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1 Overview

We will go over some of the classical valid inequalities for the stable set poly-
hedron and then provide the proof of Lovász’s Theta function and show SDP
techniques can be used to optimize over TH(G) in polynomial time.

2 Preliminaries on Stable Sets

Let G = (V, E) be an undirected graph without isolated vertices. A stable set is
a subset of nodes A ⊆ V such that ij /∈ E for any i, j ∈ A. Let α(G) denote the
size of maximum independent set within G. Let χA denote the characteristic
vector of A ⊆ V.

STAB(G) = conv{χA : A ⊆ V a stable set}

Also let P(G) = {x ∈ Rn+ : xi + xj ≤ 1,∀ij ∈ E}. Therefore STAB(G) =
P(G)∩Bn. STAB(G) = P(G) if and only if G is bipartite. For arbitrary graphs
we can easily show P(G) is half-integral (that is, it’s vertices are composed of
{0, 1

2
, 1}).

3 Valid Inequalities for STAB(G)

3.1 Clique inequalities

An clique is a subset of nodes B ⊆ V such that GB (the graph induced by B) is
a complete graph. Let A ⊆ V be a stable set, obviously |B ∩A| ≤ 1 (Otherwise
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there exists an edge within the stable set) or equivalently χB • χA ≤ 1, for any
stable set A in G. Therefore we can conclude with the following set of valid
inequalities for STAB(G):∑

i∈B

xi ≤ 1, for any clique B ⊆ V (1)

Let

QSTAB(G) = P(G) ∩ {x :
∑
i∈B

xi ≤ 1, for any clique B ⊆ V} (2)

Definition 1 A graph G is called perfect if ω(G′) = α(G′) for all induced
subgraphs G′ of G.

Bipartite graphs, line graphs of bipartite graphs and comparability graphs
are perfect graphs. Another important consequence of perfect graphs is that
the complement of a perfect graph is again a perfect graph (conjectured by
Berge at 1961 and proved by Lovász by 1972). The following is an important
characterization of perfect graphs:

Theorem 2 STAB(G) = QSTAB(G) if and only if G is perfect.

3.2 Odd-hole inequalities

We call C ⊆ V an odd-hole if it is a chordless odd cycle in G. Then the following
inequality is obviously valid for STAB(G):∑

i∈C

xi ≤
1

2
(|C|− 1), for any odd hole C ⊆ V (3)

This can be generalized for odd cycles with chords, however they are essen-
tially summation of edge inequalities (xi + xj ≤ 1) and odd-hole inequalities.

Definition 3 We call a graph G, t−perfect if STAB(G) = P(G)∩{x :
∑
i∈C xi ≤

1
2
(|C|− 1), for any odd hole C ⊆ V}.

Definition 4 We call a graph G, h−perfect if STAB(G) = P(G)∩{x :
∑
i∈C xi ≤

1
2
(|C|− 1), for any odd hole C ⊆ V,

∑
i∈B xi ≤ 1, for any clique B ⊆ V}.

3.3 Odd-antihole inequalities

We call D ⊆ V an odd-antihole if it’s complement is a chordless odd cycle in Ḡ.
Then the following inequality is obviously valid for STAB(G):∑

i∈D

xi ≤ 2, for any odd antihole D ⊆ V (4)
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Corollary 5 If STAB(G) = P(G) ∩ {x : x ∈ (1) − (4)}, then we can optimize
over STAB(G) in polynomial time.

This corollary follows from the fact that all these inequalities are rank 1
inequalities of the Lovász-Schrijver hierarchy ([2]).

3.4 Orthogonality inequalities

Definition 6 An orthonormal representation of G is (ui ∈ RN, i ∈ V) such
that ||ui|| = 1 for all i and ui • uj = 0 for ij /∈ E and N ∈ Z+. Obviously every
graph has an orthonormal representation in RV .

Let S ⊆ V be a stable set in G and c ∈ RN such that ||c|| = 1. Then:∑
i∈S

(cTui)
2 ≤ 1

As vectors ui, i ∈ S are mutually orthogonal and by a rotation of the
orthonormal representation we may assume they are unit vectors. Therefore∑
i∈S(c

Tui)
2 ≤ ||c||2 = 1.

Since
∑
i∈V(c

Tui)
2χSi =

∑
i∈S(c

Tui)
2 we may conclude:∑

i∈V

(cTui)
2xi ≤ 1 (5)

is valid for STAB(G).

Remark 7 We note that (5) implies (1). To see this, let Q ⊆ V be a clique
in G and {ui : i ∈ V \Q} ∪ {c} be mutually orthogonal unit vectors. Set uj = c
for j ∈ Q. This is obviously an orthonormal representation of G. Therefore we
have 1 ≥

∑
j∈V(c

Tui)
2xi =

∑
j∈Q(c

Tc)2xi +
∑
j/∈Q(c

Tui)
2xi =

∑
j∈Q xi.

