (37)

s.t.
N∑
j=1

pjλj = 0.

Using the definition of F (x, ωi) and the characterization of ρ2i(q
>
i y) obtained in (36), we get

ϕi(λ, µ) = min
x,y,d

µi

[
c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

]
+ λ>i x (38)
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subject to: (39)

dk ≥ ckπik
[
q>iky − E[q>i y]

]
, k = 1, . . . , Ni

Tix+Wiy = hi

x ∈ X, y ≥ 0, d ≥ 0.

Note that the compactness of X implies that ϕi : Rn·N×RN → R is a proper concave function
and therefore ϕi is Lipschitz continuous (see [6] Theorem 10.4). Formulation (37)–(39) is
practical for the application of cutting plane methods.

For every i = 1, . . . , N , let Bi be the set of triples (x, y, d) satisfying the system of
inequalities (39). The set Bi is closed but not bounded. Nevertheless, our assumption of the
second stage problem Q(x, ξ) having always a real optimal solution guarantees that we could
assume (by adding extra constraints) that Bi is bounded. So, from now on we will assume
that Bi is closed and bounded.

Define the function ψi(·, ·) :
(
Rn·N × RN

)
× Bi → R by

ψi [(λ, µ), (x, y, d)] , µi

[
c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

]
+ λ>i x. (40)

The above definition implies that for every (λ, µ) ∈ Rn·N × RN

ϕi(λ, µ) = min
(x,y,d)∈Bi

ψi [(λ, µ), (x, y, d)] . (41)

Let

ϕ(λ, µ) ,
N∑
i=1

pi ϕi(λ, µ). (42)

Then, we can rewrite the dual problem (37) as

max
(λ,µ)∈Λ×∂ρ1(0)

ϕ(λ, µ). (43)

By definition ϕ(·, ·) is proper, concave, and continuous, so applying the Moreau-Rockafellar
theorem we obtain:

∂ϕ(λ, µ) =
N∑
i=1

pi∂ϕi(λ, µ). (44)

By definition (40) we can easily see that the following proposition holds.

Proposition 3. The function ψi [ · , (x, y, d)] is concave for every (x, y, d) ∈ Bi. Also, the
function ψi [(λ, µ), · ] is upper semicontinuous for every (λ, µ) ∈ Rn·N × RN .

For every (x, y, d) let

φi(x, y, d) = c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk



Page 14 RRR 2-2012

and let ∂ψi [(λ0, µ0), (x, y, d)] be the subdifferential of ∂ψi [ · , (x, y, d)] at the point (λ0, µ0).
Then

∂ψi [(λ0, µ0), (x, y, d)]> =
(
x̂>i , e

>
i · φi(x, y, d)

)
, (45)

recall that x̂>i = (0, . . . , 0, x>, 0, . . . , 0) ∈ Rn·N has the x is in the ith position and each 0 is
a vector of Rn. Also, for every (λ, µ) ∈ Rn·N × RN define

Bi(λ, µ) , arg min
(x,y,d)∈Bi

{
µiφi(x, y, d) + λ>i x

}
.

Clearly the set Bi(λ, µ) is the set of optimal solutions to the right hand side of (41).

Then, as before,

∂ϕi(λ0, µ0)> =
{(
x̂>i , e

>
i · φi(x, y, d)

) ∣∣ (x, y, d) ∈ Bi(λ0, µ0)
}
, (46)

and

∂ϕ(λ0, µ0)> =
N∑
i=1

pi
{(
x̂>i , e

>
i · φi(x, y, d)

) ∣∣ (x, y, d) ∈ Bi(λ0, µ0)
}
. (47)

Just as before, (47) give us a simple procedure to obtain a subgradient of ϕ at (λ0, µ0):

Step 1. For every i = 1, . . . , N , solve the linear program

min
(x,y,d)∈Bi

(µ0)i φi(x, y, d) + (λ0)>i x

and call the obtained optimal solution (xi, yi, di). Note that (xi, yi, di) ∈ Bi(λ0, µ0), for
every i = 1, . . . , N .

Step 2. Compute α :=
∑N

i=1 pi
(
(x̂i)

>
i , e

>
i · φi(xi, yi, di)

)
.

Then (47) implies that α ∈ ∂ϕ(λ0, µ0), as we wanted. Notice that the obtained subdifferential
α is very simple:

α =



p1 x1
...
pN xN
p1 φ(x1, y1, d1)
...
pN φ(xN , yN , dN)


. (48)

From now on we will concentrate on developing methods specific for the two stage risk-
averse problem with mean upper semideviation of the first order.
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7 The Dual Cutting Plane Method

We will apply the cutting plane method to the main dual problem:

max
(λ,µ)∈Λ×∂ρ1(0)

ϕ(λ, µ), (49)

where

ϕ(λ, µ) =
N∑
i=1

pi ϕi(λ, µ), (50)

and for every i = 1, . . . , N and (λ, µ) ∈ Λ× ∂ρ1(0),

ϕi(λ, µ) = min
x,y,d

µi

[
c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

]
+ λ>i x (51)

subject to:

dk ≥ ckπik
[
q>iky − E[q>i y]

]
, k = 1, . . . , Ni

Tix+Wiy = hi

x ∈ X, y ≥ 0, d ≥ 0.

