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Solution of an optimal reservoir capacity
problem under probabilistic constraints

Merve Unuvar Eren Erman Ozguven András Prékopa

Abstract. We formulate and solve probabilistic constrained stochastic program-
ming problems, where we prescribe lower and upper bounds for k-out-of-n and
consecutive-k-out-of-n reliabilities in the form of probabilistic constraints. The
practical problem we are dealing with is mentioned in a paper by Prékopa, Szántai,
Zsuffa (2010), where four optimization problems are formulated in connection with
water resource problem. However, solutions are offered for three of them and it
is the fourth one which is the starting point of our paper. The problem is to
determine the optimal capacity of a water release, or pump station, to satisfy the
demand for irrigation, i.e., a reliability constraint where the reliability is one of the
above-mentioned type. For the non-consecutive type reliability problem, normal
and gamma distributions are used for inflow and demand values, respectively. By
using the property of standard gamma distribution, reliability constraint is written
up as an equation which can then be solved by simulation. For the k-consecutive
case, different probability bounds are used in order to solve the reliability equation.
To create lower and upper bounds for the reliability constraint, the discrete
binomial moment problem is used, which are indeed LP’s are constructed. S1,
S2, S3 sharp lower bounds, Hunter’s upper bound and Cherry tree upper bound
are calculated to obtain desired probability level for the reliability constraint.
Bi-section algorithm is later applied to find the optimal water reservoir capacity
level.

Keywords: Probabilistic modeling, Optimization, Bounding, Bi-section al-
gorithm
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1 Introduction

In probabilistic constrained stochastic programming, problems we look at the joint proba-
bility of a finite number of stochastic constraints and impose a lower bound on it, chosen by
ourselves. This ensures that the system we are looking at has a prescribed level of probabil-
ity. The joint occurrence of constraints, or events, depending on a decision vector is however,
only one type of Boolean function of events among those that appear in reliability theory. In
this paper, we formulate and solve probabilistic constrained stochastic programming prob-
lems, where we prescribe lower bounds for k-out-of-n and consecutive-k-out-of-n reliabilities
in the form of probabilistic constraints.

The problem comes from water resources problem applied in agriculture. It is widely
accepted view and practical experience that a plant can survive a given number of dry days,
which depends on the plant. If n is the total number of days until harvest and the maximum
number of dry days the plant can survive is k − 1, then we want to ensure the possibility
of irrigation in any k consecutive days which means we have a k-out-of-n reliability. The
problem is not as to calculate the mentioned reliability but to optimize with respect to a
decision variable subject to the constraint that the k-out-of-n reliability holds true on a
prescribed level, near 1 in practice. We also look at probabilistic constrained problems,
where the reliability is of a weaker type, it is of k-out-of-n type.

The practical problem we are dealing with is mentioned in a paper by Prékopa, Szántai,
Zsuffa (2010), where four optimization problems are formulated in connection with water
resource problem. However, solutions are offered for three of them and it is the fourth one
which is the starting point of our paper. The problem is to determine the optimal capacity
of a water release, or pump station, to satisfy the demand for irrigation, i.e., a reliability
constraint where the reliability is one of the above-mentioned type.

Even though the original problem comes from an application in water resources, the type
of problem we are dealing with has many other applications. For example, we can determine
the optimal safety cash reserve of a bank or safety stocks, in general, in inventory control
systems. It is also novel, from the point of model construction, and enrich the collection of
these stochastic programming models that have immediate and wide applications.

Formulas are available to compute probability of various Boolean function of events. For
the probability of at least k-out-of-n (P(k)) and exactly k-out-of-n (P[k]) we have:

P(k) =
n∑
i=k

(−1)i−k
(
i−1
k−1
)
Sk

P[k] =
n∑
i=k

(−1)i−k ( ik )Sk

where S1, . . . , Sn are the bionomial moments of the random variable equal to the number of
events that occur. However, in practice we cannot compute all S1, . . . , Snif n is large then
we apply bionomial procedures to approximate the probabilities.

