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Abstract. This paper considers a bilevel programming approach to applying co-
herent risk measures to extended two-stage stochastic programming problems. This
formulation technique avoids the time-inconsistency issues plaguing naive models
and the incomposability issues which cause time-consistent formulations to have
complicated, hard-to-explain objective functions. Unfortunately, the analysis here
shows that such bilevel formulations, when using the standard mean-semideviation
and average-value-at-risk measures, are NP-hard. While not necessarily indicating
that solution of such models is impractical, these results suggest that it may prove
difficult and will likely require some kind of implicit enumeration method.
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1 Introduction

This paper concerns the computational complexity of risk-averse stochastic optimization
in which decisions and the information available evolve together over time. The simplest
situation in which the theory may be evolved is an extended two-stage stochastic decision
problem, which may be described as follows: first, we have a finite probability space Ω with
elements ω, partitioned into a collection of sets S whose elements we call scenarios. We use
P{ω} to denote the probability of sample path ω, and let P{S} =

∑
ω∈S P{ω} denote the

probability of scenario S. For simplicity, we will assume that the problem is linear:

• At the first stage, the decision maker sets the values of the decision variables x1 ∈ Rn1 ,
with costs c>1 x1 and subject to constraints A11x1 ≤ b1.

• Next, it is revealed which scenario S ∈ S has occurred.

• Then, the decision maker sets the recourse decision variables x2(S) ∈ Rn2(S), with costs
c2(S)>x2(S) and subject to constraints A21(S)x1 + A22(S)x2(S) ≤ b2(S).

• It is next revealed which sample path ω ∈ S has occurred.

• Finally, the decision maker may set the values of the further recourse decision variables
x3(ω) ∈ Rn3(ω), with costs c3(ω)>x3(ω) and subject to constraints

A31(ω)x1 + A32(ω)x2(S) + A33(ω)x3(ω) ≤ b3(ω).

We let x2(S) denote the concatenation of all the vectors x2(S), S ∈ S, and x3(Ω) denote the
concatenation of all the vectors x3(ω), ω ∈ Ω; for any particular S ∈ S, we also let x3(S)
denote the concatenation of all the vectors x2(ω), ω ∈ S.

In the classical case in which the decision maker seeks to minimize the expected value
of the costs incurred, the above situation translates into a standard extensive-form linear
program over the variables x1, x2(S), and x3(Ω). Here, we are instead concerned with a
risk-averse decision maker wishing to employ a coherent measure of risk [2, 6, 16] in their
objective function. We may think of such a risk measure ρ as a function mapping a random
variable to a scalar “certainty equivalent”. Such a mapping ρ is called a coherent risk measure
if it has the following properties:

Monotonicity. If X1 ≤ X2 (that is, the value of X1 does not exceed the value
of X2 in any possible outcome), then ρ(X1) ≤ ρ(X2).

Convexity. If α ∈ [0, 1], then ρ
(
αX1 + (1− α)X2

)
≤ αρ(X1) + (1− α)ρ(X2).

Positive homogeneity. If α ≥ 0, then ρ(αX) = αρ(X).

Translation invariance. For any t ∈ R, we have ρ(X + t) = ρ(X) + t.
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The classical expected-value mapping E[ · ] satisfies these axioms, but so do many other
functions. Two popular choices are the mean-semideviation

MSDγ : X 7→ E[X] + γE
[
[X − E[X]]+

]
for γ ∈ [0, 1], (1)

and average value at risk [1, 7, 14, 15, 22], also called conditional value at risk,

AVaRα : X 7→ 1

α

∫ 1

1−α
F−1
X (ν) dν, (2)

where FX denotes the cumulative distribution function of X and F−1
X denotes its “lower”

inverse
F−1
X (ν) = inf {x | F (x) ≥ ν } = inf {x | P{X ≤ x} ≥ ν } . (3)

When X has a continuous distribution, an alternative expression is

AVaRα(X) = E
[
X
∣∣ X ≥ F−1

X (1− α)
]
,

that is, the expected value of X given that it lies above its 1 − α quantile; (2) correctly
generalizes this expression to the discrete and general cases.

In discussing the application of such risk measures to dynamic decision problems, it will
be helpful to introduce the following “lottery” notation: given two random variables X1 and
X2, we define

X1 ∧p X2 = BX1 + (1−B)X2 =

{
X1, with probability p,
X2, with probability 1− p,

where B is a Bernoulli random variable with mean p, independent of X1 and X2. Similarly,
for some discrete index set I = {i1, i2, i3, . . .} with a corresponding probability distribution
p(·) and indexed collection of random variables Xi, i ∈ I, we define

p(i)∧
i∈I

Xi =
∧p(i)
i∈I Xi =


Xi1 , with probability p(i1),
Xi2 , with probability p(i2),
Xi3 , with probability p(i3),

...
... ,

independently of the values of theXi. Here, the “∧” symbol is meant to suggest the branching
of a tree of outcomes.

In this notation, the total cost incurred in the decision problem described above is the
random variable

Z
(
x1, x2(S), x3(Ω)

)
= c>1 x1 +

P{S}∧
S∈S

c2(S)>x2(S) +

P{ω}
P{S}∧
ω∈S

c3(ω)>x3(ω)

 .
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In this formula, the quotient P{ω}
P{S} arises because it is the conditional probability P{ω | S} of

sample path ω occurring, given that scenario S 3 ω has occurred.
At first glance, it might appear that the most natural way to apply a general coherent risk

measure ρ to the extended two-stage decision problem described above would be to simply
use the objective function ρ

(
Z
(
x1, x2(S), x3(Ω)

))
, resulting in the formulation

min c>1 x1 + ρ
(∧P{S}

S∈S
(
c2(S)>x2(S) +

∧P{ω}
P{S}
ω∈S c3(ω)>x3(ω)

