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Piecewise-Linear Optimization∗

Thomas L. Magnanti† Dan Stratila‡

January 13, 2012

Abstract

We study the problem of minimizing a nonnegative separable concave function over
a compact feasible set. We approximate this problem to within a factor of 1 + ε by a
piecewise-linear minimization problem over the same feasible set. Our main result is
that when the feasible set is a polyhedron, the number of resulting pieces is polyno-
mial in the input size of the polyhedron and linear in 1/ε. For many practical concave
cost problems, the resulting piecewise-linear cost problem can be formulated as a well-
studied discrete optimization problem. As a result, a variety of polynomial-time exact
algorithms, approximation algorithms, and polynomial-time heuristics for discrete op-
timization problems immediately yield fully polynomial-time approximation schemes,
approximation algorithms, and polynomial-time heuristics for the corresponding con-
cave cost problems.

We illustrate our approach on two problems. For the concave cost multicommodity
flow problem, we devise a new heuristic and study its performance using computational
experiments. We are able to approximately solve significantly larger test instances than
previously possible, and obtain solutions on average within 4.27% of optimality. For
the concave cost facility location problem, we obtain a new 1.4991 + ε approximation
algorithm.

1 Introduction

Minimizing a nonnegative separable concave function over a polyhedron arises frequently in
fields such as transportation, logistics, telecommunications, and supply chain management.
In a typical application, the polyhedral feasible set arises due to network structure, capacity
requirements, and other constraints, while the concave costs arise due to economies of scale,
volume discounts, and other practical factors [see e.g. GP90]. The concave functions can
be nonlinear, piecewise-linear with many pieces, or more generally given by an oracle.

∗This research is based on the second author’s Ph.D. thesis at the Massachusetts Institute of Technology
[Str08]. An extended abstract of this research has appeared in [MS04].
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A natural approach for solving such a problem is to approximate each concave function
by a piecewise-linear function, and then reformulate the resulting problem as a discrete
optimization problem. Often this transformation can be carried out in a way that preserves
problem structure, making it possible to apply existing discrete optimization techniques to
the resulting problem. A wide variety of techniques is available for these problems, including
heuristics [e.g. BMW89, HH98], integer programming methods [e.g. Ata01, OW03], and
approximation algorithms [e.g. JMM+03].

For this approach to be efficient, we need to be able to approximate the concave cost
problem by a single piecewise-linear cost problem that meets two competing requirements.
On one hand, the approximation should employ few pieces so that the resulting problem
will have small input size. On the other hand, the approximation should be precise enough
that by solving the resulting problem we would obtain an acceptable approximate solution
to the original problem.

With this purpose in mind, we introduce a method for approximating a concave cost
problem by a piecewise-linear cost problem that provides a 1 + ε approximation in terms
of optimal cost, and yields a bound on the number of resulting pieces that is polynomial in
the input size of the feasible polyhedron and linear in 1/ε. Previously, no such polynomial
bounds were known, even if we allow any dependence on 1/ε.

Our bound implies that polynomial-time exact algorithms, approximation algorithms,
and polynomial-time heuristics for many discrete optimization problems immediately yield
fully polynomial-time approximation schemes, approximation algorithms, and polynomial-
time heuristics for the corresponding concave cost problems. We illustrate this result by
obtaining a new heuristic for the concave cost multicommodity flow problem, and a new
approximation algorithm for the concave cost facility location problem.

Under suitable technical assumptions, our method can be generalized to efficiently ap-
proximate the objective function of a maximization or minimization problem over a general
feasible set, as long as the objective is nonnegative, separable, and concave. In fact, our
approach is not limited to optimization problems. It is potentially applicable for approx-
imating problems in dynamic programming, algorithmic game theory, and other settings
where new solutions methods become available when switching from concave to piecewise-
linear functions.

1.1 Previous Work

Piecewise-linear approximations are used in a variety of contexts in science and engineering,
and the literature on them is expansive. Here we limit ourselves to previous results on
approximating a separable concave function in the context of an optimization problem.

Geoffrion [Geo77] obtains several general results on approximating objective functions.
One of the settings he considers is the minimization of a separable concave function over a
general feasible set. He derives conditions under which a piecewise-linear approximation of
the objective achieves the smallest possible absolute error for a given number of pieces.

Thakur [Tha78] considers the maximization of a separable concave function over a con-
vex set defined by separable constraints. He approximates both the objective and constraint
functions, and bounds the absolute error when using a given number of pieces in terms of
feasible set parameters, the maximum values of the first and second derivatives of the
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functions, and certain dual optimal solutions.
Rosen and Pardalos [RP86] consider the minimization of a quadratic concave function

over a polyhedron. They reduce the problem to a separable one, and then approximate
the resulting univariate concave functions. The authors derive a bound on the number of
pieces needed to guarantee a given approximation error in terms of objective function and
feasible polyhedron parameters. They use a nonstandard definition of approximation error,
dividing by a scale factor that is at least the maximum minus the minimum of the concave
function over the feasible polyhedron. Pardalos and Kovoor [PK90] specialize this result
to the minimization of a quadratic concave function over one linear constraint subject to
upper and lower bounds on the variables.

Güder and Morris [GM94] study the maximization of a separable quadratic concave
function over a polyhedron. They approximate the objective functions, and bound the
number of pieces needed to guarantee a given absolute error in terms of function parameters
and the lengths of the intervals on which the functions are approximated.

Kontogiorgis [Kon00] also studies the maximization of a separable concave function over
a polyhedron. He approximates the objective functions, and uses techniques from numerical
analysis to bound the absolute error when using a given number of pieces in terms of the
maximum values of the second derivatives of the functions and the lengths of the intervals
on which the functions are approximated.

Each of these prior results differs from ours in that, when the goal is to obtain a 1 + ε
approximation, they do not provide a bound on the number of pieces that is polynomial in
the input size of the original problem, even if we allow any dependence on 1/ε.

Meyerson et al. [MMP00] remark, in the context of the single-sink concave cost mul-
ticommodity flow problem, that a “tight” approximation could be computed. Munagala
[Mun03] states, in the same context, that an approximation of arbitrary precision could be
obtained with a polynomial number of pieces. They do not mention specific bounds, or any
details on how to do so.

Hajiaghayi et al. [HMM03] and Mahdian et al. [MYZ06] consider the unit demand
concave cost facility location problem, and employ an exact reduction by interpolating the
concave functions at points 1, 2, . . . , m, where m is the number of customers. The size of
the resulting problem is polynomial in the size of the original problem, but the approach is
limited to problems with unit demand.

1.2 Our Results

In Section 2, we introduce our piecewise-linear approximation approach, on the basis of
a minimization problem with a compact feasible set in Rn

+ and a nonnegative separable
concave function that is nondecreasing. In this section, we assume that the problem has
an optimal solution x∗ = (x∗1, . . . , x

∗
n) with x∗i ∈ {0} ∪ [li, ui] and 0 < li ≤ ui. To obtain a

1+ ε approximation, we need only 1+
⌈
log1+4ε+4ε2

ui
li

⌉
pieces for each concave function. As

ε → 0, the number of pieces behaves as 1
4ε log ui

li
.

In Section 2.1, we show that any piecewise-linear approach requires at least Ω
(

1√
ε
log ui

li

)

pieces to approximate a certain function to within 1 + ε on [li, ui]. Note that for any fixed
ε, the number of pieces required by our approach is within a constant factor of this lower
bound. It is an interesting open question to find tighter upper and lower bounds on the
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number of pieces as ε → 0. In Section 2.2, we extend our approximation approach to
objective functions that are not monotone and feasible sets that are not contained in Rn

+.
In Sections 3 and 3.1, we obtain the main result of this paper. When the feasible set

is a polyhedron and the cost function is nonnegative separable concave, we can obtain a
1 + ε approximation with a number of pieces that is polynomial in the input size of the
feasible polyhedron and linear in 1/ε. We first obtain a result for polyhedra in Rn

+ and
nondecreasing cost functions in Section 3, and then derive the general result in Section 3.1.

In Section 4, we show how our piecewise-linear approximation approach can be combined
with algorithms for discrete optimization problems to obtain new algorithms for problems
with concave costs. We use a well-known integer programming formulation that often
enables us to write piecewise-linear problems as discrete optimization problems in a way
that preserves problem structure.

In Section 5, we illustrate our method on the concave cost multicommodity flow problem.
We derive considerably smaller bounds on the number of required pieces than in the general
case. Using the formulation from Section 4, the resulting discrete optimization problem
can be written as a fixed charge multicommodity flow problem. This enables us to devise
a new heuristic for concave cost multicommodity flow by combining our piecewise-linear
approximation approach with a dual ascent method for fixed charge multicommodity flow
due to Balakrishnan et al. [BMW89].

In Section 5.1, we report on computational experiments. The new heuristic is able to
solve large-scale test problems to within 4.27% of optimality, on average. The concave cost
problems have up to 80 nodes, 1,580 edges, 6,320 commodities, and 9,985,600 variables.
These problems are, to the best of our knowledge, significantly larger than previously
solved concave cost multicommodity flow problems, whether approximately or exactly. A
brief review of the literature on concave cost flows can be found in Sections 5 and 5.1.