In order to create lower and upper bounds for Boolean functions of events arranged in a
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finite sequence, a simple and frequently efficient method is the one provided by the discrete
binomial moment problems. These are LP’s, where the right-hand side numbers are some
of the binomial moments S1, S2, . . . . Since Sk is the sum of joint probabilities of k-tuples
of events, these LP’s are called aggregated problems. Better bounds can be obtained if
we use the individual probabilities in the sums of all Sk binomial moments that turn up
in the aggregated problem. However, the LP’s based on these called the disaggregated
problems, have huge sizes, in general, and we may not be able to solve them (see Prékopa,
Vizvári, Regös, 1998). Bounding probabilities of Boolean function of events has an extensive
literatutre. The first upper and lower bounds are given by Bonferroni (1937) and Boole
(1854), respectively. However, they are weak and rarely useful in practice. Sharp S1, S2, S3

lower bounds were proposed by Dawson and Sankoff (1967) and S1, S2, S3 lower and upper
bounds by Kwerel (1975a, 1975b). Prékopa (1988, 1989, 1990, 1995) generalized these results
and gave formulas as well as dual type algorithms to obtain the bounds. See also Boros and
Prékopa (1989) for a collection of formulas. We will use this in our paper but we also use
bounds where most sums of probabilities (as in S1, . . . , Sn) but individual proabilities are
used. Hunter (1976) gives a solution for an upper bound which is going to be used for
the solution of the k-out-of-n type of problem. In Bukszár, Prékopa (2001), a third order
upper bound by using graphs called cherry trees are presented. These are graphs that are
recursivley generated by connecting the new vertex into two already existing vertices. Cherry
tree bounds also corresponds to a dual feasible bases however they are always as good as or
better than Hunter’s upper bound. In this paper, S1, S2, S3 sharp lower bounds, Hunter and
Cherry tree upper bounds are taken into consideration. Bi-section method is then applied to
the model for obtaning the optimal capacity level while satisfying the reliability constraints.

2 Formulation of the problem

There will be two problems modeled in this section. In the first model, k dry periods out of
n periods are permitted while obtaining the optimal water reservoir capacity. In the second
model, same objective function is solved while observing at most consecutive k dry periods
out of n periods are allowed. Following notation is used for both problems:

ξi inflow in the ith period, normally distributed random variable

γi demand in the ithperiod, gamma distributed random variable

δi rain amount in the ith period, normally distributed random variable

m capacity of the water reservoir

k number of permitted dry days

p probability level of reliability
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First Model. At most k dry periods permitted
Problem to be solved:

min m

subject to

P{min ((ξi,m) + δi ≥ xiγi) , i = 1, . . . , n, x1 + · · ·+ xn ≥ n− k} ≥ p

xi ∈ {0, 1} i = 1, . . . , n (1)

0 ≤ m ≤M

Second Model. At most k consecutive dry periods permitted
Problem to be solved:

min m

subject to

P{min ((ξi,m) + δi ≥ xiγi) , i = 1, . . . , n, xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n (2)

0 ≤ m ≤M

3 Mathematical properties of the reservoir system de-

sign model

In this section we prove a convexity theorem for problem (1) and (2) where there are no
discrete variables. The convexity statement is based on the theory of multivariate logconcave
measures and functions. In order to make the paper self contained we recall some facts from
logconcavity. First we present two definitions.

A function f(x) ≥ 0, x ∈ Rn is logconcave if for every x, y ∈ Rn and 0 < λ < 1 we have

f(λx+ (1− λ)y) ≥ (f(x))λ(f(y))1−λ) (3)

A probability measure P is the Borel subsets of Rn is logconcave Prékopa( 1971, 1973a)
if for every convex subsets A,B of Rn and 0 < λ < 1 we have

f(λA+ (1− λ)B) ≥ f(A))λ(f(B))1−λ

A simple consequence of the second definition is that the c.d.f., corresponding to a log-
concave probability measure, is logconcave (as a point function). The basic theorem of
logconcave measure is the following:

Theorem 3.1. (Prékopa, 1971, 1973a). If the probability measure P is generated by a
logconcave p.d.f., then P is a logconcave measure.