))
ST A11x1 ≤ b1

A21(S)x1 + A22(S)x2(S) ≤ b2(S) ∀S ∈ S
A31(ω)x1 + A32(ω)x2(S) + A33(ω)x3(ω) ≤ b3(ω) ∀S ∈ S, ∀ω ∈ S,

(4)

where the deterministic term c>1 x1 may be brought outside the risk measure due to its
translation invariance property. Unfortunately, except for very limited, extreme choices of
ρ, this model has the undesirable property of time inconsistency [17, 21]: specifically, if(
x∗1, x

∗
2(S), x∗3(Ω)

)
is an optimal solution to (4), then its subvector

(
x∗2(S), x∗3(S)

)
may not

form an optimal solution to the scenario-S subproblem

min ρ
(
c2(S)>x2(S) +

∧P{ω}
P{S}
ω∈S c3(ω)>x3(ω)

)
ST A21(S)x∗1 + A22(S)x2(S) ≤ b2(S)

A31(ω)x∗1 + A32(ω)x2(S) + A33(ω)x3(ω) ≤ b3(ω) ∀ω ∈ S.

Thus, if scenario S occurs and the decision maker still views the risk measure ρ as reflective
of their risk-return trade-off preferences, they could in fact choose x2(S) and x3(S) differently
from the values that helped determine the supposedly optimal first-stage decision vector x∗1.
This property makes a general model like (4) difficult to justify.

In the existing literature, the standard approach to avoiding this kind of difficulty is to
use a time-consistent dynamic measure of risk [5, 13, 18, 20]. In our current setting and
notation, this approach is equivalent to changing the objective function of (4) to

c>1 x1 + ρ1

P{S}∧
S∈S

c2(S)>x2(s) + ρ2


P{ω}
P{S}∧
ω∈S

c3(ω)>x3(ω)



 , (5)

where ρ1 and ρ2 are two (possibly identical) coherent risk measures. This approach yields a
convex problem while avoiding the difficulties of time inconsistency, but it also has drawbacks.
The objective mapping given by (5) no longer expressible as a simple coherent risk mapping
applied to the single random variable Z

(
x1, x2(S), x3(Ω)

)
; instead, it must expressed as a

function of a sequence of several random variables over nested probability spaces. Further-
more, the objective function will no longer have a relatively simple form like (1) or (2),
because such risk measures are not composable, that is, a nested application of MSD risk
measures in a form like (5) does not simplify to an MSD risk measure, and similarly for
AVaR risk measures.
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In fact, in a finite probability space, it was recently shown in [21] that the only coherent
risk measures that are composable in this manner are the expected value mapping E[ · ] and
the “worst outcome” risk measure

maxX = max {x ∈ R | P{X = x} > 0}

(in an infinite probability space, we would substitute essential supremum operation “ess sup”
for the simple “max” operation). There is a more general class of “entropic” risk measures
that is composable [11], but it is still quite restrictive, and in general violates the positive
homogeneity axiom of standard coherent risk measures. Expected value and worst out-
come are extreme risk measures, with expectation being completely risk-neutral, and the
worst-outcome measure being maximally risk-averse. For these very simple risk measures,
furthermore, the objective mapping (5) and the objective of (4) simplify to the same function,
and therefore model (4) becomes time-consistent.

Thus, when one uses (5) with, for example, ρ1 = ρ2 = MSDγ or ρ1 = ρ2 = AVaRα,
the resulting objective function does not have a simple expression or interpretation. This
phenomenon is a serious obstacle to the adoption of multistage decision models involving
coherent risk measures, since decision makers may resist using a model whose objective
function does not have a simply articulated interpretation as do (1) and (2).

This paper concerns an alternative approach in which the decision maker adopts a par-
ticular coherent risk measure ρ as reflective of their risk profile, and we assume that after
scenario S is revealed, they will make all further decisions to optimize ρ applied to all re-
maining costs. At the first stage, we seek to optimize ρ as applied to all costs, under the
assumption that we will act optimally in the second stage, with the information that will be
available then. Applied to our extended two-stage problem setting, this approach produces
a model of the following form:

min c>1 x1 + ρ
(∧P{S}

S∈S
(
c2(S)>x2(s) +

∧P{ω}
P{S}
ω∈S c3(ω)>x3(ω)

))
ST A11x1 ≤ b1(

x2(S), x3(S)
)
∈ FS(x1) ∀S ∈ S,

(6)

where, for all S ∈ S,

FS(x1) = Arg min c2(S)>x2(s) + ρ
(∧P{ω}

P{S}
ω∈S c3(ω)>x3(ω)

)
ST A21(S)x1 + A22(S)x2(S) ≤ b2(S)

A31(ω)x1 + A32(ω)x2(S) + A33(ω)x3(ω) ≤ b3(ω) ∀ω ∈ S.
(7)

This kind of model allows the primary objective funtion to be a simple coherent risk measure
of the decision maker’s choice, applied to a single random variable reflecting the costs from
all stages, without introducing time inconsistency. The price, however, is that it is a bilevel
optimization problem, with some constraints of the “leader” problem (6) being defined in
terms of the optimal solution set of the parametric “follower” problem (7). In essence, the
decision maker is playing a kind Stackelberg game “against himself”, or more accurately a
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collection of possible future versions of himself after having obtained more information. We
call problems of the form (6)-(7) bilevel risk programs (BLRP’s).

Even the simplest form of bilevel programming, bilevel linear programming, has long been
known to be NP-hard [3, 4, 9, 10]. However, even for risk measures ρ that can be expressed
in a linear programming form, such as MSDγ and AVaRα, it is not immediately clear whether
the bilevel linear programming problems corresponding to (6)-(7) are completely general; in
particular, the objective functions of the leader and follower are very strongly correlated.