In Section 6, we illustrate our method on the concave cost facility location problem.
Combining a 1.4991-approximation algorithm for the classical facility location problem due
to Byrka [Byr07] with our approach, we obtain a 1.4991 + ε approximation algorithm for
concave cost facility location. Previously, the lowest approximation ratio for this problem
was that of a 3 + ε approximation algorithm due to Mahdian and Pal [MP03]. In the
second author’s Ph.D. thesis [Str08], we obtain a number of other algorithms for concave
cost problems, including a 1.61-approximation algorithm for concave cost facility location.
Independently, Romeijn et al. [RSSZ10] developed 1.61 and 1.52-approximation algorithms
for this problem. A brief review of the literature on concave cost facility location can be
found in Section 6.

2 General Feasible Sets

We examine the general concave cost minimization problem

Z∗1 = min {φ(x) : x ∈ X} , (1)

defined by a compact feasible set X ⊆ Rn
+ and a nondecreasing separable concave function

φ : Rn
+ → R+. Let x = (x1, . . . , xn) and φ(x) =

∑n
i=1 φi(xi), and assume that the functions

φi are nonnegative. The feasible set need not be convex or connected—for example, it could
be the feasible set of an integer program.
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In this section, we impose the following technical assumption. Let [n] = {1, . . . , n}.
Assumption 1. The problem has an optimal solution x∗ = (x∗1, . . . , x

∗
n) and bounds li and

ui with 0 < li ≤ ui such that x∗i ∈ {0} ∪ [li, ui] for i ∈ [n].

Let ε > 0. To approximate problem (1) to within a factor of 1 + ε, we approximate
each function φi by a piecewise-linear function ψi : R+ → R+. Each function ψi consists of
Pi + 1 pieces, with Pi =

⌈
log1+ε

ui
li

⌉
, and is defined by the coefficients

sp
i = φ′i (li(1 + ε)p) , p ∈ {0, . . . , Pi}, (2a)

fp
i = φi (li(1 + ε)p)− li(1 + ε)psp

i , p ∈ {0, . . . , Pi}. (2b)

If the derivative φ′i (li(1 + ε)p) does not exist, we take the right derivative, that is sp
i =

limxi→(li(1+ε)p)+
φi(li(1+ε)p)−φi(xi)

li(1+ε)p−xi
. The right derivative always exists at points in (0, +∞)

since φi is concave on [0, +∞). We proceed in this way throughout the paper when the
derivative does not exist.

Each coefficient pair (sp
i , f

p
i ) defines a line with nonnegative slope sp

i and y-intercept
fp

i , which is tangent to the graph of φi at the point li(1 + ε)p. For xi > 0, the function ψi

is defined by the lower envelope of these lines:

ψi(xi) = min{fp
i + sp

i xi : p = 0, . . . , Pi}. (3)

We let ψi(0) = φi(0) and ψ(x) =
∑n

i=1 ψi(xi). Substituting ψ for φ in problem (1), we
obtain the piecewise-linear cost problem

Z∗4 = min{ψ(x) : x ∈ X}. (4)

Next, we prove that this problem provides a 1 + ε approximation for problem (1). The
following proof has an intuitive geometric interpretation, but does not yield a tight analysis
of the approximation guarantee. A tight analysis will follow.

Lemma 1. Z∗1 ≤ Z∗4 ≤ (1 + ε)Z∗1 .

Proof. Let x∗ = (x∗1, . . . , x
∗
n) be an optimal solution to problem (4); an optimal solution

exists since ψ(x) is concave and X is compact. Fix an i ∈ [n], and note that for each
p ∈ {0, . . . , Pi}, the line fp

i + sp
i xi is tangent from above to the graph of φi(xi). Hence

φi(x∗i ) ≤ min{fp
i + sp

i x
∗
i : p = 0, . . . , Pi} = ψi(x∗i ). Therefore, Z∗1 ≤ φ(x∗) ≤ ψ(x∗) = Z∗4 .

Conversely, let x∗ be an optimal solution of problem (1) that satisfies Assumption 1. It
suffices to show that ψi(x∗i ) ≤ (1+ ε)φi(x∗i ) for i ∈ [n]. If x∗i = 0, then the inequality holds.
Otherwise, let p =

⌊
log1+ε

x∗i
li

⌋
, and note that p ∈ {0, . . . , Pi} and x∗i

li
∈ [(1+ ε)p, (1+ ε)p+1).

Because φi is concave, nonnegative, and nondecreasing,

ψi(x∗i ) ≤ fp
i + sp

i x
∗
i ≤ fp

i + sp
i li(1 + ε)p+1

= fp
i + sp

i li(1 + ε)(1 + ε)p ≤ (1 + ε) (fp
i + sp

i li(1 + ε)p)
= (1 + ε)φi (li(1 + ε)p) ≤ (1 + ε)φi(x∗i ).

(5)

(See Figure 1 for an illustration.) Therefore, Z∗4 ≤ ψ(x∗) ≤ (1 + ε)φ(x∗) = (1 + ε)Z∗1 .
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φi(xi), ψi(xi)

0

Figure 1: Illustration of the proof of Lemma 1. Observe that the height of any point inside
the box with the bold lower left and upper right corners exceeds the height of the box’s
lower left corner by at most a factor of ε.

We now present a tight analysis.

Theorem 1. Z∗1 ≤ Z∗4 ≤ 1+
√

ε+1
2 Z∗1 . The approximation guarantee of 1+

√
ε+1

2 is tight.

Proof. We have shown that Z∗1 ≤ Z∗4 in Lemma 1. Fix an i ∈ [n], and consider the
approximation ratio achieved on [li, ui] when approximating φi by ψi. If φi(li) = 0, then
φi(xi) = 0 for all xi ≥ 0, and we have a trivial case. If φi(li) > 0, then φi(xi) > 0 for all
xi > 0, and the ratio is

min{1 + γ : ψi(xi) ≤ (1 + γ)φi(xi) for xi ∈ [li, ui]}
= max{ψi(xi)/φi(xi) : xi ∈ [li, ui]}. (6)

We derive an upper bound of 1+
√

ε+1
2 on this ratio, and then construct a family of functions

that, when taken as φi, yield ratios converging to this upper bound.
Without loss of generality, we assume li = 1 and ui = (1 + ε)Pi . The approximation

ratio achieved on [1, ui] is the highest of the approximation ratios on each of the intervals
[1, 1 + ε], . . . , [(1 + ε)Pi−1, (1 + ε)Pi ]. By scaling along the x-axis, it is enough to consider
only the interval [1, 1+ ε], and therefore we can assume that ψi is given by the two tangents
to the graph of φi at 1 and 1 + ε. Suppose these tangents have slopes a and c respectively.
We can assume that φi(0) = 0, and that φi is linear with slope a on [0, 1] and linear with
slope c on [1 + ε,+∞). By scaling along the y-axis, we can assume that a = 1.

We upper bound the approximation ratio between ψi and φi by the ratio between ψi and
a new function ϕi that has ϕi(0) = 0 and consists of 3 linear pieces with slopes 1 ≥ b ≥ c
on [0, 1], [1, 1 + ε], and [1 + ε, +∞) respectively. The approximation ratio between ψi and
ϕi can be viewed as a function of b and c. Let 1 + ξ be a point on the interval [1, 1 + ε].
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1 1 + ε1 + ξ

1

1 + bε

1 + bε− c(ε− ξ)

1 + bξ

1 + ξ

slope c

xi

ϕi(xi), ψi(xi)

0

Figure 2: Illustration of the proof of Theorem 1.

We are interested in the following maximization problem with respect to b, c, and ξ:

max{ψi(1 + ξ)/ϕi(1 + ξ) : 1 ≥ b ≥ c ≥ 0, 0 ≤ ξ ≤ ε}. (7)

Since ϕi consists of 3 linear pieces, while ψi is given by the lower envelope of two tangents,
we have

ϕi(1 + ξ) = 1 + bξ, ψi(xi) = min {1 + ξ, 1 + bε− c(ε− ξ)} . (8)

(See Figure 2 for an illustration.)
Since ξ ≤ ε, we can assume that c = 0. Next, since we seek to find b and ξ that maximize

ψi(1 + ξ)
ϕi(1 + ξ)

=
min{1 + ξ, 1 + bε}

1 + bξ
= min

{
1 + ξ

1 + bξ
,
1 + bε

1 + bξ

}
, (9)

we can assume ξ is such that 1+ξ
1+bξ = 1+bε

1+bξ , which yields ξ = εb. Substituting, we now seek
to maximize 1+εb

1+εb2
, and we find that the maximum is achieved at b = 1

1+
√

ε+1
and equals

1+
√

ε+1
2 . Therefore, 1+

√
ε+1

2 is an approximation guarantee for our approach.
Finally, we show that this guarantee is tight. First, let φi be the new function ϕi with

b and c taken to have the values that yield the guarantee above. If we were to use our
approach to approximate φi, the tangents at 1 and 1+ ε would have slopes b and c, instead
of the desired 1 and c, since φi lacks derivatives at 1 and 1 + ε, and our approach uses the
derivative from the right when the derivative does not exist. We can cause our approach
to produce tangents at 1 and 1 + ε with slopes 1 and c by taking a sufficiently small ζ and
letting φi have its first breakpoint at 1 + ζ instead of 1. When ζ → 0, the approximation
ratio achieved by our approach for φi converges to the guarantee above.