As we stated before the functions ϕi : Rn·N × RN → R are proper, concave and Lipschitz
continuous. The set Λ× ∂ρ1(0) is closed but might not be bounded. In order to be assured
of finding a solution with the cutting plane method we should add, if necessary, artificial
constraints to Λ in such a way that Λ×∂ρ1(0) is compact. These constraints should be large
enough so that the new problem contains an optimal solution to the original dual problem.
Because of this, from now on we will assume that Λ× ∂ρ1(0) is a compact set.

All the properties mentioned in the previous paragraph are the theoretical requirements
that guarantee the convergence to an optimal solution of the cutting plane method when
applied to problem (49) (see [7] page 357). The idea behind the cutting plane method is to
use the subgradient inequality,

ϕ(λ, µ) ≤ ϕ(λ0, µ0) + 〈g, (λ, µ)− (λ0, µ0)〉 ,

which holds true for every (λ, µ) ∈ Rn·N × RN and each subgradient g ∈ ∂ϕ(λ0, µ0), for
constructing upper approximations of ϕ(·) (remember that ϕ(·) is concave). At each step
the method refines the approximation to ϕ(·) and selects point which is the “best so far”
approximation to an optimal solution of (49).

The method starts at a given point (λ1, µ1) ∈ Λ×∂ρ1(0), calculates g1 ∈ ∂ϕ(λ1, µ1), and
constructs a linear approximation of ϕ(·):

ϕ1(λ, µ) , ϕ(λ1, µ1) +
〈
g1, (λ, µ)− (λ1, µ1)

〉
.
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In a general iteration k, having already generated points (λ1, µ1), . . . , (λk, µk), values of
the function ϕ(λ1, µ1), . . . , ϕ(λk, µk), and corresponding subgradients g1, . . . , gk, the method
construct an upper approximation of the function ϕ(·)

ϕk(λ, µ) , min
1≤j≤k

[
ϕ(λj, µj) +

〈
gj, (λ, µ)− (λj, µj)

〉]
. (52)

Then it solves the master problem:

maximize
(λ,µ)∈Λ×∂ρ1(0)

ϕk(λ, µ), (53)

and add its solution (λk+1, µk+1) to the set of points. After evaluating ϕ(λk+1, µk+1) and
gk+1 ∈ ∂ϕ(λk+1, µk+1), it increases k by one, and continue the calculations. If

ϕ(λk+1, µk+1) = ϕk(λk+1, µk+1),

then the method stops; at this moment the point ϕ(λk+1, µk+1) is optimal ([7] section 7.2).
The master problem (53) is equivalent to the following constrained optimization problem:

maximize z

subject to z ≤ ϕ(λj, µj) +
〈
gj, (λ, µ)− (λj, µj)

〉
, j = 1, . . . , k,

(λ, µ) ∈ Λ× ∂ρ1(0),

(54)

whose solution
[
(λk+1, µk+1), zk+1

]
is the next approximation to the solution of (49) and

an upper bound for ϕ(·) on Λ × ∂ρ1(0). This new formulation of the master problem has
the advantage that, after passing to iteration k + 1, just one constraint is added to this
problem, and re-optimization by a dual method is an attractive option. This is particularly
useful since the set Λ× ∂ρ1(0) is polyhedral and problem (54) is a linear program, for which
efficient linear programming techniques can be employed.

Now we will show an explicit reformulation of (54). At each iteration k, solve for every
i = 1, . . . , N the problem (38)-(39) with (λ, µ) := (λk, µk). Denote correspondingly by βki and
(xki , y

k
i , d

k
i ) the obtained optimal value and optimal solution. Then φ(λk, µk) =

∑N
i=1 pi β

k
i

and by equation (48) we obtain that

p1 x
k
1

...
pN x

k
N

p1 φ(xk1, y
k
1 , d

k
1)

...
pN φ(xkN , y

k
N , d

k
N)


∈ ∂ϕ(λk, µk).

This, the definition of Λ (see 20), and the characterization of ∂ρ1(0) (see (32)) gives the
following reformulation of the master problem:
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maximize z

subject to:

z ≤ ϕ(λj, µj) +

〈 p1 x
j
1

...

pN x
j
N

 , λ− λj
〉

+

〈 p1 φ(xj1, y
j
1, d

j
1)

...

pN φ(xjN , y
j
N , d

j
N)

 , µ− µj
〉
,

for all j = 1, . . . , k,

N∑
i=i

piλi = 0,

µi = 1−
N∑
i=1

piξi + ξi, i = 1, . . . , N,

0 ≤ ξi ≤ a1, i = 1, . . . , N,

(55)

where µ = (µ1, . . . , µN). This formulation is concise and practical for implementations of
the method.