This paper shows that for ρ = MSDγ, γ ∈ (0, 1), and ρ = AVaRα, α ∈ (0, 1), solving
problems of the form (6)-(7) is NP-hard. While they should not be taken as proving that
attempts to solve any particular problem instance of the form (6)-(7) would be fruitless, these
results do suggest that one should not attempt to find solution methods with polynomial
worst-case running time, and that successful solution or approximate solution methods for
these kinds of models will likely involve some form of implicit enumeration, as do most
practical approaches to solving instances of other kinds of NP-hard problems.

Formally, we define a parameterized class of problems as follows:

Problem Class BLRP(ρ) : Bilevel Risk Programming
Parameter: A coherent risk measure ρ.

Input: All expressed over the rational numbers Q:
• A finite probability space Ω, along with a partition S and probabil-

ities P{ω} for all ω ∈ Ω

• Vectors c1 and b1, and a matrix A11

• For each S ∈ S, vectors c2(S) and b2(S), and matrices A21(S),
A22(S)

• For each ω ∈ Ω, vectors c3(ω) and b3(ω), and matrices A31(ω),
A32(ω), A33(ω).

Output: Any optimal solution (x1, x2(S), x3(Ω)
)

to the problem (6)-(7).

When the coherent risk measure parameter ρ itself has a parameter, as in the case of MSDγ

and AVaRα, we use a set-valued parameter to denote the version of BLRP in which this
risk measure parameter, restricted to the rationals, is encoded as part of the problem input.
Thus, BLRP(MSD(0,1]) denotes the class of all BLRP(MSDγ) problems, with γ ∈ (0, 1] ∩Q
appended to the problem input, and BLRP(AVaR(0,1)) denotes the class of all BLRP(AVaRα)
problems, with α ∈ (0, 1) ∩Q appended to the problem input.

The remainder of this paper is organized as follows:

• Section 2 revisits the complexity theory of bilevel linear programming, giving some
specialized results used in the remaining analysis

• Drawing on the results of Section 2, Section 3 then shows that the problem classes
BLRP(MSDγ), for γ ∈ (0, 1] ∩Q, and BLRP(MSD(0,1]) are NP-hard
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• Using similar techniques, Section 4 shows that the problem classes BLRP(AVaRα), for
α ∈ (0, 1) ∩Q, and BLRP(AVaR(0,1)) are NP-hard.

• Section 5 makes some brief concluding remarks.

2 Bilevel Linear Programming Complexity Revisited

The classical bilevel linear programming problem may be expressed as

min f>
1 y1 + f>

2 y2

ST y2 ∈ Arg min f̃>
2 y2

ST B1y1 +B2y2 ≤ r.
(8)

This problem long been known to be NP-hard [3, 4, 9, 10], with the known proofs relying
on reducing various combinatorial problems to (8) with f̃2 = −f2, a special case that may
be called oppositional programming. We begin by focusing on this special case, with the
additional restriction that the y1 must lie in a bounded set.

Problem Class BOLP : Bounded Oppositional Linear Programming
Input: Vectors f1 ∈ Qn1 , f2 ∈ Qn2 , and r ∈ Qm, matrices B1 ∈ Qm×n1 and

B2 ∈ Qm×n2 , and ζ ∈ Q+.

Output: Any optimal solution (y1, y2) of the problem

min f>
1 y1 + f>

2 y2

ST y2 ∈ Arg min −f>
2 y2

ST B1y1 +B2y2 ≤ r
‖y2‖∞ ≤ ζ.

In principle, the NP-hardness of BOLP may be ascertained by remarking that the existing
proofs of the NP-hardness of bilevel linear programming use the special case f̃2 = −f2, with
all decision variables bounded. For completeness, we give a new proof that is similar in basic
spirit to [9], but is simpler and involves reduction from a less complicated decision problem
(although at the cost of not demonstrating strong NP-hardness as in [9]).

Proposition 1 BOLP is NP-hard.

Proof. We prove the result by reduction from the number partition problem (NPP), one of
the classical NP-complete decision problems [8]:

Problem Class NPP : Number Partition
Input: a1, . . . , an ∈ Z.

Output: “Yes” if there exists J ⊆ {1, . . . , n} such that
∑

i∈J ai = 1
2

∑n
i=1 ai, and

otherwise “no”.
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Given an instance a1, . . . , an ∈ Z of NPP, consider the following bilevel program with leader
variables u0, u1, . . . , un and follower variables w = (w1, . . . , wn):

min u0 +
∑n

i=1wi
ST u0 ≥

∑n
i=1 aiui −

1
2

∑n
i=1 ai

u0 ≥ 1
2

∑n
i=1 ai −

∑n
i=1 aiui

0 ≤ u1, . . . , un ≤ 1
w ∈ Arg min −

∑n
i=1wi

ST wi ≤ ui i = 1, . . . , n
wi ≤ 1− ui i = 1, . . . , n.

(9)

We claim that (9) has an optimal value of zero if and only if the answer to the partition
instance is “yes”. To prove this claim, we note that the optimality of w for the follower
program is equivalent to wi = min{ui, 1 − ui}, i = 1, . . . , n, and the optimal value of u0

is
∣∣∑n

i=1 aiui −
1
2

∑n
i=1 ai

∣∣, so (9) is equivalent to the (nonconvex) single-level optimization
problem

min
∣∣∑n

i=1 aiui −
1
2

∑n
i=1 ai

∣∣+
∑n

i=1 min{ui, 1− ui}
ST 0 ≤ u1, . . . , un ≤ 1.