Another theorem that we use in connection with problem (1) is the following:
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Theorem 3.2. (Prékopa, 1972). If g1(x, y), . . . , gr(x, y) are concave functions in Rn+q,
where x ∈ Rn, y ∈ Rq and ξ ∈ Rn is a random variable that has logconcave distribution,
then the function

P (gi(ξ, y) ≥ 0, i = 1, . . . , r)

is a logconcave function of y ∈ Rq.

A consequence of the above theorem is

Theorem 3.3. If the joint p.d.f. of the random variables ξi, δi, γi, i = 1, . . . , n is logconcave,
then for every fixed x,

P (min(ξi,m) + δk ≥ xiγi, i = 1, . . . , n)

Proof. Theorem 3.3 ensures the logconcavity of the joint distribution of the random variables
ξi, δi, γi, i = 1, . . . , n. On the other hand, if we look fo a moment at ξi, δi, γi, i = 1, . . . , n
as deterministic variables, then we can see that the functions

min(ξi,m) + δi − xiγi, i = 1, . . . , n

are concave in all these variables and n. By Theorem 3.2 the assertion follows.

4 Solution of the problem

4.1 Solution of the Model (1)

First we present a method to find an upper bound for the optimal solution of model where
there are no discrete variables. For the case of I.I.D. γ1, . . . , γn, where each has gamma
distribution with p.d.f.:

λϑzϑ−1e−λz

τ(ϑ)
, z > 0

we can obtain an upper bound for Mopt. For simplicity we assumed that (γ1, . . . , γn) is
independent of (ξ1, . . . , ξn, δ1, . . . , δn).

First we mention that the random variables λγ1, . . . , λγn have standard gamma distri-
bution, i.e. distribution with p.d.f. (4), where λ = 1. The second observation is that the
following relations hold:

P (min(ξi,m) + δi ≥ xiγi, i = 1, . . . , n)

≤ P (
n∑
i=1

[min(ξi,m) + δi] ≥
n∑
i=1

xiγi) (4)

= P (
n∑
i=1

λ[min(ξi,m) + δi] ≥
n∑
i=1

xiλγi)
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The distribution of
∑n

i=1 xiλγi is the same as the distribution of λγ1
∑n

i=1 xi. In fact, the
sum of independent standard gamma random variables is also a standard gamma random
variable and the (ϑ )parameter of the sum is the sum of the parameter of the terms. Thus,
we can replace

∑n
i=1 xiλγi by λγ1

∑n
i=1 xi for the last line in (4). On the other hand, it is

prescribed that
∑n

i=1 xi ≥ n− k, hence we obtain the inequality

P (min(ξi,m) + δi ≥ xiγi, i = 1, . . . , n) (5)

≤ P

(
n∑
i=1

λ [min(ξi,m) + δi] ≥ (n− k)λγ1

)
.

Inequality (5) implies that the optimum value of the problem

minm

subject to

P (
∑n

i=1 λ [min(ξi,m) + δi] ≥ (n− k)λγ1) ≥ p

0 ≤ m ≤M

is an upper bound for the optimum value of problem (1). On the other hand, if there exists
a feasible m in problem (6), then, due to the monocity of the constraining function in the
first constraint, the optimal solution of problem (6) can simply be obtained by the solution
of the equation:

P

(
n∑
i=1

λ [min(ξi,m) + δi] ≥ (n− k)λγ1

)
= p. (6)

4.2 Solution of the Model (2)

The problem (2) can be solved in multiple ways however we will use bounding tech-
niques. For the sake of computational easiness, we will ignore δi. In order to apply bounding
methodology the reliability constraint in model (2) will be re-written as follows:

P{min ((ξi,m) ≥ γixi) , i = 1, . . . , n, xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n

The inequality (7) can also be expressed as;

P{min(ξi ≥ γixi,m ≥ γixi), i = 1, . . . , n, xi + · · ·+ xi+k−1 ≥ 1, i = 1, . . . , n− k + 1} ≥ p

xi ∈ {0, 1} i = 1, . . . , n

The inequality (7) claims that, minimum of the inflow or the capacity of the reservoir should
be greater than or equal to the demand with probability p therefore the condition for having
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non-dry land for k-consecutive periods will be satisfied. In order to solve this inequality, we
will consider each k periods starting from the first period, (first period + k − 1 periods),
second period (second period+ k − 1 periods) etc. individually and then will consider the
intersection of these n − k + 1 events. The intersection of these events will ensure that at
least one period from first day until kth period and from second period until k + 1th period
will have enough water for the land. When we consider total number of events l, the land
will never be dry for the k-consecutive periods out of n total periods.