8 New Methods

The dual cutting plane method took advantage of all the particular calculations that we
developed for problem (5), its dual, and their restatements. Many of these calculations are
economical and have a positive impact in the running time and performance of the dual cut
method. There are, however, some more possible routes of optimization that we have not
explored yet. First, we could apply a more sophisticated “cutting plane type” methods such
at the bundle method to the dual problem (49). Second, we could exploit the geometrical
properties of the feasible region of the problem to simplify the required calculations on the
selected method. This is exactly what we set to do in the following sections. These new
methods exploit the features in the domain of the objective function to reduce the number of
variables that will be involved in the quadratic master problem. We call these new methods
the truncated proximal point and truncated bundle methods.

The methods developed in this section follow the literature and act upon convex functions.
Despite this, our main goal is to apply these methods on problem (49) which is concave. This
should not present any problem since most of the “convex” results could be easily translated
into “concave” and later we will do so without explicitly stating it.

8.1 Truncated Proximal Point Method

8.1.1 Truncated Moreau-Yoshida regularization

Consider a convex function f : Rn × Rm → R that is proper, and lower semicontinuous.
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For a fixed number % > 0, we define the function f% : Rn × Rm → R by

f%(v, w) , min
(x,y)∈Rn×Rm

{%
2
‖y − w‖2 + f(x, y)

}
. (56)

The function f% is called the truncated Moreau-Yosida regularization of f . Since f(x, y) is
convex and lower semicontinuous the function

F (y) , inf
x∈Rn

f(x, y)

is also convex and lower semicontinuous.
Unfortunately the properties of f do not imply that F is a proper function. For example

the function f(x, y) = x satisfies all the properties stated above but F (y) = infx∈Rm x is not
proper. A proper function f : Rn ×Rm → R is x-bounded if for every bounded Y ⊂ Rm the
set X := {(x, y) ∈ Rn × Y | f(x, y) ∈ R} is bounded. Notice that if f is x-bounded then the
corresponding function F is proper. From now on we will assume that f is x-bounded.

Let f% : Rm → R be defined by

f%(w) , min
y∈Rm

{%
2
‖y − w‖2 + F (y)

}
. (57)

Then f% is the Moreau-Yoshida regularization of F and it is well known (see [7] Lemma

7.10) that f% is a real-valued, convex and continuously differentiable function with ∇f%(w) =
% (w − y%(w)), where y%(w) is the solution of (57). It is not difficult to see that from the
properties of f it follows that f%(v, w) = f%(w) for all (v, w) ∈ Rn × Rm. Therefore we can
conclude the following about the truncated Moreau-Yoshida regularization of x-bounded
functions:

Theorem 4. For every % > 0, the function f% is real-valued, convex and continuously dif-
ferentiable with ∇f%(v, w) = [0, % (w − y%(w))], where (x%(v), y%(w)) is any solution of (56).

8.1.2 Application to convex optimization

Let us consider the convex optimization problem

minimize
(x,y)∈Rn×Rm

f(x, y), (58)

in which f : Rn×Rm → R is convex, proper, lower semicontinuous and x-bounded. Using the
truncated Moreau-Yoshida regularization of f , we construct the following iterative process.
At iteration k, given the current approximation (vk, wk) to the solution of (58), we find a
point (xk, yk) = (x%(v

k), y%(w
k)), which is a solution of the problem

minimize
(x,y)∈Rn×Rm

%

2
‖y − wk‖2 + f(x, y). (59)
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The next approximation is defined according to the formula:(
vk+1, wk+1

)
=
(
x%(v

k), y%(w
k)
)
, k = 1, 2, . . . (60)

The iterative method (60) is called the truncated proximal point method. Although we will
not directly apply this method, it is of theoretical importance and a natural progression in
the development of the truncated bundle method in the following section.

Let us recall that it follows form Theorem 4 that if f is x-bounded then problem (59) has
a solution. Thus the truncated proximal point method is well defined. Since f%(v

k, wk) ≤
f(vk, wk) by construction, we have f(vk+1, wk+1) ≤ f(vk, wk), k = 1, 2 . . . Actually, the
progress made at each iteration can be estimated.

Lemma 5. Assume that there exists (x̃, ỹ) ∈ Rn × Rm such that f(x̃, ỹ) < f(v, w). Then if
ỹ = w,

f%(v, w) ≤ f(v, w)− (f(v, w)− f(x̃, ỹ)) ,

else

f%(v, w) ≤ f(v, w)− %‖ỹ − w‖2ϕ

(
f(v, w)− f(x̃, ỹ)

%‖ỹ − w‖2

)
,

where

ϕ(τ) =


0 if τ < 0,

τ 2 if 0 ≤ τ ≤ 1,

−1 + 2τ if τ > 1.

We conclude that in any case f%(v, w) < f(v, w).