To compare the tight approximation guarantee with that provided by Lemma 1, note
that 1+

√
ε+1

2 ≤ 1+ ε
4 for ε > 0. Moreover, since 1+

√
ε+1

2 → 1 and d
dε

1+
√

ε+1
2 → 1

4 as ε → 0, it
follows that 1 + ε

4 is the lowest ratio of the form 1 + ε
k that is guaranteed by our approach.
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Equivalently, instead of an approximation guarantee of 1+
√

ε+1
2 using 1 +

⌈
log1+ε

ui
li

⌉

pieces, we can obtain a guarantee of 1 + ε using only 1 +
⌈
log1+4ε+4ε2

ui
li

⌉
pieces. Note

that log1+4ε+4ε2
ui
li

= 1
log(1+4ε+4ε2)

log ui
li

, and as ε → 0, we have 1
log(1+4ε+4ε2)

→ +∞ and
4ε

log(1+4ε+4ε2)
→ 1. Therefore, as ε → 0, the number of pieces behaves as 1

4ε log ui
li

.
This bound on the number of pieces enables us to apply our approximation approach to

practical concave cost problems. In Section 3, we will exploit the logarithmic dependence
on ui

li
of this bound to derive polynomial bounds on the number of pieces for problems with

polyhedral feasible sets.

2.1 A Lower Bound on the Number of Pieces

Since the approximation guarantee of Theorem 1 is tight, 1 +
⌈
log1+4ε+4ε2

ui
li

⌉
is a lower

bound on the number of pieces needed to guarantee a 1 + ε approximation when using
the approach of equations (2)–(4). In this section, we establish a lower bound on the
number of pieces needed to guarantee a 1 + ε approximation when using any piecewise-
linear approximation approach.

First, we show that by limiting ourselves to approaches that use piecewise-linear func-
tions whose pieces are tangent to the graph of the original function, we increase the number
of needed pieces by at most a factor of 3.

Let φi : R+ → R+ be a nondecreasing concave function, which we are interested in
approximating on an interval [li, ui] with 0 < li ≤ ui. Assume that φi(xi) > 0 for all
xi > 0; if φi(xi) = 0 for some xi > 0, then φi must be zero everywhere on [0, +∞), and
we have a trivial case. Also let ψi : R+ → R+ be a piecewise-linear function with Q pieces
that approximates φi on [li, ui] to within a factor of 1 + ε, that is 1

1+ε ≤ ψi(xi)
φi(xi)

≤ 1 + ε for
xi ∈ [li, ui]. We are not imposing any other assumptions on ψi; in particular it need not be
continuous, and its pieces need not be tangent to the graph of φi.

Lemma 2. The function φi can be approximated on [li, ui] to within a factor of 1 + ε by a
piecewise-linear function ϕi : R+ → R+ that has at most 3Q pieces and whose every piece
is tangent to the graph of φi.

Proof. First, we translate the pieces of ψi that are strictly above φi down, and the pieces
strictly below up, until they intersect φi. Let the modified function be ψ′i; clearly ψ′i still
provides a 1 + ε approximation for φi on [li, ui].

For each piece of ψ′i, we proceed as follows. Let fp
i + sp

i xi be the line defining the piece,
and [ap, bp] be the interval covered by the piece on the x-axis. Without loss of generality,
assume that [ap, bp] ⊆ [li, ui]. If the piece is tangent to φi, we take it as one of the pieces
composing ϕi, ensuring that ϕi provides a 1 + ε approximation for φi on [ap, bp].

If the piece is not tangent, it must intersect φi at either one or two points. If the piece
intersects at two points ξ1 and ξ2, then the points partition the interval [ap, bp] into three
subintervals: [ap, ξ1], on which the piece is above φi; [ξ1, ξ2], on which the piece is below φi;
and [ξ2, bp], on which the piece is again above φi. If there is one intersection point, we can
partition [ap, bp] similarly, except that one or two of the subintervals would be empty.

On the interval [ap, ξ1], the line fp
i +sp

i xi is above φi and provides a 1+ε approximation
for φi. We take the tangent to φi at ξ1 as one of the pieces composing ϕi, ensuring that ϕi

8



provides a 1 + ε approximation for φi on [ap, ξ1]. Similarly, we take the tangent to φi at ξ2

as one of the pieces, ensuring a 1 + ε approximation on [ξ2, bp].
Next, note that on the interval [ξ1, ξ2], the line fp

i + sp
i xi is below φi and provides a

1 + ε approximation for φi. Therefore, on [ξ1, ξ2], the scaled line (1 + ε)fp
i + (1 + ε)sp

i xi is
above φi and still provides a 1 + ε approximation for φi. Since the original line is below
and the scaled line above φi, there is an ε∗ with 0 < ε∗ ≤ ε such that, on [ξ1, ξ2], the line
(1 + ε∗)fp

i + (1 + ε∗)sp
i xi is above φi and intersects it at one or more points. If this line is

tangent, we take it as one of the pieces that define ϕi. If the line is not tangent, it must
intersect φi at exactly one point ξ′, and we take the tangent to φi at ξ′ as one of the pieces.
In either case, we have ensured that ϕi provides a 1 + ε approximation for φi on [ξ1, ξ2].

Since ∪Q
p=1[ap, bp] = [li, ui], the constructed function ϕi provides a 1 + ε approximation

for φi on [li, ui]. Since for each piece of ψi, we introduced at most 3 pieces, ϕi has at most
3Q pieces.

Next, we establish a lower bound on the number of pieces needed to approximate the
square root function to within a factor of 1 + ε by a piecewise-linear function that has its
every piece tangent to the graph of the original function. Let φi(xi) =

√
xi, and let ϕi be

a piecewise-linear function that approximates φi to within a factor of 1 + ε on [li, ui] and
whose every piece is tangent to the graph of φi.

To write the lower bounds in this section in a more intuitive way, we define the function
γ(ε) =

(
1 + 2ε(2 + ε) + 2(1 + ε)

√
ε(2 + ε)

)2. As ε → 0, γ(ε) behaves as 1 +
√

32ε, with the
other terms vanishing because they contain higher powers of ε. In particular, 1 +

√
32ε ≤

γ(ε) ≤ 1 + 16
√

ε for 0 < ε ≤ 1
10 .

Lemma 3. The function ϕi must contain at least
⌈
logγ(ε)

ui
li

⌉
pieces. As ε → 0, this lower

bound behaves as 1√
32ε

log ui
li

.

Proof. Given a point ξ0 ∈ [li, ui], a tangent to φi at ξ0 guarantees a 1 + ε approximation
on an interval extending to the left and right of ξ0. Let us denote this interval by [ξ0(1 +
δ1), ξ0(1 + δ2)]. The values of δ1 and δ2 can be found by solving with respect to δ the
equation

φi(ξ0) + δξ0φ
′
i(ξ0) = (1 + ε)φi((1 + δ)ξ0) (10a)

⇔
√

ξ0 + δξ0
1

2
√

ξ0
= (1 + ε)

√
(1 + δ)ξ0 (10b)

⇔ ξ0 + δξ0 +
1
4
δ2ξ0 = (1 + ε)2(1 + δ)ξ0. (10c)

This is simply a quadratic equation with respect to δ, and solving it yields δ1 = 2ε(2+ ε)−
2(1+ ε)

√
ε(2 + ε) and δ2 = 2ε(2+ ε)+2(1+ ε)

√
ε(2 + ε). Let ξ1 = ξ0(1+ δ1), and note that

[ξ0(1+ δ1), ξ0(1+ δ2)] =
[
ξ1,

1+δ2
1+δ1

ξ1

]
. Therefore, the tangent provides a 1+ ε approximation

on the interval
[
ξ1,

1 + δ2

1 + δ1
ξ1

]
=

[
ξ1,

(
1 + 2ε(2 + ε) + 2(1 + ε)

√
ε(2 + ε)

)2
ξ1

]
= [ξ1, γ(ε)ξ1]. (11)

Since γ(ε) does not depend on ξ1, the best way to obtain a 1+ε approximation on [li, ui]
is to iteratively introduce tangents that provide approximations on intervals of the form

9



[li, γ(ε)li], [γ(ε)li, γ2(ε)li], [γ2(ε)li, γ3(ε)li], . . . , until the entire interval [li, ui] is covered. It
immediately follows that we need at least

⌈
logγ(ε)

ui
li

⌉
pieces to approximate φi on [li, ui].

This bound can also be written as
⌈

1
log γ(ε) log ui

li

⌉
. As ε → 0, we have 1

log γ(ε) → +∞
and

√
32ε

log γ(ε) → 1, and therefore, the lower bound behaves as 1√
32ε

log ui
li

.