(10)

Both terms in the objective function of this problem are nonnegative, the first being zero
whenever

∑n
i=1 aiui = 1

2

∑n
i=1 ai and the second being zero whenever u = (u1, . . . , un) is

a binary vector. Thus, if answer to the partition problem is “yes”, then there must exist
u ∈ {0, 1}n making the objective of (10) zero, which must be optimal. On the other hand, if
the answer to the partition problem is “no”, then all choices of u ∈ [0, 1]n make the objective
of (10) positive, either because

∑n
i=1 aiui 6=

1
2

∑n
i=1 ai or because at least one of u1, . . . , un

is fractional. Since (10) involves the optimization of a continuous function over a compact
set, it must acheive its minimum, and hence the minimum value must be positive. This
establishes the claim; it then remains only to observe that problem (9) can be put into the
BOLP form by appropriate choices of f1, f2, B1, B2, and r, with ζ = 1, and that number of
bits needed to encode such an instance of BOLP is polynomially bounded in the number of
bits needed to encode a1, . . . , an. �

Direct reduction of BOLP or classic bilevel linear programming to problem classes of
the form BRLP(ρ) appears to be an intricate task. Thus, we first consider another class
of restricted bilevel linear problems and show that it is also NP-hard by reduction from
BOLP. In this class of problems, we break the follower variables into two blocks, with the
only difference between the leader and follower objectives being that the coefficients for one
of the two blocks are scaled by a rational parameter β 6= 1.
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Problem Class BBSBLP(β) :
Bounded Block-Scaled Bilevel Linear Programming

Parameter: β ∈ Q\{1}.

Input: Vectors g1 ∈ Qn1 , g2 ∈ Qn2 , g3 ∈ Qn3 , and t ∈ Qm, matrices C1 ∈ Qm×n1 ,
C2 ∈ Qm×n2 , and C3 ∈ Qm×n3 and η2, η3 ∈ Q+.

Output: Any optimal solution (y1, y2, y3) of the problem

min g>
1 x1 + g>

2 x2 + g>
3 x3

ST (x2, x3) ∈ Arg min g>
2 x2 + βg>

3 x3

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3.

We now show that although the leader and follower objectives BBSBLP(β) may appear
very similar — if β > 0, in particular, then the all corresponding leader and follower objective
coefficients have the same sign — the possibly small difference between the two objectives is
enough to make the problem class NP-hard. The technique used is inspired by the analysis
of [12] showing that solutions of bilevel programs need not be Pareto optimal for the leader
and follower objectives as long as they are not colinear.

Proposition 2 For any rational β 6= 1, the problem class BBSBLP(β) is NP-hard.

Proof. We proceed by reduction from BOLP. Consider any instance (f1, f2, r, B1, B2, ζ) of
BOLP. We create a corresponding instance of BBSBLP(β) as follows: first, we set

g1 = f1 g2 =
(
1− 2

1−β

)
f2 g3 = f2. (11)

We then set C1, C2, C3, and t to be equivalent to the constraints

B1x1 +B2x2 ≤ r x3 =
(

2
1−β

)
x2.

Specifically, we may accomplish this by setting

C1 =

 B1

0
0

 C2 =

 B2

−
(

2
1−β

)
I(

2
1−β

)
I

 C3 =

 0
I
−I

 t =

 r
0
0

 . (12)

Finally, we set η2 = ζ and η3 =
∣∣ 2

1−β

∣∣ζ. Using (11) and that x3 =
(

2
1−β

)
x2 in any feasible

solution, the follower problem objective may be rewritten as(
1− 2

1−β

)
f>

2 x2 + βf>
2

(
2

1−β

)
x2 =

(−β−1
1−β + 2β

1−β

)
f>

2 x2 =
(
β−1
1−β )f>

2 x2 = −f>
2 x2.
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The constraint ‖x3‖∞ ≤ η3 is equivalent to
∥∥( 2

1−β

)
x2

∥∥
∞ ≤

∣∣ 2
1−β

∣∣ζ, which is exactly the same

as the constraint ‖x2‖∞ ≤ η2 = ζ, so the follower problem may be written

min −f>
2 x2

ST B1x1 +B2x2 ≤ r
‖x2‖∞ ≤ ζ.

(13)

Next consider the leader objective, which we may rewrite using (11) and x3 =
(

2
1−β

)
x2 as

f>
1 x1 +

(
1− 2

1−β

)
f>

2 x2 + f>
2

(
2

1−β

)
x2 = f>

1 x1 +
(−β−1

1−β + 2
1−β

)
f>

2 x2 = f>
1 x1 + f>

2 x2.

Combining this observation with the form of the follower problem in (13), it follows that
the constructed BBSBLP(β) instance is completely equivalent to the BOLP instance. It
remains only to observe that the number of bits needed to encode the BBSBLP(β) instance
is clearly bounded by a polynomial function of the number of bits needed to encode the
BOLP instance. �

3 Complexity of Bilevel MSD Risk Models

We now consider the complexity of the problem class BLRP(MSDγ), for γ ∈ (0, 1) ∩ Q.
Introducing some additional “helper” variables E1 and E2(S), S ∈ S, problem (6)-(7) may
in the case of ρ = MSDγ be expressed as

min c>1 x1 + E1 + γ
∑

S∈S
∑

ω∈S P{ω} [c2(S)>x2(S) + c3(ω)>x3(ω)− E1]+
ST A11x1 ≤ b1

E1 =
∑

S∈S P{S} c2(S)>x2(S) +
∑

ω∈Ω P{ω} c3(ω)>x3(ω)(
x2(S), x3(S)

)
∈ FS(x1) ∀S ∈ S,

(14)

where, for each S ∈ S, FS(x1) denotes the set of
(
x2(S), x3(S)

)
portions of all optimal

solutions
(
x2(S), x3(S), E2(S)

)
to the scenario-S follower problem

min c2(S)>x2(S) + E2(S) + γ P{ω}
P{S} [c3(ω)>x3(ω)− E2(S)]+

ST A21(S)x1 + A22(S)x2 ≤ b2(S)
A31(ω)x1 + A32(ω)x2(S) + A33(ω)x3(ω) ≤ b3(ω) ∀ω ∈ S
E2(S) =

∑
ω∈S
(P{ω}

P{S}

)
c3(ω)>x3(ω).