Proof. Consider the segment containing points (x, y) = (v, w) + t ((x̃, ỹ)− (v, w)) with 0 ≤
t ≤ 1. Restricting the minimization in (59) to these (x, y)’s provides an upper bound for the
optimal value:

f%(v, w) ≤ min
0≤t≤1

[
f ((1− t) (v, w) + t(x̃, ỹ)) +

%t2

2
‖ỹ − w‖2

]
≤ f(v, w) + min

0≤t≤1

[
t (f(x̃, ỹ)− f(v, w)) +

%t2

2
‖ỹ − w‖2

]
.

(61)

In the last estimate we also used the convexity of f .
If ỹ = w then (61) implies that f%(v, w) ≤ f(v, w)− (f(v, w)− f(x̃, ỹ)). Else, ỹ 6= w and

the value of t that minimizes (61) is equal to

t̂ = min

(
1,
f(v, w)− f(x̃, ỹ)

%‖ỹ − w‖2

)
.

Our assertion follows now from a straightforward calculation.
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At the solution (x%(w), y%(w)) of problem (59), Lemma 5 shows that f (x%(w), y%(w)) ≤
f%(v, w) < f(v, w). Therefore problem (59) will always find a better point if it exists.
Consequently, (x, y) = (v, w) is the minimizer in (59) if and only if (v, w) is a minimizer of
f .

We say that a sequence
{

(xk, yk)
}
⊂ Rn ×Rm approximates an optimal solution (x∗, y∗)

of (58) if limk→∞ f(xk, yk) = f(x∗, y∗). In fact, the truncated proximal point method must
approximate an optimal solution, if an optimal solution exists.

Theorem 6. Assume that problem (58) has an optimal solution. Then the following holds.

1. The sequence
{

(vk, wk)
}

generated by the truncated proximal point method approxi-
mates and optimal solution of (58).

2. The sequence
{
wk
}

converges to a point ỹ such that there is an optimal solution of
(58) of the form (x̃, ỹ).

Proof. Let (x∗, y∗) ∈ Rn × Rm be an optimal solution. We have the identity

‖wk+1 − y∗‖2 = ‖wk − y∗‖2 + 2
〈
wk+1 − wk, wk+1 − y∗

〉
− ‖wk+1 − wk‖2. (62)

Theorem (4) implies that: [
0, %

(
λw

k − λw
k+1
)]
∈ ∂f(vk+1, wk+1). (63)

By the definition of the subgradient,

f(x∗, y∗) ≥ f(vk+1, wk+1) + %
〈
wk+1 − wk, wk+1 − y∗

〉
. (64)

Using this inequality in (62) (and skipping the last term) we obtain

‖wk+1 − y∗‖2 ≤ ‖wk − y∗‖2 − 2

%

[
f(vk+1, wk+1)− f(x∗, y∗)

]
(65)

Several conclusions follow from this estimate. First, summing up (65) from k = 1 to ∞, we
get

∞∑
k=2

(
f(vk, wk)− f(x∗, y∗)

)
≤ %

2
‖w1 − y∗‖2,

so f(vk, wk) → f(x∗, y∗) as k → ∞. Therefore the sequence
{

(vk, wk)
}

approximates and
optimal solution of (58).

Second, the sequence
{
wk
}

is bounded and so it has accumulation points. Similarly, the
x-boundedness of f implies that

{
vk
}

also has accumulation points. Consequently the lower
semicontinuity of f implies that for every accumulation point (x̃, ỹ) of

{
(vk, wk)

}
we have

f(x̃, ỹ) = f(x∗, y∗). We choose one such (x̃, ỹ), substitute it for (x∗, y∗) in (65), and conclude
that the sequence

{
wk
}

is convergent to ỹ.
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8.2 The Truncated Bundle Method

8.2.1 The method

We consider the problem

minimize
(x,y)∈A

f(x, y), (66)

in which the set A ⊆ Rn×Rm is closed convex and the function f : Rn×Rm → R is convex,
proper, lower semicontinuous, and x-bounded. We obtain the following regularized master
problem:

minimize
(x,y)∈A

%

2
‖y − wk‖2 + fk(x, y), (67)

where the model fk is defined by:

fk(x, y) , max
j∈Jk

[
f(xj, yj) +

〈
gj, (x, y)− (xj, yj)

〉]
, (68)

with gj ∈ ∂f(xj, yj), j ∈ Jk. The set Jk is a subset of {1, . . . , k} determined by a procedure
for selecting cuts. At this moment we may think of Jk as being equal to {1, . . . , k}.

In the proximal term (%/2)‖y−wk‖2, where % > 0, the center (vk, wk) is updated depend-
ing on the relations between the value of f(xk+1, yk+1) at the mater’s solution, (xk+1, yk+1),
and its prediction provided be the current model, fk(xk+1, yk+1). If these values are equal or
close, we set (vk+1, wk+1) := (xk+1, yk+1) (descent step); otherwise (vk+1, wk+1) := (vk, wk)
(null step). In any case, the collection of cuts is updated, and the iteration continues.

If the model fk were exact, that is fk = f , then problem (67) would be identical to the
subproblem (59) solved at each iteration of the truncated proximal point method and we
could just set (vk+1, wk+1) := (xk+1, yk+1). All steps would be descent steps. However, due
to the approximate character of fk, the solution of (67) is different than the solution of (59).
It may not even be better than (vk, wk) (in terms of the value of the objective function).
This is the reason for introducing conditional rules for updating the center (vk, wk).