4 Theta function

Let us start with the following polyhedron:

TH(G) = P(G) ∩ {x :
∑
i∈V

(cTui)
2xi ≤ 1, (ui, i ∈ V) an orth. rep. of G, ||c|| = 1}

Remark 7 implies that

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

Obviously TH(G) consists of infinitely many half-spaces, therefore it is con-
vex. But it is not necessarily polyhedral. We will further characterize this
towards the end of our discussion.

For a non-negative weight of vertices w ∈ Rn+ the theta function is defined
as follows:
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θ(G,w) := max{wTx : x ∈ TH(G)}

Let w̄i =
√
wi, i ∈ V and W = w̄w̄T .

F := {A ∈ Rn×n : A is symmetric}

M := {B ∈ F : bij = 0, ij ∈ E}
M⊥ := {A ∈ F : A • B = 0, B ∈M}

D := {A ∈ Rn×n : A is positive semidefinite}

Let ∆(D) denote the largest eigenvalue of matrix D. We will define some
other value functions which will be instrumental of the proof of main result.

θ1(G,w) := min
{c,(ui)}

max
i∈V

wi

(cTui)2

where ||c|| = 1 and (ui, i ∈ V) an orthonormal representation of G.

θ2(G,w) := min{∆(A+W) : A ∈M⊥}

θ3(G,w) := max{w̄TBw̄ : B ∈ D ∩M, tr(B) = 1}

θ4(G,w) := max
{d,(vi)}

∑
i∈V

(dTvi)
2wi

where ||d|| = 1 and (vi, i ∈ V) an orthonormal representation of Ḡ.

Theorem 8 θ(G,w) = θ1(G,w) = θ2(G,w) = θ3(G,w) = θ4(G,w).

Proof: Claim 1. θ(G,w) ≤ θ1(G,w). Let x = argmax{wTx : x ∈ TH(G)},
(ui, i ∈ V) orthonormal representation of G and ||c|| = 1. Then

θ(G,w) = wTx =
∑
i∈V

wixi

=
∑
i∈V

wi
(cTui)

2

(cTui)2
xi

≤ (max
i

wi

(cTui)2
)
∑
i∈V

(cTui)
2xi

≤ (max
i

wi

(cTui)2
)

proves the claim (last inequality follows because x ∈ TH(G)).

Claim 2. θ1(G,w) ≤ θ2(G,w). Choose A ∈M⊥ and set t := ∆(A+W) > 0
(since

∑
i λi(A + W) = tr(A + W) = tr(W) =

∑
i∈V wi > 0). Then tI −
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(A +W) < 0, implies tI − (A +W) = XTX for some matrix X ∈ Rn×n. Let
xi denote the ith column of X. Therefore xTi xi = t − aii − wi = t − wi (as
A ∈ M⊥), and xTi xj = −

√
wiwj for ij /∈ E. Let ||c|| = 1 be orthogonal to

all xi, i ∈ V (X is singular as one eigenvalue of tI − (A +W) is equal to 0)
and consider vectors ui :=

√
wi/tc +

√
1/txi. Then we have uTi ui = 1 and

uTi uj = 0. Therefore (ui, i ∈ V) is an orthonormal representation of G. As

cTui =
√
wi/tc

Tc+
√
1/tcTxi =

√
wi/t we have

θ1(G,w) ≤ max
i∈V

wi

(cTui)2
= max
i∈V

wi√
wi/t

2
= t = ∆(A+W)

proves the claim.

Claim 3. θ2(G,w) ≤ θ3(G,w). Let θ3 := θ3(G,w) and B feasible with
respect to θ3(G,w). Then we have w̄TBw̄ ≤ θ3 tr(B) or equivalently

w̄TBw̄− θ3 tr(B) = (w̄w̄T ) • B− θ3I • B
= (w̄w̄T − θ3I) • B ≤ 0 (6)

As D and M are cones D ∩M is also a cone. Let us define the polar of a cone
as follows, K◦ = {x : x • y ≤ 0, y ∈ K}. Therefore by (6):

W − θ3I ∈ (D ∩M)◦ = D◦ +M◦ = −D+M⊥

LetD ∈ D and −A ∈M⊥ such thatW−θ3I = −D−A orD = θ3I−(A+W) ∈ D.
Therefore θ3I < A+W implying θ3 ≥ ∆(A+W) ≥ θ2(G,w), proves the claim.