Combining Lemmas 2 and 3, we immediately obtain a lower bound for any piecewise-
linear approximation approach. Let ψi : R+ → R+ be a piecewise-linear function that
approximates φi(xi) =

√
xi to within a factor of 1 + ε on [li, ui]. Note that ψi need not be

continuous or have its pieces tangent to the graph of φi.

Theorem 2. The function ψi must contain at least
⌈

1
3 logγ(ε)

ui
li

⌉
pieces. As ε → 0, this

lower bound behaves as 1√
288ε

log ui
li

.

This lower bound is within a factor of 2+ 3 log γ(ε)
log(1+4ε+4ε2)

of the number of pieces required by
our approach. This implies that for fixed ε, the number of pieces required by our approach
is within a constant factor of the best possible. As ε → 0, the number of pieces needed by
our approach converges to a factor of

√
288ε
4ε = O

(
1√
ε

)
of the lower bound. An interesting

open question is to find tighter upper and lower bounds on the number of pieces as ε → 0.

2.2 Extensions

Our approximation approach applies to a broader class of problems. In this section, we
generalize our results to objective functions that are not monotone and feasible sets that
are not contained in Rn

+. Consider the problem

Z∗12 = min{φ(x) : x ∈ X}, (12)

defined by a compact feasible set X ⊆ Rn and a separable concave function φ : Y → R+.
The feasible set X need not be convex or connected, and the set Y can be any convex
set in Rn that contains X. Let φ(x) =

∑n
i=1 φi(xi), and assume that the functions φi are

nonnegative.
Instead of Assumption 1, we impose the following assumption. Let projxi

Y denote the
projection of Y on xi, and note that projxi

Y is the domain of φi.

Assumption 2. Problem (12) has an optimal solution x∗ = (x∗1, . . . , x
∗
n), bounds αi, βi

with [αi, βi] ⊆ projxi
Y , and bounds li, ui with 0 < li ≤ ui such that x∗i ∈ {αi, βi} ∪

(
[αi +

li, αi + ui] ∩ [βi − ui, βi − li]
)

for i ∈ [n].

Next, we apply the approach of equations (2)–(4) to approximate problem (12) to within
a factor of 1 + ε. We approximate each concave function φi by a piecewise-linear function
ψi. Assume that the interval [αi + li, αi + ui]∩ [βi − ui, βi − li] is nonempty; if this interval
is empty, we have a trivial case. For convenience, we define a new pair of bounds

l′i = max{li, βi − ui − αi}, u′i = min{ui, βi − li − αi}. (13)

Note that [αi + li, αi + ui] ∩ [βi − ui, βi − li] = [αi + l′i, αi + u′i] = [βi − u′i, βi − l′i]. Since
φi is concave, there is a point ξ∗ ∈ [αi, βi] such that φi is nondecreasing on [αi, ξ

∗] and
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nonincreasing on [ξ∗, βi]. We do not have to compute ξ∗ in order to approximate φi.
Instead, we simply introduce tangents starting from αi + l′i and advancing to the right, and
starting from βi − l′i and advancing to the left.

More specifically, we introduce tangents starting from αi+l′i only if the slope at this point
is nonnegative. We introduce tangents at αi+l′i, αi+l′i(1+4ε+4ε2), . . . , αi+l′i(1+4ε+4ε2)Qi ,
where Qi is largest integer such that αi + l′i(1 + 4ε + 4ε2)Qi ≤ αi + u′i and the slope at
αi + l′i(1 + 4ε + 4ε2)Qi is nonnegative.

Let ζi = min
{
αi + u′i, αi + l′i(1 + 4ε + 4ε2)Qi+1

}
. If φi has a nonnegative slope at ζi,

we introduce an additional tangent at ζi. If the slope at ζi is negative, we find the largest
integer ri such that the slope at αi + l′i(1+4ε+4ε2)Qi(1+ε)ri is nonnegative, and introduce
an additional tangent at that point. Since the slope is nonnegative at αi + l′i(1+4ε+4ε2)Qi ,
we have ri ≥ 0, and since ζi ≤ αi + l′i(1 + 4ε + 4ε2)Qi+1 ≤ αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)4,
we have ri ≤ 3. Let the tangents introduced starting from αi + l′i have slopes s0

i , . . . , s
Qi+1
i

and y-intercepts f0
i , . . . , fQi+1

i .
We introduce tangents starting from βi− l′i only if the slope at this point is nonpositive.

We proceed in the same way as with the tangents starting from αi + l′i, and let these
tangents have slopes sQi+2

i , . . . , sQi+Ri+3
i and y-intercepts fQi+2

i , . . . , fQi+Ri+3
i . Also let

Pi = Qi + Ri + 3.
If αi and βi are the endpoints of projxi

Y , for xi ∈ (αi, βi), the function ψi is given by

ψi(xi) = min{fp
i + sp

i xi : p = 0, ..., Pi}, (14)

while for xi ∈ {αi, βi}, we let ψi(xi) = φi(xi).
If αi and βi are in the interior of projxi

Y , we introduce two more tangents at αi and
βi, with slopes sPi+1

i , sPi+2
i and y-intercepts fPi+1

i , fPi+2
i , and let ψi(xi) = min{fp

i + sp
i xi :

p = 0, ..., Pi + 2}. If one of αi, βi is in the interior and the other is an endpoint, we use the
corresponding approach in each case.

We now replace the objective function φ(x) in problem (12) with the new objective
function ψ(x) =

∑n
i=1 ψi(xi), obtaining the piecewise-linear cost problem

Z∗15 = min{ψ(x) : x ∈ X}. (15)

The number of pieces used to approximate each concave function φi in each direction is
at most 2+

⌈
log1+4ε+4ε2

ui
li

⌉
, and therefore the total number of pieces used for each function

is at most 4 + 2
⌈
log1+4ε+4ε2

ui
li

⌉
. As ε → 0, this bound behaves as 1

2ε log ui
li

.
It remains to show that problem (15) provides a 1 + ε approximation for problem (12),

which we do by employing Lemma 1 and Theorem 1.

Lemma 4. Z∗12 ≤ Z∗15 ≤ (1 + ε)Z∗12.

Proof. Clearly, Z∗12 ≤ Z∗15. To prove the inequality’s other side, let x∗ be an optimal solution
to problem (12) that satisfies Assumption 2. We will show that ψi(x∗i ) ≤ (1 + ε)φi(x∗i ) for
i ∈ [n]. If x∗i ∈ {αi, βi} then ψi(x∗i ) = φi(x∗i ). If x∗i 6∈ {αi, βi}, we must have x∗i ∈ [αi +
l′i, αi+u′i] = [βi−u′i, βi−l′i]. Since φi is concave, it is nondecreasing on [αi, x

∗
i ], nonincreasing

on [x∗i , βi], or both. Without loss of generality, assume that φi is nondecreasing on [αi, x
∗
i ].

Due to the way we introduced tangents starting from αi + l′i, it follows that x∗i ∈
[αi + l′i, ζi]. We divide this interval into two subintervals,

[
αi + l′i, αi + l′i(1 + 4ε + 4ε2)Qi

]

11



and
[
αi + l′i(1 + 4ε + 4ε2)Qi , ζi

]
. If x∗i ∈

[
αi + l′i, αi + l′i(1 + 4ε + 4ε2)Qi

]
, then since φi is

nondecreasing on this interval, ψi(x∗i ) ≤ (1 + ε)φi(x∗i ) follows directly from Theorem 1.
If x∗i ∈

[
αi + l′i(1+4ε+4ε2)Qi , ζi

]
, additional steps are needed, since φi is not necessarily

nondecreasing on this interval. If φi has a nonnegative slope at ζi, then we introduced a
tangent at ζi, and ψi(x∗i ) ≤ (1+ ε)φi(x∗i ) again follows from Theorem 1. If the slope at ζi is
negative, we introduced a tangent at αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)ri . Since ri is the largest
integer such that the slope at αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)ri is nonnegative, and the slope
at x∗i is also nonnegative, x∗i ∈

[
αi + l′i(1 + 4ε + 4ε2)Qi , αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)ri+1

]
.

We now distinguish two cases. If x∗i ∈
[
αi+l′i(1+4ε+4ε2)Qi , αi+l′i(1+4ε+4ε2)Qi(1+ε)ri

]
,

then since φi is nondecreasing on this interval, ψi(x∗i ) ≤ (1 + ε)φi(x∗i ) follows by Theorem
1. If x∗i ∈

[
αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)ri , αi + l′i(1 + 4ε + 4ε2)Qi(1 + ε)ri+1

]
, note that the

right endpoint of this interval is 1 + ε times farther from αi than the left endpoint. Since
φi is nondecreasing from the left endpoint to x∗, and we introduced a tangent at the left
endpoint, ψi(x∗i ) ≤ (1 + ε)φi(x∗i ) follows by Lemma 1.

Taken together, the above cases imply that Z∗15 ≤ ψ(x∗) ≤ (1+ε)φ(x∗) = (1+ε)Z∗12.