On the other hand, the regularized master problem can be equivalently written as a
problem with a quadratic objective function and linear constraints:

minimize z +
%

2
‖y − wk‖2

subject to z ≥ f(xj, yj) +
〈
gj, (x, y)− (xj, yj)

〉
, j ∈ Jk,

(x, y) ∈ A.

(69)

If the set A is a convex polyhedron, the master problem can be readily solved by specialized
techniques, enjoying the finite termination property.

Let us observe that problem (69) satisfies Slater’s constraint qualification condition. In-
deed, for every (xS, yS) ∈ A we can choose zs so large that all constraints are satisfied as
strict inequalities. Therefore the optimal solution of the master problem satisfies the neces-
sary and sufficient conditions of optimality with Lagrange multipliers (see [7] Theorem 3.34).
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We denote by λkj ∈ Jk , the Lagrange multipliers associated with the constraints of problem
(69).

The detailed algorithm is stated in bellow. The parameter γ ∈ (0, 1) is a fixed constant
used to compare the observed improvement in the objective value to the predicted improve-
ment.

Step 0. Set k := 1, J0 := ∅, and z1 := −∞.

Step 1. Calculate f(xk, yk) and gk ∈ ∂f(xk, yk). If f(xk, yk) > zk then set Jk := Jk−1 ∪ {k};
otherwise set Jk := Jk−1.

Step 2. If k = 1 or if

f(xk, yk) ≤ (1− γ)f(vk−1, wk−1) + γfk−1(xk, yk),

then set (vk, wk) := (xk, yk); otherwise Step 2 is a null step and we set (vk, wk) :=
(vk−1, wk−1).

Step 3. Solve the master problem (69). Denote by (xk+1, yk+1) and zk+1 its solution and set
fk(xk+1, yk+1) := zk+1.

Step 4. If fk(xk+1, yk+1) = f(vk, wk) then stop (the point (vk, wk) is an optimal solution);
otherwise continue.

Step 5. If Step 2 was a null step then go to Step 6. Else (Step 2 was a descent step) remove
from the set of cuts Jk some (or all) cuts whose Lagrange multipliers λkj at the solution
of (69) are 0.

Step 6. Increase k by one, and go to Step 1.

8.2.2 Convergence

First we prove that if the algorithm gets stuck at a w-center then it will approximate an
optimal solution.

Lemma 7. Let f ∗ be an optimal solution to (66) and suppose that the sequence,
{

(xk, yk)
}

,
obtained by the truncated bundle method consists of only null steps from iteration t on. Then

lim
k→∞

fk−1(xk, yk) = f ∗ = lim
k→∞

f(xk, yk).

Proof. For any ε > 0, let Kε :=
{
k
∣∣ k > t and fk−1(xk, yk) + ε < f(xk, yk)

}
and let k1, k2 ∈

Kε with t < k1 < k2.
Since we only have null steps we get that for every k > t, (vk, wk) = (xt, yt) and the

cutting plane generated at k will remain on the master problem from k on. This implies that
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the sequence
{
fk−1(xk, yk)

}
is non-decreasing from t + 1 on. Also, since the cutting plane

generated at (xk1 , yk1) will remain in the master problem at iteration k2 − 1, we get:

f(xk1 , yk1) +
〈
gk1 , (xk2 , yk2)− (xk1 , yk1)

〉
≤ fk2−1(xk2 , yk2).

On the other hand, ε < f(xk2 , yk2)− fk2−1(xk2 , yk2) which combined with the last inequality
yields

ε < f(xk2 , yk2)− f(xk1 , yk1) +
〈
gk1 , (xk1 , yk1)− (xk2 , yk2)

〉
.

Since all the steps made are null, the points yk, with k > t, are contained in a bounded
neighborhood of wk = yt. This and the x-boundedness of f guarantee us that B :=
Conv {(xj, yj) | j ∈ Kε} is bounded. The function f is subdifferentiable in B, so there exists
a constant C such that f(x1, y1) − f(x2, y2) ≤ C‖(x1, y1) − (x2, y2)‖, for all x1, x2 ∈ B.
Subgradients on bounded sets are bounded, and thus we can choose C large enough so that
‖gj‖ ≤ C, for all j ∈ Kε. It follows from the last displayed inequality that

ε < 2C‖(xk1 , yk1)− (xk2 , yk2)‖ for all k1, k2 ∈ Kε, k1 6= k2.

As the set B is compact, there can exist only finitely many points in Kε ⊂ B having
distance at least ε/(2C) from each other. Thus the last inequality implies that the set Kε is
finite for each ε > 0. This means that

lim
k→∞

f(xk)− fk−1(xk) = 0. (70)

By construction the sequences
{
fk−1(xk)

}
and

{
f(xk)

}
satisfy the relation

fk−1(xk) ≤ f ∗ ≤ f(xk), for every k ∈ N.