Claim 4. θ3(G,w) ≤ θ4(G,w). Let B optimal with respect to θ3(G,w)
(w̄TBw̄ = θ3). As B is positive semidefinite by feasibility we have B = YTY
for some matrix Y ∈ Rn×n. Let yi denote the ith column of Y. Let P := {i ∈
V : yi 6= 0}. Set vi :=

1
||yi||

yi for i ∈ P. For i ∈ V \ P choose an orthonormal

basis of the linear space (lin{vi : i ∈ P})⊥ and use its elements for vi. As

vTi vj =
yT

i yj

||yi||||yj||
=

bij

||yi||||yj||
= 0 if ij ∈ E, (vi, i ∈ V) forms an orthonormal

representation of Ḡ. Let d := Yw̄√
θ3

is a unit length vector. Let us consider

dTvi =
w̄TYTYei√
θ3||yi||

=
w̄Bei√
θ3||yi||

In other words ||yi||d
Tvi =

w̄TBei√
θ3

. Therefore

∑
i∈V

||yi||d
Tvi
√
wi =

1√
θ3

∑
i∈V

w̄TBei
√
wi =

w̄TBw̄√
θ3

=
√
θ3
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All together we have the following implication:

θ3 = (
∑
i∈V

||yi||d
Tvi
√
wi)

2

≤ (
∑
i∈V

||yi||
2)(

∑
i∈V

(dTvi)
2wi)

= tr(B)(
∑
i∈V

(dTvi)
2wi)

=
∑
i∈V

(dTvi)
2wi ≤ θ4(G,w)

first step involves Cauchy-Schwarz inequality and we also use Bii = yTi yi =
||yi||

2.

Claim 5. θ4(G,w) ≤ θ(G,w). Choose (vi, i ∈ V) an orthonormal repre-
sentation of Ḡ and ||d|| = 1 such that θ4(G,w) is achieved. Let (ui, i ∈ V)
be an orthonormal representation of G with ||c|| = 1. Let us consider the ma-
trices uiv

T
i ∈ Rn×n. As uiv

T
i • uivTi = (uTi ui)(v

T
i vi) = 1, uiv

T
i is of unit

length. Similarly the matrix cdT is also of unit length. Moreover, uiv
T
i •ujvTj =

(uTi uj)(v
T
i vj) = 0 as either uTi uj = 0 or vTi vj = 0 (the edge cannot be present

both in G and Ḡ). Therefore (Ui = uiv
T
i , i ∈ V) are mutually orthogonal with

C = cdT s.t. ||C|| = 1. This implies∑
i∈V

(C •Ui)2 ≤ 1

with the same reasoning used in the orthogonal valid inequalities. Therefore

1 ≥
∑
i∈V

(cdT • uivTi )2 =
∑
i∈V

(cTui)
2(dTvi)

2

implies ((dTvi)
2, i ∈ V) ∈ TH(G). θ4(G,w) =

∑
i∈V wi(d

Tvi)
2 ≤ θ(G,w) as a

result of feasibility, completes the proof of theorem.

Corollary 9 A linear function can be optimized over TH(G) in polynomial
time.

This is a direct corollary to the Theorem 8 as θ2(G,w) is a well-known
Semidefinite Program (SDP) which can be solved in polynomial time in the size
of graph G.

Theorem 10 All facets of TH(G) are facets of QSTAB(G).

Proof: Let, F = {x ∈ TH(G) :
∑
i∈V aixi = α} be a facet of TH(G). As

0 ∈ TH(G), we may assume α = 1. Therefore F = {x ∈ TH(G) :
∑
i∈V aixi = 1}.
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As F is a facet, there exists z ∈ int(F). Let (ui, i ∈ V) be an orthonormal rep-
resentation of G and a ||c|| = 1 s.t. ai = (cTui)

2. Therefore
∑
i∈V(c

Tui)
2zi =

1 = θ(Ḡ, z) (By Corollary 9.3.22). We have the following:∑
i∈V

(cTui)
2zi = θ(Ḡ, z)∑

i∈V

(c̄Tui)
2zi ≤ c̄Tθ(Ḡ, z)c̄

c̄T (
∑
i∈V

ziuiu
T
i )c̄ ≤ c̄Tθ(Ḡ, z)c̄

The quantity on the left is maximized by an eigenvector of (
∑
i∈V ziuiu

T
i ),

namely c, and it’s maximum value is it’s corresponding eigenvalue θ(Ḡ, z).
Therefore we have

(
∑
i∈V

ziuiu
T
i )c = θ(Ḡ, z)c∑

i∈V

zi(c
Tui)ui = c∑

i∈V

zi(c
Tui)(ui)j = cj, j = 1, . . . ,N (7)

As F is of n−1 dimensional (Assuming TH(G) is full dimensional), (7) should be
all consequences of

∑
i∈V aixi = 1. Therefore (cTui)ui = (cTui)

2c. If cTui 6= 0
then (ui) = (cTui)c implies ui = ±c (we may assume ui = c). Therefore either
cTui = 0 or ui = c. If we let Q = {i : ui = c}, then the clique inequality is
equivalent with

∑
i∈V aixi = 1.

Corollary 11 TH(G) is polyhedral if and only if G is perfect.
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