(15)

We now show how to construct a subclass of BLRP(MSDγ) problems that is very similar
to BBSBLP(β) for an appropriate choice of β. Consider a three-element probability space
Ω = {ω1, ω2, ω3}, partitioned into two scenarios S1 = {ω1, ω2} and S2 = {ω3}. For two
parameters p1, p2 ∈ (0, 1) ∩ Q, we set up a stochastic decision problem as follows, and as
illustrated in Figure 1:
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Ω

minh>
1 x2

S1

minh>
2 x2

‖x2‖∞ ≤ η2

ω1

minh>
3 x3

C1x1 + C2x2 + C3x3 ≤ t
‖x3‖∞ ≤ η3

ω2

K2

S2

ω3

K1

p1

p2 1− p2

1− p1

Figure 1: Scenario tree for reduction of BBSBLP(β) instances to BLRP(MSDγ) instances.

• The stage-one variables are x1 ∈ Rn1 , with corresponding cost coefficients h1 ∈ Qn1 .

• Scenario S1 has probability p1, and hence scenario S2 has probability 1− p1.

• In scenario S1, the recourse decision variables are x2 ∈ Rn2 ; here, we omit the “(S1)”
from the original notation x2(S1) for brevity, because the only other recourse variables
x2(S2) will be essentially fixed. The cost coefficient vector is h2 ∈ Qn2 , and the
constraints are ‖x2‖∞ ≤ η2. Given that S1 occurs, the conditional probability of
sample path ω1 is p2, and hence the conditional probablity of sample path ω2 is 1− p2.

– In sample path ω1, the final recourse decision variables are x3 ∈ Rn3 ; we omit
the “(ω1)” following x3 for brevity, because x3(ω2) and x3(ω3) will be essentially
fixed. The cost coefficient vector is h3 ∈ Qn3 , and the constraints are

C1x1 + C2x2 + C3x3 ≤ t ‖x3‖∞ ≤ η3.

– In sample path ω2, the final stage incurs a fixed cost of K2 = η3‖h3‖1.

• Scenario S2, from which the only possible final-stage consequence is ω3, incurs a fixed
cost of

K1 = η2‖h2‖1 +
(

1 + 2p1p2
1−p1

)
K2. (16)
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Clearly, it is possible configure the input data of a BLRP(MSDγ) instance so that the above
arrangement is acheived, and the space required is polynomial in the space required to encode
(h1, h2, h3, C1, C2, C3, η2, η3). For example, to make sample path ω2 incur a fixed cost of K2,
we may set n3(ω2) = 1, c3(ω2) = [K2], and

A31(ω2) =

[
0>

0>

]
A32(ω2) =

[
0>

0>

]
A33(ω2) =

[
1
−1

]
b3(ω2) =

[
1
−1

]
,

effectively yielding the constraint x3(ω2) = 1, with cost K2x3(ω2) = K2.
The intent of this construction is that K2 is sufficiently large that the conditional expected

value E2(S1) of the stage-three costs given that scenario S1 occurs must always be worse than
the outcome along sample path ω1 for all feasible values of the decision variables. Similarly,
although the analysis is more complicated, K1 is taken sufficiently large that the expected
value E1 at the root of the scenario tree must always be worse than the objective in either
of the sample paths ω1 and ω2 for all feasible settings of the decision variables. We will now
show that these properties mean that the resulting BLRP(MSDγ) problem is equivalent to
a problem very similar to BBSBLP(β) for an appropriate choice of β.

First, for any rational γ ∈ (0, 1], specializing the formulation (14)-(15) of BLRP(MSDγ)
to the setting just described yields the following problem, where we abbreviate E2(S1) to
simply E2, since E2(S2) is a constant:

min h>
1 x1 + E1 + γ

(
p1p2 [h>

2 x2 + h>
3 x3 − E1]+

+ p1(1− p2) [h>
2 x2 +K2 − E1]+ + (1− p1) [K1 − E1]+

)
ST E1 = p1p2(h>

2 x2 + h>
3 x3) + p1(1− p2)(h>

2 x2 +K2) + (1− p1)K1

(x2, x3) ∈ Arg min h>
2 x2 + E2 + γ

(
p2 [h>

3 x3 − E2]+ + (1− p2) [K2 − E2]+
)

ST E2 = p2h
>
3 x3 + (1− p2)K2

C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3.

(17)

Now consider the follower problem of (17). By the choice of K2, we have that for any feasible
value of x3,

h>
3 x3 ≤ ‖h3‖1 ‖x3‖∞ ≤ η3 ‖h3‖1 = K2,

and, since E2 is a convex combination of h>
3 x3 and K2, we therefore always have

h>
3 x3 ≤ E2 ≤ K2.

Hence, the first [ · ]+ term in the follower objective is always zero, and the second [ · ]+ term
may be written as

K2 − E2 = K2 −
(
p2h

>
3 x3 + (1− p2)K2

)
= p2

(
K2 − h>

3 x3

)
.

Substituting for E2 and the [ · ]+ terms, we obtain the equivalent follower objective function

h>
2 x2 + p2h

>
3 x3 + (1− p2)K2 + γp2 · 0 + γ(1− p2)p2

(
K2 − h>

3 x3

)
= h>

2 x2 +
(
p2 − γ(1− p2)p2

)
h>

3 x3 +
(
(1− p2) + γ(1− p2)p2

)
K2

= h>
2 x2 + p2(1− γ + γp2)h>

3 x3 + (1− p2)(1 + γp2)K2.
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Discarding the constant term (1 − p2)(1 + γp2)K2 from the objective, the follower problem
thus reduces to

min h>
2 x2 + p2(1− γ + γp2)h>

3 x3

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3.