Therefore the eventual monotonicity of
{
fk−1(xk)

}
and (70) imply that

lim
k→∞

fk−1(xk, yk) = f ∗ = lim
k→∞

f(xk, yk).

Next we prove another intermediate step towards convergence.

Lemma 8. Assume that problem (66) has an optimal solution and suppose that the sequence,{
(xk, yk)

}
, obtained by the truncated bundle method has infinitely many descent steps. Then

the following holds.

1. The sequence {(vk, wk)} generated by the truncated bundle method approximates an
optimal solution of (66).

2. The sequence
{
wk
}

converges to a point ỹ such that there is an optimal solution of
(66) of the form (x̃, ỹ).
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Proof. Let us denote by K the set of iterations at which descent steps occur. If (vk+1, wk+1) =
(xk+1, yk+1) is the optimal solution of the master problem (67), we have the necessary con-
dition of optimality

0 ∈ ∂
[%

2
‖y − wk‖2 + fk(x, y)

]
+NA(x, y) at (x, y) = (vk+1, wk+1).

Hence
−
[
0, %(wk+1 − wk)

]
∈ ∂fk(vk+1, wk+1) +NA(vk+1, wk+1).

Let (x∗, y∗) be an optimal solution of (66). By the subgradient inequality for fk we get (for
some h ∈ NA(vk+1, wk+1)) the estimate

fk(x∗, y∗) ≥ fk(vk+1, wk+1)−
〈[

0, %
(
wk+1 − wk

)]
, (x∗, y∗)− (vk+1, wk+1)

〉
−
〈
h, (x∗, y∗)− (vk+1, wk+1)

〉
≥ fk(vk+1, wk+1)− %

〈
wk+1 − wk, y∗ − wk+1

〉
.

(71)

A descent step from (vk, wk) to (vk+1, wk+1) occurs, so the test of Step 2 is satisfied (for
k + 1):

f(vk+1, wk+1) ≤ (1− γ)f(vk, wk) + γfk(vk+1, wk+1).

After elementary manipulations we can rewrite it as

fk(vk+1, wk+1) ≥ f(vk+1, wk+1)− 1− γ
γ

[
f(vk, wk)− f(vk+1, wk+1)

]
. (72)

Combining the last inequality with (71) and using the relation f(x∗, y∗) ≥ fk(x∗, y∗) we
obtain

f(x∗, y∗) ≥ f(vk+1, wk+1) +
1− γ
γ

[
f(vk+1, wk+1)− f(vk, wk)

]
− %

〈
wk+1 − wk, y∗ − wk+1

〉
.

This can be substituted to the identity (62) which, after skipping the last term yields

‖wk+1 − y∗‖2 ≤ ‖wk − y∗‖2 − %

2

[
f(vk+1, wk+1)− f(x∗, y∗)

]
+

2(1− γ)

γ%

[
f(vk, wk)− f(vk+1, wk+1)

]
for all k ∈ K.

(73)

The series
∑∞

k=1[f(vk, wk) − f(vk+1, wk+1)] is convergent, because {f(vk, wk)} is non-
increasing and bounded from below by f(x∗, y∗). Therefore we obtain from (73) that the
distance ‖wk+1 − y∗‖ is uniformly bounded, and so {wk} must have accumulation points.
This and the x-boundedness of f imply that the sequence {vk, wk} has accumulation points.

Summing up (73) for k ∈ K we get∑
k∈K

(
f(vk+1, wk+1)− f(x∗, y∗)

)
≤ %

2
‖w1 − y∗‖2 +

1− γ
γ

[
f(v1, w1)− lim

k→∞
f(vk, wk)

]
,
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so f(vk+1, wk+1) → f(x∗, y∗), k ∈ K. Consequently, at every accumulation point (x̃, ỹ) of
{(vk, wk)} one has f(x̃, ỹ) = f(x∗, y∗). Since (x̃, ỹ) is optimal, we can substitute it for (x∗, y∗)
in (73). Skipping the negative term we get

‖wk+1 − ỹ‖2 ≤ ‖wk − ỹ‖2 +
2(1− γ)

γ%

[
f(vk, wk)− f(vk+1, wk+1)

]
.

It is true not only for k ∈ K but for all k, because at k 6∈ K we have a trivial equality here.
Summing these inequalities from k = l to k = q > l we get

‖wq+1 − ỹ‖2 ≤ ‖wl − ỹ‖2 +
2(1− γ)

γ%

[
f(vl, wl)− f(vq+1, wq+1)

]
.

Since ỹ is an accumulation point, for ε > 0 we can find l such that ‖wl− ỹ‖ ≤ ε. Also, if l is
large enough, f(vl, wl) − f(vq+1, wq+1) ≤ ε for all q > l, because {f(vk, wk)} is convergent.
Then ‖wq+1 − ỹ‖2 ≤ ε2 + 2ε(1− γ)/(γ%) for all q > l, so the sequence {wk} is convergent to
ỹ.

Now we are ready to prove convergence of the truncated bundle method.