We conclude this section with two further extensions:

1) We can use secants instead of tangents, in which case we require on the order of
one function evaluation per piece, and do not need to evaluate the derivative. The
secant approach may be preferable in computational applications where derivatives
are difficult to compute.

2) The results in this section can be adapted to apply to concave maximization problems.

3 Polyhedral Feasible Sets

In this section and Section 3.1, we obtain the main result of this paper by applying our
approximation approach to concave cost problems with polyhedral feasible sets. We will
employ the polyhedral structure of the feasible set to eliminate the quantities li and ui from
the bound on the number of pieces, and obtain a bound that is polynomial in the input
size of the concave cost problem and linear in 1/ε.

Let X = {x : Ax ≤ b, x ≥ 0} be a nonempty rational polyhedron defined by a matrix
A ∈ Qm×n and a vector b ∈ Qm. Let φ : Rn

+ → R+ be a nondecreasing separable concave
function, with φ(x) =

∑n
i=1 φi(xi) and each function φi nonnegative. We consider the

problem
Z∗16 = min{φ(x) : Ax ≤ b, x ≥ 0}. (16)

Following standard practice, we define the size of rational numbers, vectors, and matrices
as the number of bits needed to represent them [see e.g. KV02]. More specifically, for an
integer r, let size(r) = 1 + dlog2(|r|+ 1)e; for a rational number r = r1

r2
with r2 > 0, and r1

and r2 coprime integers, let size(r) = size(r1)+ size(r2); and for a rational vector or matrix
M ∈ Qp×q with elements mij , let size(M) = pq +

∑p
i=1

∑q
j=1 size(mij).

We take the input size of problem (16) to be the input size of the feasible polyhedron,
size(A)+size(b). Assume that each function φi is given by an oracle that returns the function
value φi(xi) and derivative φ′i(xi) in time O(1). When the concave functions are given in
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other ways than through oracles, the input size of problem (16) is at least size(A)+ size(b),
and therefore our bound applies in those cases as well.

We will use the following classical result that bounds the size of a polyhedron’s vertices
in terms of the size of the constraint matrix and right-hand side vector that define the
polyhedron [see e.g. KV02]. Let U(A, b) = 4(size(A) + size(b) + 2n2 + 3n).

Lemma 5. If x′ = (x′1, . . . , x
′
n) is a vertex of X, then each of its components has size(x′i) ≤

U(A, b).

To approximate problem (16), we replace each concave function φi with a piecewise-
linear function ψi as described in equations (2)–(4). To obtain each function ψi, we take

li =
1

2U(A,b)−1 − 1
, ui = 2U(A,b)−1 − 1, (17)

and Pi = dlog1+4ε+4ε2
ui
li
e, and introduce Pi+1 tangents to φi at li, li(1+4ε+4ε2), . . . , li(1+

4ε + 4ε2)Pi . The resulting piecewise-linear cost problem is

Z∗18 = min{ψ(x) : Ax ≤ b, x ≥ 0}. (18)

The number of pieces used to approximate each function φi is

1 +
⌈
log1+4ε+4ε2

ui

li

⌉
≤ 1 +

⌈
log1+4ε+4ε2 22U(A,b)

⌉
= 1 +

⌈
2U(A, b)

log2(1 + 4ε + 4ε2)

⌉
. (19)

As ε → 0, this bound behaves as 2U(A,b)
4(log2 e)ε = U(A,b)

2(log2 e)ε . Therefore, the obtained bound is
polynomial in the size of the input and linear in 1/ε. The time needed to compute the
piecewise-linear approximation is also polynomial in the size of the input and linear in 1/ε.
Specifically, we can compute all the quantities li and ui in O(U(A, b)), and then compute
the pieces composing each function ψi in O

( U(A,b)
log2(1+4ε+4ε2)

)
per function, for a total running

time of O
(
U(A, b) + nU(A,b)

log2(1+4ε+4ε2)

)
= O

(nU(A,b)
ε

)
.

Next, we apply Theorem 1 to show that problem (18) approximates problem (16) to
within a factor of 1 + ε.

Lemma 6. Z∗16 ≤ Z∗18 ≤ (1 + ε)Z∗16.

Proof. It is clear that problem (16) satisfies the assumptions needed by Theorem 1, except
for Assumption 1 and the requirement that X be a compact set. Next, we consider these
two assumptions.

Because X is a polyhedron in Rn
+ and φ is concave and nonnegative, problem (16) has an

optimal solution x∗ at a vertex of X [HH61]. Lemma 5 ensures that size(x∗i ) ≤ U(A, b) for
i ∈ [n], and hence x∗i ∈ {0} ∪

[
1

2U(A,b)−1−1
, 2U(A,b)−1 − 1

]
. Therefore, problem (16) together

with the bounds li and ui, and the optimal solution x∗ satisfies Assumption 1.
If the polyhedron X is bounded, then Theorem 1 applies, and the approximation prop-

erty follows. If X is unbounded, we add the constraints xi ≤ 2U(A,b)−1 − 1 for i ∈ [n] to
problems (16) and (18), obtaining the modified problems

Z∗16B = min
{
φ(x) : Ax ≤ b, 0 ≤ x ≤ 2U(A,b)−1 − 1

}
, (16B)

Z∗18B = min
{
ψ(x) : Ax ≤ b, 0 ≤ x ≤ 2U(A,b)−1 − 1

}
. (18B)
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Denote the modified feasible polyhedron by XB. Since XB ⊆ X and x∗ ∈ XB, it follows
that Z∗16B = Z∗16 and x∗ is an optimal solution to problem (16B). Similarly, let y∗ be a
vertex optimal solution to problem (18); since XB ⊆ X and y∗ ∈ XB, we have Z∗18B = Z∗18.

Since XB is a bounded polyhedron, problem (16B), together with the bounds li and
ui, and the optimal solution x∗ satisfies the assumptions needed by Theorem 1. When we
approximate problem (16B) using the approach of equations (2)–(4), we obtain problem
(18B), and therefore Z∗16B ≤ Z∗18B ≤ (1 + ε)Z∗16B. The approximation property follows.

Note that it is not necessary to add the constraints xi ≤ 2U(A,b)−1 − 1 to problem (16)
or (18) when computing the piecewise-linear approximation, as the modified problems are
only used in the proof of Lemma 6.

If the objective functions φi of problem (16) are already piecewise-linear, the resulting
problem (18) is again a piecewise-linear concave cost problem, but with each objective
function ψi having at most the number of pieces given by bound (19). Since this bound
does not depend on the functions φi, and is polynomial in the input size of the feasible
polyhedron X and linear in 1/ε, our approach may be used to reduce the number of pieces
for piecewise-linear concave cost problems with a large number of pieces.

When considering a specific application, it is often possible to use the application’s
structure to derive values of li and ui that yield a significantly better bound on the number of
pieces than the general values of equation (17). We will illustrate this with two applications
in Sections 5 and 6.

3.1 Extensions

Next, we generalize this result to polyhedra that are not contained in Rn
+ and concave

functions that are not monotone. Consider the problem

Z∗20 = min{φ(x) : Ax ≤ b}, (20)

defined by a rational polyhedron X = {x : Ax ≤ b} with at least one vertex, and a
separable concave function φ : Y → R+. Here Y = {x : Cx ≤ d} can be any rational
polyhedron that contains X and has at least one vertex. Let φ(x) =

∑n
i=1 φi(xi), and

assume that the functions φi are nonnegative. We assume that the input size of this
problem is size(A) + size(b), and that the functions φi are given by oracles that return the
function value and derivative in time O(1).

Since, unlike problem (16), this problem does not include the constraints x ≥ 0, we
need the following variant of Lemma 5 [see e.g. KV02]. Let V (A, b) = 4(size(A) + size(b)).

Lemma 7. If x′ = (x′1, . . . , x
′
n) is a vertex of X, then each of its components has size(x′i) ≤

V (A, b).

We approximate this problem by applying the approach of Section 2.2 as follows. If
projxi

Y is a closed interval [α′i, β
′
i], we let [αi, βi] = [α′i, β

′
i]; if projxi

Y is a half-line
[α′i, +∞) or (−∞, β′i], we let [αi, βi] =

[
α′i, 2

V (A,b)−1
]

or [αi, βi] =
[−2V (A,b)−1, β′i

]
; and

if the projection is the entire real line, we let [αi, βi] =
[−2V (A,b), 2V (A,b)

]
.

If projxi
Y is a closed interval or a half-line, we take

li =
1

2V (A,b)+V (C,d)−1 − 1
and ui = 2V (A,b)−1 + 2V (C,d)−1 − 1, (21)
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while if projxi
Y is the entire real line, we take li = 2V (A,b)−1 and ui = 3 · 2V (A,b)−1. We

then apply the approach of Section 2.2 as described from Assumption 2 onward, obtaining
the piecewise-linear cost problem

Z∗22 = min{ψ(x) : Ax ≤ b}. (22)

The number of pieces used to approximate each function φi is at most

4 + 2
⌈
log1+4ε+4ε2

ui

li

⌉
≤ 4 + 2

⌈
log1+4ε+4ε2

(
2V (A,b)+V (C,d)

(
2V (A,b) + 2V (C,d)

))⌉

≤ 4 + 2
⌈
log1+4ε+4ε2

(
2V (A,b)+V (C,d)2V (A,b)+V (C,d)

)⌉

= 4 + 2
⌈

2V (A, b) + 2V (C, d)
log2(1 + 4ε + 4ε2)

⌉
.