The event Al means at least one out of these k periods there will be sufficient water
for the land. On the other hand, complementary event Al represents that there will not
be sufficient water for the land during any k periods. Below event represents when k = 7
periods:

A1 = (ξi ≥ γi, M ≥ γi) ≥ 1, i = 1, . . . , 7

which implies that at least 1 period out of 7 periods, land will gave suffcient water, below
the A1 event:

A1 = (ξi ≥ γi, M ≥ γi) < 1, i = 1, . . . , 7

which implies that none of the periods out of 7 periods, land will have sufficient water. Below
the A2 event:

A2 = (ξi ≥ γi, M ≥ γi) ≥ 1, i = 2, . . . , 8

which implies that at least 1 period out 7 periods (from second period until the eigth period),
land will have sufficient water, below the A2 event:

A2 = (ξi ≥ γi, M ≥ γi) < 1, i = 2, . . . , 8

which implies that none of the periods out of 7 periods, land will have sufficient water.
The pattern to create the event Al’s, is to start from the lth period and consider until

(l + k − 1)th period where k is the desired number of consecutive non-dry periods. There
will be total n− k + 1 number of events where n is the total number of periods that will be
taken into consideration. As descibed, below represents the last event:

An−k+1 = (ξi ≥ γi, M ≥ γi) ≥ 1, i = n− k + 1, . . . , n− k + 7

below the An−k+1 event:

An−k+1 = (ξi ≥ γi, M ≥ γi) < 1, i = n− k + 1, . . . , n− k + 7

which implies that none of the periods out of 7 periods, land will have sufficient water.
Now, the probability of intersection of all the events, which ensures the non-dry land

condition for k-consecutive periods can be written as follows:

P (A1 ∩ · · · ∩ An−k+1) ≥ p (7)
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The purpose of expressing the reliability constraint as intersection of the specially defined
events is to apply bounding techniques while finding the optimum value of the capacity m.

4.3 Sharp bounds on the probability

Solving the equation (7) is not practically easy and managable therefore well known
bounds for the union of events will be used to define a lower and upper bound to the desired
probability calculation which meanwhile will be used to determine the optimal capacity of
the water reservoir.

In order to calculate the lower and upper bounds for the reliability constraint, the def-
inition and description of the bounds will be presented. The same notation and definition
as Prékopa [11] is used in below sections. Since all most known bounds are for the union of
the events, later, we will explain the conversion of the union of the events into intersection
of the events for the water reservoir problem.
4.3.1 Lower bounds, S1, S2, S3 given

Sharp lower bound that is given by Prékopa [11]

P (A1 ∪ · · · ∪ An) ≥ i+ 2n− 1

(i+ 1)n
S1 −

2(2i+ n− 2)

i(i+ 1)n
S2 +

6

i(i+ 1)
S3 (8)

where

i = 1 +
⌊
−6S3+2(n−2)S2

−2S2+(n−1)S1

⌋
Sk =

∑
1≤i1<···<ik≤n P (Aij ∩ · · · ∩ Aik), k = 1, . . . , n.

4.3.2 Hunter’s upper bound

Let A1, . . . , An be arbitrary events in an arbitrary probability space. Hunter (1976) gave
an upper bound for P (A1 ∪ · · · ∪ An) by the use of S1 and the individual probabilities
P (Ai ∩ Aj), 1 ≤ i < j ≤ n. Hunter’s upper bound is given by;

P (A1 ∪ · · · ∪ An) ≤ S1 −
∑

(i,j)∈T

P (Ai ∩ Aj). (9)

The second term on the right hand side in (9) is the weight of the spanning tree T . The best
bound of this type is obtained when we choose the maximum weight spanning tree T ∗. The
maximum spanning tree can be found by Kruskal’s (1956) algorithm.