Theorem 9. Assume that problem (66) has an optimal solution, f ∗, and let
{

(xk, yk)
}

be
the sequence obtained by the truncated bundle method. Then

lim inf
k→∞

f(xk, yk) = f ∗.

Proof. If there are only finitely many descent steps then Lemma 7 gives the desired re-
sult. Thus we assume that the number of descent steps is infinite and by Lemma 8,
limk→∞ f(vk, wk) = f ∗. Clearly the sequence {f(vk, wk)} is an infinite subsequence of
{f(xk, yk)}. Then, since f(xk, yk) ≥ f ∗ for every k, we obtain that

lim inf
k→∞

f(xk, yk) = f ∗.

9 Applying the Truncated Bundle Method

We are ready now to apply the truncated bundle method to the dual problem (49)-(51).
Remember that Λ×∂ρ1(0) is concave, proper, compact and the function ϕ is proper, concave,
continuous, and x-bounded. Therefore, we can apply the truncated bundle method modified
for concave functions. The method starts at a given point (λ1, µ1) ∈ Λ×∂ρ1(0) and continues
as stated below:

Step 0. Set k := 1, J0 := ∅, and z1 := −∞.



Page 26 RRR 2-2012

Step 1. For every i = 1, . . . , N solve the problem (38)-(39) with (λ, µ) := (λk, µk). Denote
correspondingly by βki and (xki , y

k
i , d

k
i ) the obtained optimal value and optimal solution.

Then

ϕ(λk, µk) :=
N∑
i=1

pi β
k
i

and

gk :=



p1 x
k
1

...
pN x

k
N

p1 φ(xk1, y
k
1 , d

k
1)

...
pN φ(xkN , y

k
N , d

k
N)


.

If ϕ(λk, µk) < zk then set Jk := Jk−1 ∪ {k}; otherwise set Jk := Jk−1.

Step 2. If k = 1 or if
ϕ(λk, µk) ≥ (1− γ)ϕ(vk−1, wk−1) + γϕk−1(λk, µk),

then set (vk, wk) := (λk, µk); otherwise Step 2 is a null step and we set (vk, wk) :=
(vk−1, wk−1).

Step 3. Solve the regularized master problem:

maximize z − %

2
‖λ− wk‖2

subject to:

z ≤ ϕ(λj, µj) +

〈 p1 x
j
1

...

pN x
j
N

 , λ− λj
〉

+

〈 p1 φ(xj1, y
j
1, d

j
1)

...

pN φ(xjN , y
j
N , d

j
N)

 , µ− µj
〉
,

for all j = 1, . . . , k,

N∑
i=i

piλi = 0,

µi = 1−
N∑
i=1

piξi + ξi, i = 1, . . . , N,

0 ≤ ξi ≤ a1, i = 1, . . . , N,

. (74)

where µ = (µ1, . . . , µN). Denote by (λk+1, µk+1) and zk+1 its solution and set ϕk(λk+1, µk+1) :=
zk+1.

Step 4. If ϕk(λk+1, µk+1) = ϕ(vk, wk) then stop (the point (vk, wk) is an optimal solution);
otherwise continue.
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Step 5. If Step 2 was a null step then go to Step 6. Else (Step 2 was a descent step) remove
from the set of cuts Jk some (or all) cuts whose Lagrange multipliers λkj at the solution
of (74) are 0.

Step 6. Increase k by one, and go to Step 1.

To see the correctness of this method just notice that the vector gk ∈ ∂ϕ(λk, µk) and
problem (74) is a reformulation of the regularized master problem (67) with A := Λ×∂ρ1(0),
(x, y) := (λk, µk), and f := ϕ. Then by Theorem (9) the solution obtained by the method
approaches the optimal solution of the dual problem (49)-(51).

10 Application of the Methods and Results

Our aim is to apply the methods developed in previous sections to the following production
problem.

Manufacturing and Transportation Problem. There is a product line consisting of a
few different models to be produced. Each model has its own list of parts and different models
may have parts in common. First we decide how many units of each part will be bought.
After the purchase is done the actual demand for the different models will be revealed. Then
we decide how many units of each model will be produced. This basically amounts to choose if
the demand of each particular model will be under-satisfied, satisfied, or over-satisfied while
keeping within the constraints defined by the number of purchased parts.

There is a penalty for each unit that we fail to sell due to unsatisfied demand and there is
a storage cost associated to each excedent unit that is produced. Since the storage cost depends
on the current market, it is variable and will be known only after the second decision has
been made. It is assumed that all the products will eventually be sold and the storage cost is
paid only once.

Let xi be the number of parts of type i that will be purchased and let yj be the number of
units of model j that will be produced. Also let

rj := selling price of product j ci := cost of part i
dj := penalty for uncovered demand ej := cost of storage of product j
Dj := demand of product j

.