(23)

As ε → 0, this bound behaves as V (A,b)+V (C,d)
(log2 e)ε . Note that, in addition to the size of the

input and 1/ε, this bound also depends on the size of C and d. Moreover, to analyze the
time needed to compute the piecewise-linear approximation, we have to specify a way to
compute the quantities α′i and β′i. We will return to these issues shortly.

Next, we prove that problem (22) approximates problem (20) to within a factor of 1+ε,
by applying Lemma 4.

Theorem 3. Z∗20 ≤ Z∗22 ≤ (1 + ε)Z∗20.

Proof. The assumptions needed by Lemma 4 are satisfied, except for Assumption 2 and the
requirement that X be a compact set. We address these two assumptions as follows.

First, note that problem (20) has an optimal solution at a vertex x∗ of X, since X is a
polyhedron with at least one vertex, and φ is concave and nonnegative [HH61]. By Lemma
7, we have size(x∗i ) ≤ V (A, b) for i ∈ [n], and hence x∗i ∈

[−2V (A,b)−1 + 1, 2V (A,b)−1 − 1
]
.

We add the constraints −2V (A,b)−1 + 1 ≤ xi ≤ 2V (A,b)−1 − 1 for i ∈ [n] to X, obtaining the
polyhedron XB and the problems

Z∗20B = min
{
φ(x) : Ax ≤ b,−2V (A,b)−1 + 1 ≤ x ≤ 2V (A,b)−1 − 1

}
, (20B)

Z∗22B = min
{
ψ(x) : Ax ≤ b,−2V (A,b)−1 + 1 ≤ x ≤ 2V (A,b)−1 − 1

}
. (22B)

It is easy to see that Z∗20B = Z∗20 and Z∗22B = Z∗22, and that x∗ is an optimal solution to
problem (20B).

Clearly, XB is a compact set. To see that Assumption 2 is satisfied for problem (20B),
consider the following three cases:

1) If projxi
Y = (−∞,+∞), then αi = −2V (A,b), li = 2V (A,b)−1, and ui = 3 · 2V (A,b)−1.

As a result, x∗i −αi ∈
[−2V (A,b)−1 +1+ 2V (A,b), 2V (A,b)−1− 1+2V (A,b)

] ⊆ {0}∪ [li, ui].

2) If projxi
Y = (−∞, β′i], then αi = −2V (A,b)−1, and thus x∗i − αi ≥ 1. On the other

hand, βi = β′i, implying that βi is a component of a vertex of Y , and thus size(βi) ≤
V (C, d). Now, x∗i ≤ βi implies that x∗i − αi ≤ 2V (C,d)−1 − 1 + 2V (A,b)−1. Since
li = 1

2V (A,b)+V (C,d)−1−1
and ui = 2V (A,b)−1+2V (C,d)−1−1, we have x∗i −αi ∈ {0}∪ [li, ui].
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3) If projxi
Y = [α′i, +∞) or projxi

Y = [α′i, β
′
i], then let x∗i = p1

q1
with q1 > 0, and p1 and

q1 coprime integers. Similarly let αi = p2

q2
, and note that x∗i − αi = p1q2−p2q1

q1q2
. Since

αi = α′i, we know that αi is a component of a vertex of Y , and hence size(αi) ≤ V (C, d)
and size(q2) ≤ V (C, d). On the other hand, size(x∗i ) ≤ V (A, b), and thus size(q1) ≤
V (A, b). This implies that size(q1q2) ≤ V (A, b)+V (C, d), and therefore either x∗i = αi

or x∗i − αi ≥ 1
2V (A,b)+V (C,d)−1−1

. Next, since size(αi) ≤ V (C, d) and size(x∗i ) ≤ V (A, b),
we have x∗i − αi ≤ 2V (A,b)−1 + 2V (C,d)−1 − 2. Given that li = 1

2V (A,b)+V (C,d)−1−1
and

ui = 2V (A,b)−1 + 2V (C,d)−1 − 1, it follows that x∗i − αi ∈ {0} ∪ [li, ui].

Combining the three cases, we obtain x∗i ∈ {αi}∪[αi+li, αi+ui]. Similarly, we can show that
x∗i ∈ {βi}∪[βi−ui, βi−li], and therefore x∗i ∈ ({αi}∪[αi+li, αi+ui])∩({βi}∪[βi−ui, βi−li]),
which is a subset of {αi, βi} ∪

(
[αi + li, αi + ui] ∩ [βi − ui, βi − li]

)
.

Therefore, problem (20B), together with the quantities αi and βi, the bounds li and
ui, and the optimal solution x∗ satisfies Assumption 2, and Lemma 4 applies. Using the
approach of Section 2.2 to approximate problem (20B) yields problem (22B), which implies
that Z∗20B ≤ Z∗22B ≤ (1 + ε)Z∗20B, and the approximation property follows.

To obtain a bound on the number of pieces that is polynomial in the size of the input and
linear in 1/ε, we can simply restrict the domain Y of the objective function to the feasible
polyhedron X, that is let Y := X. In this case, bound (23) becomes 4 + 2

⌈ 4V (A,b)
log2(1+4ε+4ε2)

⌉
,

and can be further improved to 4 + 2
⌈ 3V (A,b)

log2(1+4ε+4ε2)

⌉
, which behaves as 1.5V (A,b)

(log2 e)ε as ε → 0.
When Y = X, the time needed to compute the piecewise-linear approximation is also

polynomial in the size of the input and linear in 1/ε. The quantities α′i and β′i can be
computed by solving the linear programs min{xi : Ax ≤ b} and max{xi : Ax ≤ b}.
Recall that this can be done in polynomial time, for example by the ellipsoid method
[see e.g. GLS93, KV02], and denote the time needed to solve such a linear program by
TLP(A, b). After computing the quantities α′i and β′i, we can compute all the quantities
αi and βi in O(V (A, b)), all the bounds li and ui in O(V (A, b)), and the pieces composing
each function φi in O

( V (A,b)
log2(1+4ε+4ε2)

)
per function. The total running time is therefore

O
(
nTLP(A, b) + V (A, b) + nV (A,b)

log2(1+4ε+4ε2)

)
= O

(
nTLP(A, b) + nV (A,b)

ε

)
.

In many applications, the domain Y of the objective function has a very simple structure
and the quantities α′i and β′i are included in the input, as part of the description of the
objective function. In this case, using bound (23) directly may yield significant advantages
over the approach that lets Y := X and solves 2n linear programs. Bound (23) can be
improved to 4+2

⌈2V (A,b)+2 size(α′i)+2 size(β′i)
log2(1+4ε+4ε2)

⌉
, and as ε → 0 it behaves as V (A,b)+size(α′i)+size(β′i)

(log2 e)ε .
Since α′i and β′i are part of the input, the improved bound is again polynomial in the size
of the input and linear in 1/ε.

4 Algorithms for Concave Cost Problems

Although concave cost problem (16) can be approximated efficiently by piecewise-linear cost
problem (18), both the original and the resulting problems contain the set cover problem
as a special case, and therefore are NP-hard. Moreover, the set cover problem does not
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have an approximation algorithm with a certain logarithmic factor, unless P = NP [RS97].
Therefore, assuming that P 6= NP, we cannot develop a polynomial-time exact algorithm or
constant factor approximation algorithm for problem (18) in the general case, and then use
it to approximately solve problem (16). In this section, we show how to use our piecewise-
linear approximation approach to obtain new algorithms for concave cost problems.

We begin by writing problem (18) as an integer program. Several classical methods for
representing a piecewise-linear function as part of an integer program introduce a binary
variable for each piece and add one or more coupling constraints to ensure that any feasible
solution uses at most one piece [see e.g. NW99, CGM03]. However, since the objective
function of problem (18) is also concave, the coupling constraints are unnecessary, and we
can employ the following fixed charge formulation. This formulation has been known since
at least the 1960s [e.g. FLR66].

min
n∑

i=1

Pi∑

p=0

(fp
i zp

i + sp
i y

p
i ) , (24a)

s.t. Ax ≤ b, (24b)

xi =
Pi∑

p=0

yp
i , i ∈ [n], (24c)

0 ≤ yp
i ≤ Biz

p
i , i ∈ [n], p ∈ {0, . . . , Pi}, (24d)

zp
i ∈ {0, 1}, i ∈ [n], p ∈ {0, . . . , Pi}. (24e)

Here, we assume without loss of generality that ψi(0) = 0. The coefficients Bi are chosen
so that xi ≤ Bi at any vertex of the feasible polyhedron X of problem (18), for instance
Bi = 2U(A,b)−1 − 1.