4.3.3 Cherry tree upper bound

A third order upper bound is presented on the probability of the union of a finite number
of events, by means of graphs called cherry trees. These are graphs that we construct recur-
sively in such a way that every time we pick a new vertex and connect it with two already
existing vertices. If the latters are always adjacent, we call the cherry tree a t-cherry tree.
A cherry tree has a weight that provides us with the upper bound on the union. A cherry
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tree bound can be identified as a feasible solution to the dual of the Boolean probability
bounding problem. A t-cherry tree bound can be identified as the objective function value of
the dual vector corresponding to a dual feasible basis in the Boolean problem. This enables
us to improve on the bound algorithmically, if we use the dual method of linear programming.

Definition (Bukszár, Prékopa 2001)
We define a cherry tree recursively in the following manner:
(i) An adjacent pair of vertices constitutes the only cherry tree that has exactly two vertices.
(ii) From a cherry tree we can obtain another cherry tree by adding a new vertex and two
new edges, connecting the new vertex with two already existing vertices. These two edges
constitute a cherry.
(iii) If V is the set of vertices, ξ the set of edges and ε the set of cherries obtained that way
then we call the triple ∆ = (V, ξ, ε) a cherry tree.
Theorem 4.1. For any cherry tree ∆ = (V, ξ, ε) with V = 1, . . . , n we have

P (A1 ∪ · · · ∪ An) ≤
∑n

i=1 p(Ai)− w(∆) = S1 − w(∆)

where (10)

w(∆) =
∑
{i,j}∈ξ P (Ai ∩ Aj)−

∑
(i,j,k)∈ξ P (Ai ∩ Aj ∩ Ak)

Proof of the Theorem (4.1) can be found in Ref. [3].

4.4 Our lower and upper bounds

In the above section, sharp lower and upper bounds that are widely used in the probability
theory are defined and formulated. There are two proposed upper bounds for the union of
the events; Hunter and Cherry tree upper bounds which are both dual feasible bases for the
Boolean bounding problem. However, all of these bounds calculate upper and lower range
for the probability of the union of the events. Since, the main interest of water reservoir
problem is to find a lower and upper bound for the intersection of the events that are defined
in section 2, the following conversion is needed:

P (A1 ∩ · · · ∩ An−k+1) = 1− P (A1 ∪ · · · ∪ An−k+1) (11)

If the lower bound for the union of the events is defined by equation (8), then we will have
the following formulationf for the lower bound:

i+ 2n− 1

(i+ 1)n
S1 −

2(2i+ n− 2)

i(i+ 1)n
S2 +

6

i(i+ 1)
S3 = LB1.

Altough we will calculate both Hunter and Cherry tree upper bounds, our computational
experince showed that cherry tree bounds are always better than or equal to Hunter upper
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bound so that, we will define the upper bound for the union of the events with the equation
(10) and rename the right hand side as UB1. Then we will have the following:

S1 − w(∆) = UB1 (12)

The ranges for the union of the events can be rewritten as follows:

LB1 ≤ P (A1 ∪ · · · ∪ An−k+1) ≤ UB1 (13)

If we rewrite the union of all the events in terms of the intersection of complementary events
and write the range (13), we will obtain:

LB1 ≤ 1− P (A1 ∩ · · · ∩ An−k+1) ≤ UB1 (14)

After manipulating the equation (14), we will have the lower and upper bounds for the
interesction of the events as follows:

1− UB1 ≤ P (A1 ∩ · · · ∩ An−k+1) ≤ 1− LB1 (15)

4.5 Bi-section method

After calculating a lower and an upper bound for the intersection of the events with
above equations, the interval of the probability for the reliability constraint will be used to
obtain the optimal reservoir capacity, m. The m value will be bi-sected until the pvalue is
observed in one-decimal accuracy in the probability bounding range.