(18)

We now consider the leader problem in (17). We claim that the choice of K1 in (16) is
sufficiently large for all feasible values of (x2, x3) that we have

E1 ≥ h>
2 x2 +K2 ≥ h>

2 x2 + h>
3 x3. (19)

The second inequality in (19) follows immediately from h>
3 x3 ≤ ‖h3‖1‖x3‖∞ ≤ η3‖h3‖1 = K2,

so it remains to prove the first inequality. We note that

E1 = p1

(
h>

2 x2 + p2h
>
3 x3 + (1− p2)K2

)
+ (1− p1)K1

= p1

(
h>

2 x2 + p2h
>
3 x3 + (1− p2)K2

)
+ (1− p1)

(
η2‖h2‖1 +

(
1 + 2p1p2

1−p1

)
K2

)
=
[
p1h

>
2 x2 + (1− p1)η2‖h2‖1

]
+ p1p2h

>
3 x3 + p1(1− p2)K2 + (1− p1 + 2p1p2)K2. (20)

Since h>
2 x2 ≤ ‖h2‖1 ‖x2‖∞ ≤ η2 ‖h2‖1, we have

p1h
>
2 x2 + (1− p1)η2‖h2‖1 ≥ h>

2 x2. (21)

Next, we observe that

h>
3 x3 ≥ −‖h3‖1 ‖x3‖∞ ≥ −‖h3‖1 η3 = −K2. (22)

Substituting (21) and (22) into (20), we have

E1 ≥ h>
2 x2 − p1p2K2 + p1(1− p2)K2 + (1− p1 + 2p1p2)K2

= h>
2 x2 +

(
−p1p2 + p1 − p1p2 + 1− p1 + 2p1p2

)
K2

= h>
2 x2 +K2,

establishing (19). It follows immediately that the first two [ · ]+ terms in the leader objective
of (17) are always zero. Noting that

K1 > η2 ‖h2‖1 +K2 ≥ h>
2 x2 +K2 ≥ h>

2 x2 + h>
3 x3

for any feasible (x2, x3), it follows from E1 being a convex combination of h>
2 x2 + h>

3 x3,
h>

2 x2 + K2, and K1 that K1 ≥ E1. Therefore, [K1 − E1]+ = K1 − E1, and the leader
objective of (17) may be written, where “'” denotes equivalence up to a constant among
functions of (x1, x2, x3), as

h>
1 x1 + E1 + γ(1− p1)(K1 − E1)

' h>
1 x1 + (1− γ + γp1)E1

= h>
1 x1 + (1− γ + γp1)

(
p1h

>
2 x2 + p1p2h

>
3 x3 + p1(1− p2)K2 + (1− p1)K1

)
' h>

1 x1 + (1− γ + γp1)
(
p1h

>
2 x2 + p1p2h

>
3 x3

)
= h>

1 x1 + p1(1− γ + γp1)
(
h>

2 x2 + p2h
>
3 x3

)
.
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Combining this form of the leader objective with (18), we may express the entire problem as

min h>
1 x1 + p1(1− γ + γp1)h>

2 x2 + p1p2(1− γ + γp1)h>
3 x3

ST (x2, x3) ∈ Arg min h>
2 x2 + p2(1− γ + γp2)h>

3 x3

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3.

(23)

This problem form has exactly the same constraint structure as BBSBLP(β). We can now
exploit the differing relative scaling of the h>

2 x2 and h>
3 x3 terms in the two objective functions

of (23) to reduce BBSBLP(β) to BLRP(MSDγ) for an appropriate choice of β, thus proving
that BLRP(MSDγ) is NP-hard.

Proposition 3 For any γ ∈ (0, 1] ∩Q, the problem class BLRP(MSDγ) is NP-hard.

Proof. The proof is by reduction from BBSBLP(1− γ/2); note that since γ > 0, it follows
that 1 − γ/2 6= 1, and thus that BBSBLP(1 − γ/2) is NP-hard by Proposition 2. Also,
since γ ≤ 1, we have 1 − γ/2 > 0. Now consider any instance (g1, g2, g3, C1, C2, C3, t, η2, η3)
of BBSBLP(1− γ/2), fix p1 = p2 = 1/2, and set

h1 = g1

h2 =

(
1

p1(1− γ + γp1)

)
g2 =

(
2

1− γ/2

)
g2

h3 =

(
1

p1p2(1− γ + γp1)

)
g3 =

(
4

1− γ/2

)
g3.

We now use (h1, h2, h3, C1, C2, C3, t, η2, η3) to construct a BLRP(MSDγ) problem instance of
the form (17); the space required to encode (h1, h2, h3) is polynomial in the space required
to encode (g1, g2, g3), so the size of the resulting BLRP(MSDγ) instance is polynomial in the
encoding sized of the BBSBLP(1 − γ/2) instance (g1, g2, g3, C1, C2, C3, t, η2, η3). From the
analysis above, the resulting BLRP(MSDγ) instance is equivalent to (23). Substituting the
above choices of h1, h2, and h3 into the leader objective of (23), along with p1 = p2 = 1/2,
we obtain the leader objective g>

1 x1 + g>
2 x2 + g>

3 x3, exactly as in BBSBLP(1− γ/2). Making
the same substitutions into the follower objective of (23), we obtain

h>
2 x2 + p2(1− γ + γp2)h>

3 x3 =

(
2

1− γ/2

)
g>

2 x2 +

(
(1/2)(1− γ/2) · 4

1− γ/2

)
g>

3 x3

=

(
2

1− γ/2

)
g>

2 x2 + 2g>
3 x3.