A key advantage of formulation (24) is that, in many cases, it preserves the special
structure of the original concave cost problem. For example, when (16) is the concave cost
multicommodity flow problem, (24) becomes the fixed charge multicommodity flow problem,
and when (16) is the concave cost facility location problem, (24) becomes the classical facil-
ity location problem. In such cases, (24) is a well-studied discrete optimization problem and
may have a polynomial-time exact algorithm, fully polynomial-time approximation scheme
(FPTAS), polynomial-time approximation scheme (PTAS), approximation algorithm, or
polynomial-time heuristic.

Let γ ≥ 1. The next lemma follows directly from Lemma 6.

Lemma 8. Let x′ be a γ-approximate solution to problem (18), that is x′ ∈ X and Z∗18 ≤
ψ(x′) ≤ γZ∗18. Then x′ is also a (1 + ε)γ approximate solution to problem (16), that is
Z∗16 ≤ φ(x′) ≤ (1 + ε)γZ∗16.

Therefore, a γ-approximation algorithm for the resulting discrete optimization problem
yields a (1 + ε)γ approximation algorithm for the original concave cost problem. More
specifically, we compute a 1+ε piecewise-linear approximation of the concave cost problem;
the time needed for the computation and the input size of the resulting problem are both
bounded by O

(nU(A,b)
ε

)
. Then, we run the γ-approximation algorithm on the resulting

problem. The following table summarizes the results for other types of algorithms.
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When the resulting discrete
optimization problem has a ...

We can obtain for the original
concave cost problem a ...

Polynomial-time exact algorithm FPTAS

FPTAS FPTAS

PTAS PTAS

γ-approximation algorithm (1 + ε)γ approximation algorithm

Polynomial-time heuristic Polynomial-time heuristic

In conclusion, we note that the results in this section can be adapted to the more general
problems (20) and (22).

5 Concave Cost Multicommodity Flow

To illustrate our approach on a practical problem, we consider the concave cost multicom-
modity flow problem. Let (V, E) be an undirected network with node set V and edge set
E, and let n = |V | and m = |E|. This network has K commodities flowing on it, with the
supply or demand of commodity k at node i being bk

i . If bk
i > 0 then node i is a source

for commodity k, while bk
i < 0 indicates a sink. We assume that each commodity has one

source and one sink, that the supply and demand for each commodity are balanced, and
that the network is connected.

Each edge {i, j} ∈ E has an associated nondecreasing concave cost function φij : R+ →
R+. Without loss of generality, we let φij(0) = 0 for {i, j} ∈ E. For an edge {i, j} ∈ E, let
xk

ij indicate the flow of commodity k from i to j, and xk
ji the flow in the opposite direction.

The cost on edge {i, j} is a function of the total flow of all commodities on it, namely
φij

(∑K
k=1(x

k
ij + xk

ji)
)
. The goal is to route the flow of each commodity so as to satisfy all

supply and demand constraints, while minimizing total cost.
A mathematical programming formulation for this problem is given by:

Z∗25 = min
∑

{i,j}∈E

φij

(
K∑

k=1

(xk
ij + xk

ji)

)
, (25a)

s.t.
∑

{i,j}∈E

xk
ij −

∑

{j,i}∈E

xk
ji = bk

i , i ∈ V, k ∈ [K], (25b)

xk
ij , x

k
ji ≥ 0, {i, j} ∈ E, k ∈ [K]. (25c)

Let Bk =
∑

i:bk
i >0 bk

i and B =
∑K

k=1 Bk. For simplicity, we assume that the coefficients bk
i

are integral.
A survey on concave cost network flows and their applications is available in [GP90].

Concave cost multicommodity flow is also known as the buy-at-bulk network design problem
[e.g CK05, CHKS06]. Concave cost multicommodity flow has the Steiner tree problem as a
special case, and therefore is NP-hard, and does not have a polynomial-time approximation
scheme, unless P = NP [BP89, ALM+98]. Moreover, concave cost multicommodity flow
does not have an O

(
log1/2−ε′ n

)
approximation algorithm for ε′ arbitrarily close to 0, unless

NP ⊆ ZTIME
(
ηpolylogη

)
[And04].
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Problem (25) satisfies the assumptions needed by Lemma 6, since we can handle the
cost functions φij

(∑K
k=1(x

k
ij + xk

ji)
)

by introducing new variables ξij =
∑K

k=1(x
k
ij + xk

ji) for
{i, j} ∈ E. We apply the approach of equations (17)–(19) to approximate this problem to
within a factor of 1 + ε, use formulation (24) to write the resulting problem as an integer
program, and disaggregate the integer program, obtaining:

Z∗26 = min
∑

{i,j,p}∈E′
fijpzijp +

∑

{i,j,p}∈E′

K∑

k=1

sijp(xk
ijp + xk

jip), (26a)

s.t.
∑

{i,j,p}∈E′
xk

ijp −
∑

{j,i,p}∈E′
xk

jip = bk
i , i ∈ V, k ∈ [K], (26b)

0 ≤ xk
ijp, x

k
jip ≤ Bkyijp, {i, j, p} ∈ E′, k ∈ [K], (26c)

yijp ∈ {0, 1}, {i, j, p} ∈ E′. (26d)

This is the well-known fixed charge multicommodity flow problem, but on a new network
(V, E′) with (P + 1)m edges, for a suitably defined P . Each edge {i, j} in the old network
corresponds to P + 1 parallel edges {i, j, p} in the new network, with p being an index to
distinguish between parallel edges. For each edge {i, j, p} ∈ E′, the coefficient fijp can be
interpreted as its installation cost, and sijp as the unit cost of routing flow on the edge once
installed. The binary variable yijp indicates whether edge {i, j, p} is installed.

For a survey on fixed charge multicommodity flow, see [AMOR95, BMM97]. This
problem is also known as the uncapacitated network design problem. The above hardness
results from [BP89, ALM+98] and [And04] also apply to fixed charge multicommodity flow.

By bound (19), P ≤ ⌈ 2U(A,b′)
log2(1+4ε+4ε2)

⌉
, with A and b′ being the constraint matrix and

right-hand side vector of problem (25). However, we can obtain a much lower value of P
by taking problem structure into account. Specifically, we perform the approximation with
li = 1 and ui = B, which results in P ≤ ⌈ log2 B

log2(1+4ε+4ε2)

⌉
.

Lemma 9. Z∗25 ≤ Z∗26 ≤ (1 + ε)Z∗25.

Proof. Since the objective is concave and nonnegative, problem (25) has an optimal solution
at a vertex z of its feasible polyhedron [HH61]. In z, the flow of each commodity occurs on
a tree [see e.g. Sch03], and therefore, the total flow

∑K
k=1(z

k
ij + zk

ji) on any edge {i, j} ∈ E
is in {0} ∪ [1, B]. The approximation result follows from Theorem 1.

5.1 Computational Results

We present computational results for problems with complete uniform demand—there is a
commodity for every ordered pair of nodes, and every commodity has a demand of 1. We
have generated the instances based on [BMW89] as follows. To ensure feasibility, for each
problem we first generated a random spanning tree. Then we added the desired number
of edges between nodes selected uniformly at random. For each number of nodes, we
considered a dense network with n(n − 1)/4 edges (rounded down to the nearest multiple
of 5), and a sparse network with 3n edges. For each network thus generated, we have
considered two cost structures.

19



# n m K
Flow

Variables
Pieces

1 10 30 90 8,100 41
2 20 60 380 22,800 77
3 20 95 380 36,100 77
4 30 90 870 78,300 98
5 30 215 870 187,050 98
6 40 120 1,560 187,200 113
7 40 390 1,560 608,400 113
8 50 150 2,450 367,500 124
9 50 610 2,450 1,494,500 124

10 60 180 3,540 637,200 133
11 60 885 3,540 3,132,900 133
12 70 210 4,830 1,014,300 141
13 70 1,205 4,830 5,820,150 141
14 80 240 6,320 1,516,800 148
15 80 1,580 6,320 9,985,600 148

Table 1: Network sizes. The column “Pieces” indicates the number of pieces in each
piecewise linear function resulting from the approximation.

The first cost structure models moderate economies of scale. We assigned to each edge
{i, j} ∈ E a cost function of the form φij(ξij) = a + b(ξij)c, with a, b, and c randomly
generated from uniform distributions over [0.1, 10], [0.33, 33.4], and [0.8, 0.99]. For an av-
erage cost function from this family, the marginal cost decreases by approximately 30% as
the flow on an edge increases from 25 to 1,000. The second cost structure models strong
economies of scale. The cost functions are as in the first case, except that c is sampled
from a uniform distribution over [0.0099, 0.99]. In this case, for an average cost function,
the marginal cost decreases by approximately 84% as the flow on an edge increases from
25 to 1,000. Note that on an undirected network with n nodes, there is an optimal solution
with the flow on each edge in {0, 2, . . . , n(n− 1)}.

Table 1 specifies the problem sizes. Note that although the individual dimensions of the
problems are moderate, the resulting number of variables is large, since a problem with n
nodes and m edges yields n(n − 1)m flow variables. The largest problems we solved have
80 nodes, 1,580 edges, and 6,320 commodities. To approach them with an MIP solver,
these problems would require 1,580 binary variables, 9,985,600 continuous variables and
10,491,200 constraints, even if we replaced the concave functions by fixed charge costs.