To do so, bi-section algorithm will be used. The bi-section method in mathematics, is a
root-finding method which repeatedly bisects an interval then selects a subinterval in which
a root must lie for further processing. In our case the root that we would like to find is the
pvalue. (see Wood, 1989)

4.6 Summary of the steps for the solution of model 2

Here we summarize the solution steps.

Step 0
ξ and η are randomly generated in Matlab. They are taken from normal distribution. m
is fixed to some reasonable fixed number at first subject to adjust during the bi-section
algorithm.

Step 1
Ai,Aij, Aijk are calculated in order to calculate the S1, S2, S3.

Step 2
S1, S2, S3 are calculated.
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Step 3
Lower and upper bounds are calculated with the equation 8 and equation 9 for the event:

P (A1 ∪ · · · ∪ An)

Step 4
Transformation of the intersection of the events from union of the events is done as follows:

LB1 ≤ P (A1 ∪ · · · ∪ An−k+1) ≤ UB1

LB1 ≤ 1− P (A1 ∩ · · · ∩ An−k+1) ≤ UB1

1− UB1 ≤ P (A1 ∩ · · · ∩ An−k+1) ≤ 1− LB1.

Step 5
Bi-section algorithm is applied.Three possibilities can occur during the bi-section algorithm:
• If p is larger than Upper Bound, then pick larger m

• If p is smaller than Lower Bound, then pick smaller m

• If p is in between Lower and Upper Bound, try picking smaller/larger m

– If large m works keep bi-section into the same direction

– If large m doesnt work, do bi-section in other direction.

Step 6
If p is in between one decimal digit of lower and upper bound STOP, else go to step 0 and
change m.

5 Illustrative Example

In this example, a total period of 8 weeks (56 days) is considered. In the first formulation of
the problem, any 7 days of dryness is permitted with a probability level of 90%. For the sake
of computational easiness, rain amount is considered with the inflow . Distribution of the
inflow is normal and demand is considered to be gamma distribution in the first formulation.
In the second formulation of the problem, we used normal distribution for each day’s inflow
and demand distribution. Dryness in 7 consecutive days is forbidden with a probability level
of 90%.
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Model (1)

min m

subject to

P{min ((ξi,M) ≥ xiηi) , i = 1, . . . , 56 x1 + · · ·+ x56 ≥ 7} ≥ 0.90

xi ∈ {0, 1} i = 1, . . . , 56 (16)

0 ≤ m ≤M

Solution of the model (1) is basically solving the below equation:

P

(
56∑
i=1

λ [min(ξi,m)] ≥ (49)λγ1

)
= 0.9 (17)

where ξi is normally distributed random variable with parameters (200, 30) and γ1 is a
gamma distribution with parameters λ = 20, ϑ = 10. The equation (17) is solved by coding
a simulator in JAVA and running the equation 1,000 times to get an accurate most ob-
served minimum value for the capacity value m. The most frequently observed m value is
162 therefore we can say that with the above distributed inflow and demand variables, the
upper bound of the minimum capacity for the reservoir can be approximated as 162, while
maintaining at most 7 days of dry periods with a probabilty level of 90% (a precision of 0.01).

Model (2)

min m

subject to

P{min ((ξi,M) ≥ xiηi) , i = 1, . . . , 56 xi + · · ·+ xi+6 ≥ 1 i = 1, . . . , 50} ≥ 0.90

xi ∈ {0, 1} i = 1, . . . , 56 (18)

0 ≤ m ≤M

where the reliability constraint of the problem is equivilant to:

P{min(ξk ≥ ηk,M ≥ ηk), i = 1, . . . , 56 xi + · · ·+ xi+6 ≥ 1 i = 1, . . . , 50} ≥ 0.90

Distribution of the mean and standard deviation for inflow and demand can be found
in the Table 2, Appendix A. In order to start to bi-section algorithm, we picked the initial
capacity value m as 180. And then we applied bi-section algorithm based on the intervals of
lower and upper bounds of the probability value. When we applied the steps in the section
4, we find the results given in Table 1.