Our goal is to maximize the profit given by the following formula∑
Product j

rjyj −
∑
Part i

cixi −
∑

Product j
is under
produced

dj(Dj − yj)−
∑

Product j
is over

produced

ej(yj −Dj). (75)

First we express the production problem as a two stage risk-averse problem (2)-(3).
Suppose there are m product models with a total of n different parts. Let c := (c1, . . . , cn)
and D := (D1, . . . , Dm). Define the binary matrix W ∈ Rn×m such that Wji = 1 if and only
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if part j is used by model i. Given a vector x = (x1, . . . , xn), let Q(x, ξ) be the optimal value
of the second stage problem

min
y,w,v∈Rm

m∑
i=1

diwi +
m∑
i=1

eivi −
m∑
i=1

riyi

s.t. Wy − x ≤ 0, y ≥ 0

w ≥ D − y, w ≥ 0

v ≥ y −D, v ≥ 0

. (76)

We interpret the function Q(x, ξ) as a random variable on the vector of storage cost e =
(e1, . . . , em) and the function c>x+ E [Q(x, ξ)] as a random variable on the vector of model
demand D. The goal of the production problem is achieved by finding

min
x∈Rn+

E
(
c>x+ E [Q(x, ξ)]

)
.

Since we are interested in a risk-averse model of the production problem, we will instead
consider

min
x∈Rn+

ρ1

(
c>x+ ρ2 [Q(x, ξ)]

)
, (77)

where ρi(Z) = E[Z] + ai E [Z − E[Z]]+, ai ∈ [0, 1].

Assume now that there are {1, . . . , N} possible demand scenarios each occurring with
corresponding probability pj. Moreover, suppose that each demand scenario j there are
{1, . . . , Nj} possible storage cost scenarios each occurring with corresponding with proba-
bility sji. In this case a straight forward linear programming formulation of (77) is given
by:
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min
x,yj ,wj,vj

Aj,Bj,Qjt,Rjt

N∑
j=1

pjAj + a1

N∑
j=1

pjBj

s.t. Aj ≥ c>x+ Cj

Bj ≥ Aj −
N∑
k=1

pkAk, Bj ≥ 0

Cj =

Nj∑
t=1

sjtQjt + a2

Nj∑
t=1

sjtRjt

Rjt ≥ Qjt −
Nj∑
k=1

sjkQjk, Rjt ≥ 0

Qjt ≥
m∑
i=1

diwji +
m∑
i=1

etjivji −
m∑
i=1

riyji

Wyj − x ≤ 0, yj ≥ 0

wj ≥ Dj − yj, wj ≥ 0

vj ≥ yj −Dj, vj ≥ 0

for all j = 1, . . . , N and

for each j the corresponding t = 1, . . . , Nj,

(78)

where cj, dj, rj are as defined before, etji is the storage cost of product i under demand
scenario j and storage scenario t. Also Dj := (D1

j , . . . , D
m
j ) is the vector of product demands

under demand scenario j.

The size of the linear programming representation of the production problem shows the
importance of developing efficient methods to solve multi stage risk-averse problems. We
applied to (77) the cutting plane, the classical bundle, and the truncated bundle method.
Whenever possible, we compared the results obtained by these methods with the result
of solving directly the linear program (78) with a simplex algorithm. Following this we
compared the total running time, total number of iterations, and the average time per
iteration of each method. Table 1 shows the comparison of all the methods.

We can see from the results that even in small problems the bundle and truncated bundle
methods outperform the cutting plane method. On the other hand for small problems it is
much better to solve directly the linear program (78). The usefulness of the bundle and
truncated bundle method shows when considering large problems. Here the meager memory
requirements of these methods allow us to obtain a solution even when the linear program
(78) is too big for our computer memory. In general we saw the truncated bundle method
outperforming the classical bundle method but this might be problem specific.
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Size LP Cut Bundle Truncated

S1 x S2 Time Time Iterations T/I Time Iterations T/I Time Iterations T/I

6 x 3 0 2083 2905 0.717 106 476 0.223 15 97 0.155

5 x 5 0 508 1417 0.359 95 451 0.211 36 194 0.186

5 x 6 0 660 1621 0.407 75 388 0.193 13 86 0.151

6 x 6 0 - - - 134 574 0.233 133 441 0.302

10 x 10 0 - - - 313 435 0.720 287 419 0.685

50 x 50 5 - - - 1381 510 2.708 1652 485 3.406

100 x 100 98 - - - 5570 660 8.439 1547 300 5.157

200 x 200 5767 - - - 5975 240 24.896 4722 200 23.610

300 x 300 - - - - 19910 255 78.078 20622 255 80.871

Table 1: Tests were performed with 10 parts, 5 products, S1 first stage scenarios, and S2 second stage scenarios.

11 Conclusions

We defined a two stage risk-averse program and used Lagrangian duality to formulate a dual
representation of it. Along the way we developed the tools necessary for the development of
dual cutting plane methods.

Later we developed a dual cutting plane method and the truncated bundle method. A
lot of time was devoted to show the correctness of the truncated bundle method. In doing
so we developed a robust theoretical foundation of the method giving to it the possibility of
future applications. Lastly we applied our methods to a numerical example and compared
their performance.
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