Applying the positive scaling factor (1−γ/2)/2 to both terms in its objective does not make
any difference to the solution set of follower problem, so we can equivalently use the follower
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objective g>
2 x2 +(1−γ/2)g>

3 x3. In summary, the BLRP(MSDγ) instance we have constructed
is equivalent to the problem

min g>
1 x1 + g>

2 x2 + g>
3 x3

ST (x2, x3) ∈ Arg min g>
2 x2 + (1− γ/2)g>

3 x3

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3,

precisely the BBSBLP(1 − γ/2) instance encoded by (g1, g2, g3, C1, C2, C3, t, η2, η3). Since
the BLRP(MSDγ) instance encoding size is polynomial in the size of the BBSBLP(1− γ/2)
instance, existence of a polynomial-time solution algorithm for BLRP(MSDγ) would imply
polynomial-time algorithm for the NP-hard problem class BBSBLP(1− γ/2). �

Corollary 4 The problem class BLRP(MSD(0,1]), with γ encoded as part of the problem
input, is also NP-hard.

Proof. Consider any instance of the problem class BLRP(MSD1/2), which is NP-hard by
Proposition 3. Appending γ = 1/2 to the encoding of this instance only increases the
problem size by a constant, so a polyomial-time algorithm for BLRP(MSD(0,1]) would imply
a polynomial-time algorithm for BLRP(MSD1/2). �

4 Complexity of Bilevel AVaR Risk Models

We now consider the complexity of bilevel models using the AVaRα risk measure instead of
the MSDγ risk measure; the overall technique of the analysis is similar to the MSDγ case,
but involves a reduction from BBSBLP(0), regardless of the value of α.

To set up the analysis, we construct a simple scenario tree similar to that of Section 3, but
with different probabilities, all based on the parameter α, and sample path ω3 representing
a highly desirable outcome rather than an highly undesirable one:

• The stage-one variables are x1 ∈ Rn1 , with corresponding cost coefficients h1 ∈ Qn1 .

• Scenario S1 has probability α, and hence scenario S2 has probability 1− α.

• Scenario S1 has the recourse decision variables x2 ∈ Rn2 , with corresponding cost
coefficient vector h2 ∈ Qn2 and subject to the constraint ‖x2‖∞ ≤ η2. Given that S1

occurs, the conditional probability of sample path ω1 is 1−α, and hence the conditional
probablity of sample path ω2 is α.

– In sample path ω1, the final recourse decision variables are x3 ∈ Rn3 , with corre-
sponding cost coefficients h3 ∈ Qn3 and subject to the constraints

C1x1 + C2x2 + C3x3 ≤ t ‖x3‖∞ ≤ η3.
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Ω

minh>
1 x2

S1

minh>
2 x2

‖x2‖∞ ≤ η2

ω1

minh>
3 x3

C1x1 + C2x2 + C3x3 ≤ t
‖x3‖∞ ≤ η3

ω2

K2

S2

ω3

−K1

α

1− α α

1− α

Figure 2: Scenario tree for reduction of BBSBLP(0) instances to BLRP(AVaRα) instances.

– In sample path ω2, the final stage incurs a fixed cost of K2 = η3‖h3‖1 + 1.

• Scenario S2, from which the only possible final-stage consequence is ω3, incurs a fixed
cost of −K1 (that is, a benefit), where K1 = η2‖h2‖1 +K2 = η2‖h2‖1 + η3‖h3‖1 + 1.

This slightly modified scenario structure is shown in Figure 2. As long as α ∈ Q, the space
required to express the resulting BLRP(AVaRα) problem instance is polynomially bounded
in the space required to express (h1, h2, h3, C1, C2, C2, t, η2, η3). This BLRP(AVaRα) instance
has the form

min h>
1 x1 + AVaRα

((
h>

2 x2 + (h>
3 x3 ∧1−α K2)

)
∧α −K1

)
ST (x2, x3) ∈ Arg min h>

2 x2 + AVaRα(h>
3 x3 ∧1−α K2)

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3,

(24)

As before, we write x2 instead of x2(S1), since the value of x2(S) is only material for S = S1,
and similarly we write x3 instead of x3(ω1).

The second term in the follower objective of (24) may be written AVaRα

(
Z3(x3)

)
, where

Z3( · ) denotes the random-variable-valued function given by

Z3(x3) = h>
3 x3 ∧1−α K2 =

{
h>

3 x3, with probability 1− α
K2, with probability α.
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To provide some intuition, the problem instance has been constructed so that all quantiles of
Z3(x3) above the 1−α quantile are simply K2 for any feasible value of x3, and the AVaRα( · )
term in the follower objective of (24) is equivalent to a constant. We now verify this claim
using the formal definition (2) of the AVaRα risk measure. Noting that for any feasible value
of x3, we have

h>
3 x3 ≤ ‖h3‖1‖x3‖∞ ≤ η3‖h3‖1 < η3‖h3‖1 + 1 = K2, (25)

the lower inverse cumulative function F−1
Z3(x3)( · ) as defined through (3) takes the form

F−1
Z3(x3)(ν) =

{
h>

3 x3, if ν ∈ (0, 1− α]
K2, if ν ∈ (1− α, 1],

hence we have

AVaRα

(
Z3(x3)

)
=

1

α

∫ 1

1−α
F−1
Z3(x3)(ν) dν =

1

α

∫ 1

1−α
K2 dν = 1

α
(αK2) = K2,

since the F−1
Z3(x3)(ν) = K2 throughout [1− α, 1] except for the singleton {1− α}, which has

measure zero. Thus, the follower objective of (24) may be replaced, without any change to
the follower problem, by h>

2 x2 +K2, or dropping the constant, equivalently simply h>
2 x2.

Next, consider now the leader objective in (24). The second term in this objective may be
written as AVaRα

(
Z2(x2, x3)

)
, where Z2( · , · ) denotes the random-variable-valued function

given by

Z2(x2, x3) =
(
h>

2 x2+(h>
3 x3∧1−αK2)

)
∧α−K1 =


−K1, with probability 1− α
h>

2 x2 + h>
3 x3, with probability α(1− α)

h>
2 x2 +K2, with probability α2.