We chose ε = 0.01 = 1% for the piecewise linear approximation. Here, we have been
able to reduce the number of pieces significantly by using the tight approximation guarantee
of Theorem 1 and the problem-specific bound of Lemma 9. After applying our piecewise
linear approximation approach, we have reduced the number of pieces further by noting
that for low argument values, our approach introduced tangents on a grid denser than the
uniform grid 2, 4, 6, . . . For each problem, we have reduced the number of pieces per cost
function by approximately 47 by using the uniform grid for low argument values, and the
grid generated by our approach elsewhere.

We used an improved version of the dual ascent method described by Balakrishnan
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# Moderate economies of scale Strong economies of scale

Time Sol.
Edges εDA% εALL% Time Sol.

Edges εDA% εALL%

1 0.13s 14 0.41 1.41 0.19s 9 0.35 1.35
2 3.17s 31 1.45 2.46 3.99s 19 1.06 2.07
3 3.50s 25.3 1.20 2.21 5.37s 19 3.38 4.42
4 18.5s 43.7 1.94 2.96 11.7s 29 1.18 2.20
5 31.3s 44 2.16 3.19 21.1s 29 3.50 4.54
6 1m23s 61.7 2.47 3.49 27.1s 39 2.20 3.22
7 2m6s 59 3.24 4.28 1m11s 39 3.17 4.21
8 3m45s 79 2.22 3.24 1m11s 49 3.42 4.46
9 6m19s 74.7 3.10 4.13 2m48s 49 4.22 5.26

10 8m45s 95 2.58 3.61 2m1s 59 3.27 4.30
11 18m52s 95.7 3.64 4.68 5m59s 59 4.25 5.29
12 16m44s 101.7 2.85 3.87 2m35s 69 3.77 4.81
13 39m18s 115.7 4.19 5.24 9m43s 69 4.98 6.03
14 32m46s 127.7 2.82 3.84 4m25s 79 4.10 5.14
15 1h24m 143 5.24 6.29 15m50s 79 5.67 6.73
Average 2.63 3.66 3.24 4.27

Table 2: Computational results. The values in column “Sol. Edges” represent the number
of edges with positive flow in the obtained solutions.

et al. [BMW89] (also known as the primal-dual method [see e.g. GW97]) to solve the
resulting fixed charge multicommodity flow problems. The method produces a feasible
solution, whose cost we denote by ZDA

26 , to problem (26) and a lower bound ZLB
26 on the

optimal value of problem (26). As a result, for this solution, we obtain an optimality
gap εDA = ZDA

26

ZLB
26
− 1 with respect to the piecewise linear problem, and an optimality gap

εALL = (1 + ε)(1 + εDA)− 1 with respect to the original problem.
Table 2 summarizes the computational results. We performed all computations on an

Intel Xeon 2.66 GHz. For each problem size and cost structure, we have averaged the
optimality gap, computational time, and number of edges in the computed solution over 3
randomly-generated instances.

We obtained average optimality gaps of 3.66% for problems with moderate economies
of scale, and 4.27% for problems with strong economies of scale. This difference in average
optimality gap is consistent with computational experiments in the literature that analyze
the difficulty of fixed charge problems as a function of the ratio of fixed costs to variable
costs [BMW89, HS89]. Note that the solutions to problems with moderate economies of
scale have more edges than those to problems with strong economies of scale; in fact, in
the latter case, the edges always form a tree.

To the best of our knowledge, the literature does not contain exact or approximate
computational results for concave cost multicommodity flow problems of this size. Bell and
Lamar [BL97] introduce an exact branch-and-bound approach for single-commodity flows,
and perform computational experiments on networks with up to 20 nodes and 96 edges.
Fontes et al. [FHC03] propose a heuristic approach based on local search for single-source
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single-commodity flows, and present computational results on networks with up to 50 nodes
and 200 edges. They obtain average optimality gaps of at most 13.81%, and conjecture that
the actual gap between the obtained solutions and the optimal ones is much smaller. Also
for single-source single-commodity flows, Fontes and Gonçalves [FG07] propose a heuristic
approach that combines local search with a genetic algorithm, and present computational
results on networks with up to 50 nodes and 200 edges. They obtain optimal solutions for
problems with 19 nodes or less, but do not provide optimality gaps for larger problems.

6 Concave Cost Facility Location

In the concave cost facility location problem, there are m customers and n facilities. Each
customer i has a demand of di ≥ 0, and needs to be connected to a facility to satisfy it.
Connecting customer i to facility j incurs a connection cost of cijdi; the connection costs
cij are nonnegative and satisfy the metric inequality.

Let xij = 1 if customer i is connected to facility j, and xij = 0 otherwise. Then the total
demand satisfied by facility j is

∑m
i=1 dixij . Each facility j has an associated nondecreasing

concave cost function φj : R+ → R+. We assume without loss of generality that φj(0) = 0
for j ∈ [n]. At each facility j we incur a cost of φj (

∑m
i=1 dicij). The goal is to assign each

customer to a facility, while minimizing the total connection and facility cost.
The concave cost facility location problem can be written as a mathematical program:

Z∗27 = min
n∑

j=1

φj

(
m∑

i=1

dixij

)
+

n∑

j=1

m∑

i=1

cijdixij , (27a)

s.t.
n∑

j=1

xij = 1, i ∈ [n], (27b)

xij ≥ 0, i ∈ [m], j ∈ [n]. (27c)

Let D =
∑m

i=1 di. We assume that the coefficients cij and di are integral.
Concave cost facility location has been studied since at least the 1960s [KH63, FLR66].

Mahdian and Pal [MP03] developed a 3 + ε′ approximation algorithm for this problem, for
any ε′ > 0. When the problem has unit demands, that is d1 = · · · = dm = 1, a wider
variety of results become available. In particular, Hajiaghayi et al. [HMM03] obtained a
1.861-approximation algorithm. Hajiaghayi et al. [HMM03] and Mahdian et al. [MYZ06]
described a 1.52-approximation algorithm.

Concerning hardness results, concave cost facility location contains the classical facility
location problem as a special case, and therefore does not have a polynomial-time approxi-
mation scheme, unless P = NP, and does not have a 1.463-approximation algorithm, unless
NP ⊆ DTIME

(
nO(log log n)

)
[GK99].

As before, problem (27) satisfies the assumptions needed by Lemma 6. We apply the
approach of equations (17)–(19) to approximate it to within a factor of 1+ε, use formulation
(24) to write the resulting problem as an integer program, and disaggregate the integer
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program:

Z∗28 = min
n∑

j=1

P∑

p=0

fp
j yp

j +
n∑

j=1

P∑

p=0

m∑

i=1

(sp
j + cij)dix

p
ij , (28a)

s.t.
n∑

j=1

P∑

p=0

xp
ij = 1, i ∈ [m], (28b)

0 ≤ xp
ij ≤ yp

j , i ∈ [m], j ∈ [n], p ∈ {0, . . . , P}, (28c)

yp
j ∈ {0, 1}, j ∈ [n], p ∈ {0, . . . , P}. (28d)

We have obtained a classical facility location problem that has m customers and Pn fa-
cilities, with each facility j in the old problem corresponding to P facilities (j, p) in the
new problem. Each coefficient fp

j can be viewed as the cost of opening facility (j, p), while
sp
j + cij can be viewed as the unit cost of connecting customer i to facility (j, p). Note

that the new connection costs sp
j + cij satisfy the metric inequality. The binary variable yp

j

indicates whether facility (j, p) is open.
Problem (28) is one of the fundamental problems in operations research [CNW90,

NW99]. Hochbaum [Hoc82] showed that the greedy algorithm is a O(log n) approximation
algorithm for it, even when the connection costs cij are non-metric. Shmoys et al. [STA97]
gave the first constant-factor approximation algorithm for this problem, with a factor of
3.16. More recently, Mahdian et al. [MYZ06] developed a 1.52-approximation algorithm,
and Byrka [Byr07] obtained a 1.4991-approximation algorithm. The above hardness results
of Guha and Khuller [GK99] also apply to this problem.

Bound (19) yields P ≤ ⌈ 2U(A,b)
log2(1+4ε+4ε2)

⌉
, with A and b being the constraint matrix and

right-hand side vector of problem (27). We can obtain a lower value for P by taking li = 1
and ui = D, which yields P ≤ ⌈ log2 D

log2(1+4ε+4ε2)

⌉
. The proof of the following lemma is similar

to that of Lemma 9.

Lemma 10. Z∗27 ≤ Z∗28 ≤ (1 + ε)Z∗27.

Combining our piecewise-linear approximation approach with the 1.4991-approximation
algorithm of Byrka [Byr07], we obtain the following result.

Theorem 4. There exists a 1.4991+ε′ approximation algorithm for the concave cost facility
location problem, for any ε′ > 0.

We can similarly combine our approach with other approximation algorithms for classi-
cal facility location. For example, by combining it with the 1.52-approximation algorithm
of Mahdian et al. [MYZ06], we obtain a 1.52+ ε′ approximation algorithm for concave cost
facility location.
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