We obtained an interval that contains our desired pvalue when the capacity value, m,
equals 151,4. The results clearly indicate that, with given inflow and demand distributions,
the land will not be dry for 7 consecutive days with the probability level of 0.90 when the
capacity of the reservoir is 151,4.
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Table 1: Bi-section Algorithm Results
StepsCapacity,

M
S1, S2, S3

Lower
Bound

Hunter
Upper
Bound

Cherry
Tree
Bound

pvalueComment

1 180 0.973505 14.45638 12.345356 0.9 p<LB,
pick
smaller
M

2 158.8 0.879283 3.664441 3.5678921 0.9 LB<p<UB,
try de-
creasing
M

3 153.4 0.890781 1.708109 1.684544 0.9 LB<p<UB,
try de-
creasing
M

4 152.1 0.893874 1.195414 1.194523 0.9 LB<p<UB,
try de-
creasing
M

5 151.3 0.895434 0.937376 0.937283 0.9 LB<p<UB,
try in-
creasing
M

6 151.7 0.894653 1.06553 1.064428 0.9 LB<p<UB,
try de-
creasing
M

7 151.5 0.895043 1.00159 1.000967 0.9 LB<p<UB,
try de-
creasing
M

8 151.4 0.895541 0.919803 0.91789 0.9 STOP!

6 Conclusion

This paper was motivated by research work in stochastic programming aimed at solving
problems in which probabilities are associated with a large number of events. The several
bounding techniques are taken into account and the most efficient and suitable ones for the
water reservoir problem is used to define new solutions for k-out-of-n and consecutive k-out-
of-n reliabilities in the form of probabilistic constraints. An upper bound for k-out-of-n is
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developed by the use of well known property of standard gamma distribution. Lower and
upper bounds are used to develop an algorithm for consecutive k-out-of-n type reliability
constraints. S1, S2, S3 sharp lower, Hunter and Cherry tree upper bounds are discussed and
bi-section algorithm is used to optimize the capacity value of the reservoir.

Numerical examples are presented for both models. Solution for the k-out-of-n type
reliability is simulated in Java and we obtained an approximate result for the case of normal
and gamma distribution of inflow and demand respectively. For the solution of consecutive k-
out-of-n type, S1, S2, S3 sharp lower, Hunter’s upper and Cherry tree bounds are calculated
then the minimum reservoir capacity is obtained by bi-section algorithm. Our solution
technique is novel in the sense that real-life restrictions for water engineering is taken into
account. Our approach can also be used not only for water reservoir systems but also in any
type of reliability theory applications such as finance, power, communication, traffic system
reliability problems.
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[9] Prékopa A. (1970) On Probabilistic Constrained Programming, Mathematical Program-
ming Study, 28, 113-138
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Table 2: Inflow ξ and Demand η Distributions
Inflow (ξ) Distribution Demand (η) Distribution

Mean Standard Deviation Mean Standard Deviation

198 17 149 38
186 50 165 49
117 13 204 35
186 2 181 32
162 14 199 42
206 72 178 56
206 17 177 32
163 91 173 59
209 13 227 58
165 108 202 53
186 45 194 48
211 52 189 41
147 63 181 51
201 62 204 39
192 93 204 28
182 12 182 45
225 79 183 41
224 75 179 41
258 31 180 36
198 5 144 32
235 62 157 32
213 54 186 33
218 40 204 47
179 8 225 44
223 98 142 50
226 44 174 41
160 56 175 45
192 40 250 33
219 49 189 28
139 11 187 58
197 44 170 43
175 25 188 47
170 80 190 47
208 60 187 49
195 5 174 35
223 29 209 38
183 10 201 25
203 7 157 43
199 78 191 35
218 34 187 38
206 41 188 30
189 2 181 21
232 17 208 42
238 52 172 62
234 48 178 53
187 102 180 42
166 1 170 32
197 45 198 30
191 52 205 15
142 40 159 45
192 34 165 36
234 62 172 23
185 28 174 36
175 16 214 45
177 101 200 29
177 52 179 26