We note that

−K1 = −η2 ‖h2‖1 − η3 ‖h3‖1 − 1 < h>
2 x2 + h>

3 x3

for any feasible values of x2 and x3. Further, since we have already established in (25) that
h>

3 x3 < K2 for all feasible values of K3, we have that

−K1 < h>
2 x2 + h>

3 x3 < h>
2 x2 +K2

for all feasible values of x2 and x3. Thus, the lower inverse cumulative function F−1
Z2(x2,x3)( · )

takes the form

F−1
Z2(x2,x3)(ν) =


−K1 if ν ∈ (0, 1− α]
h>

2 x2 + h>
3 x3 if ν ∈ (1− α, 1− α2]

h>
2 x2 +K2 if ν ∈ (1− α2, 1].
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Applying the definition of the AVaRα risk measure, we have

AVaRα

(
Z2(x2, x3)

)
=

1

α

∫ 1

1−α
F−1
Z2(x2,x3)(ν) dν

=
1

α

(∫ 1−α2

1−α
(h>

2 x2 + h>
3 x3) dν +

∫ 1

1−α2

(h>
2 x2 +K2) dν

)
=

1

α

((
1− α2 − (1− α)

)
(h>

2 x2 + h>
3 x3) + α2(h>

2 x2 +K2)
)

= 1
α

(
αh>

2 x2 + (α− α2)h>
3 x3 + α2K2

)
= h>

2 x2 + (1− α)h>
3 x3 + αK2.

Substituting this equation into the leader objective of (24) and discarding the constant αK2,
and also substituting the already established equivalent follower objective h>

2 x2, we arrive at
the problem instance

min h>
1 x1 + h>

2 x2 + (1− α)h>
3 x3

ST (x2, x3) ∈ Arg min h>
2 x2

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3.

(26)

This problem is essentially identical in form to BBSBLP(0), a property that we now exploit.

Proposition 5 For any α ∈ (0, 1) ∩Q, the problem class BLRP(AVaRα) is NP-hard.

Proof. Consider any instance (g1, g2, g3, C1, C2, C3, t, η2, η3) of BBSBLP(0), and set

h1 = g1 h2 = g2 h3 =
(

1
1−α

)
g3.

Now construct a BLRP(AVaRα) instance of the form (24), which by the immediately preced-
ing analysis is equivalent to (26). Substituting the definitions of h1, h2, h3 above into (26),
we obtain the equivalent problem

min g>
1 x1 + g>

2 x2 + g>
3 x3

ST (x2, x3) ∈ Arg min g>
2 x2

ST C1x1 + C2x2 + C3x3 ≤ t
‖x2‖∞ ≤ η2

‖x3‖∞ ≤ η3,

which is precisely the original BBSBLP(0) problem instance. The space needed to encode
the BLRP(AVaRα) instance is polynomially bounded in the space to encode the BBSBLP(0)
instance, so existence of a polynomial-time algorithm for BLRP(AVaRα) would imply the
existence of a polynomial-time algorithm for BBSBLP(0), which is NP-hard. �

Corollary 6 The problem class BLRP(AVaR(0,1)), with the quantile parameter α encoded
as part of the problem input, is also NP-hard.

Proof. Similar to the proof of Corollary 4. �
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5 Brief Concluding Remarks

Finally, we make some straightforward concluding observations. To begin with, we note
that the parameter ranges γ ∈ (0, 1] for the MSDγ risk measure and γ ∈ (0, 1) for the
AVaRα risk measure cover all the cases of serious interest. In particular, when ρ = E[ · ],
problem (6)-(7) simplifies to a linear program, and thus any instance of BLRP

(
E[ · ]

)
reduces

to a linear programming problem of size polynomial in its input data. Since the MSD risk
measure reduces to expectation when γ = 0 — that is, MSD0 = E[ · ] — we thus have
BLRP(MSD0) = BLRP

(
E[ · ]

)
∈ P . Furthermore, MSDγ is not a coherent measure of risk

for γ > 1, so the analysis of γ ∈ (0, 1] covers all the cases of interest for the MSD risk
measure. In the case of AVaRα, the limiting cases α → 0 and α → 1 correspond to the
expection and worst-outcome risk measures E[ · ] and “max” respectively. In both of these
cases, problem (6)-(7) simplifies to a linear program of size polynomial in the input data
of the BLRP( · ) instance and the resulting problem class is thus polynomial-time solvable.
Thus, α ∈ (0, 1) comprises all cases of interest for the AVaRα risk measure.

Again, as noted in Section 1, the results above should not be interpreted as indicating that
any attempt to obtain optimal or provably near-optimal solutions to problem instances of the
form BLRP(ρ) should be abandoned. However, they do suggest that research into solution
methods should not focus on algorithms with polynomial worst-case run-time guarantees
(except perhaps for heuristics), and that some aspect of implicit enumeration is likely to be
needed.

Although these NP-hardness results cover only two specific families of risk measures, it
seems reasonable to conjecture that they will extend to any family of risk measures which
has a polyhedral dual form [2, 6, 19]; this subject is a matter for further research.

Finally, we note that reducibility of the “oppositional” problem form BOLP respectively
through BBSBLP(1−γ/2) or BBSBLP(0) to BLRP(MSDγ) or BLRP(AVaRα) indicates that
it is possible to contrive extended two-stage stochastic programming problems instances in
which the use of the MSDγ or AVaRα risk measure breaks time consistency in a particularly
dramatic way. Specifically, BLRP( · ) instances constructed using such two-step reductions
from BOLP possess a second-stage scenario which, if it is revealed to have occured, effectively
reverses second-stage portion of the objective as compared to the perspective of the first
stage. This phenonenon underscores that when using non-composable measures of risk, the
revelation of partial information can dramatically change a decision maker’s preferenences
among the remaining courses of action.
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