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1 Overview

Imagine we have an n1×n2 matrix from which we only get to see a small number
of the entries. Is it possible from the available entries to guess the many entries
that are missing? In general it is an impossible task because the unknown entries
could be anything. However, if one knows that the matrix is low rank and makes
a few reasonable assumptions, then the matrix can indeed be reconstructed and
often from a surprisingly low number of entries. This field of research, matrix
completion, was started with the results in [1] and [2]. There, it was shown,
that under some conditions, recovering a rank−r matrix from randomly selected
matrix elements, can be done efficiently by minimizing the nuclear norm of the
matrix, which can be converted in a semi-definite program.

In this work we review in an intuitive way the main results of two semi-
nal papers and some of the well-known applications of the matrix completion
problem.

2 Some Applications of Matrix Completion

Suppose we are interested in recovering a data matrix M of size n1 × n2 and
only get to know m of its entries, and m is much smaller than the total number
of the entries n1n2. The problem is clearly impossible if we do not impose some
assumptions. It turns out that in many applications we know that the data
represented in the matrix has low dimension, so one natural assumption is to
consider that the matrix we want to find has low rank.

Next we present two popular applications of low rank matrix completion.
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• Collaborative filtering & the Netflix problem

Collaborative filtering problem consists in making predictions about the
interests of a user by collecting preference information from many users.
The Netflix problem is a well-known example of such problem. In this
case the goal is to predict customers ratings of unwatched movies given
the information about their own preferences and others users, so that
Netflix, the movie-rental service, can do recommendations.

Consider the matrix where each row correspond to each Netflix customer
and each column to a movie, and each entry i, j of the matrix corresponds
to the rating given by user i to movie j. The size of this matrix is obviously
very large and, since each user rates only a few movies, there are many
entries of the matrix that are missing, and that Netflix is interested in
predicting. Now, it turns out that only few factors determine a user’s
preference in movies (e.g. genre, lead actor/actresses, director, year, etc.),
that is, there is a relatively small number of “types” of people with respect
to movie preferences. Also, customers who agreed on movies ratings in the
past will be likely to agree in the future. For these reasons it is a natural
assumption to consider that the Netflix matrix is low rank.

• Positioning from local distances

Consider the problem of trying to find the positions of a large number of
points, x1, ..., xn ∈ Rd, that is its coordinates relatively to each other, from
information about the pairwise distances between them. If all the pairwise
distances are known exactly, then the shape of the network can actually
be recovered via a technique called Multidimensional Scaling. But, a more
interesting and practical case is when many of the distances are unknown.
This problem can be considered as a matrix completion one, where we
have as many rows and columns as points, and the entry (i, j) corresponds
to the square of the distance between the points i and j. It turns out
that the matrix of the squares of the distances between the points has a
fixed maximum rank depending on the dimension of the space in which
the points are embedded. To see this consider xk

i the k-th coordinate of
xi. Since

‖xi − xj‖2 = ‖xi‖2 − 2xix
T
j + ‖xj‖2,

the matrix of the squares of the pairwise distances, M, can be written as

M =

 ‖x1‖2 −2x1
1 · · · −2xd

1 1
...

...
...

...
‖xn‖2 −2x1

n · · · −2xd
n 1




1 · · · 1

x1
1 · · · x1

n
...

...
xd

1 · · · xd
n

‖x1‖2 · · · ‖xn‖2

 .

So, M can be written as the product of a matrix with d + 2 columns and
another with d + 2 rows. Then, the rank of M is at most the minimum
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between the ranks of those two matrices, so it is bounded by d + 2, which
is much smaller than n.

3 Rank Minimization Approach

Throughout these notes we will assume that the matrix we want to recover, M,
is of size n1×n2 and has rank r such that r � min(n1, n2). The set of available
entries is Λ ⊂ {1, ..., n1}× {1, ..., n2}. Now, observe the following:

Claim 1 A matrix of size n1 × n2 and rank r has (n1 + n2 − r)r number of
degrees of freedom.

Proof: Consider the Singular Value Decomposition of M:

M =
∑

1≤k≤r

σkukvT
k .

Since u1 is a unit vector, then it only has n2 − 1 degrees of freedom. Now,
u2 besides being unit as well, also must be orthogonal to u1, and therefore
has only n2 − 2 degrees of freedom. And so on, for the first r uk singular
vectors. The same applies to the singular vectors vk. The r non-zero singular
values constitute r more degrees of freedom. So the total number of degrees of
freedom is:

(n2 − 1) + ... + (n2 − r) + (n1 − 1) + ... + (n1 − r) + r =

n1r −
r

2
(r + 1) + n2r −

r

2
(r + 1) + r =

n1r + n2r − r2.

If M is low rank, we have a small number of degrees of freedom, so a natural
question is: do we really need to see everything in the matrix to get to know
it, when the number of degrees of freedom is much smaller than the size of the
matrix? In general the answer is yes, even if the number of observed entries
is large sometimes such task is impossible. Also, note that if the number of
observed entries is less than the degrees of freedom then clearly no matter which
entries are available, there can be an infinite number of matrices of rank at most
r with the exact same entries.

Thus, if the measurements are sufficiently many and somehow ’in the right
positions’, one might hope that there is only one low rank matrix that has
those entries. If this was true, a common sense approach would be to solve the
optimization problem:

min rank(X)
s.t. Xij = Mij, (i, j) ∈ Λ

(1)
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If there was only one low rank matrix fitting the data then this would recover M.
However, solving this problem is not practical since it is known to be NP-hard.
Section 5 will introduce an alternative approach that turns out to be efficient
under some assumptions. Bur firstly, we give some intuition in the next section
that concern the requirements that a matrix need to obey in order to completion
from few entries be possible.

4 The Coherence Property

Since we know that we cannot recover all matrices, so what kind of requirements
does a matrix need to obey in order to be recovered by only a small number of
its entries?

Consider M of rank 1 and of the form xyT . If we do not have samples
from a given row, say the i-th one, then one could never guess the value of the
first component xi, by any method whatsoever, since no information about xi is
observed. In the case of the Netflix problem that would mean that there is a user
that did not rate any movie, so trying to guess his/her preferences is impossible.
The same naturally holds for the existence of an unobserved column. So this
shows that at least one needs one observation per row and per column. This
leads to the assumption:

Assumption: The observed entries of the matrix are selected uniformly at
random.

This way we are considering what happens for most sampling sets since this
assumption makes it unlikely that cases like there are rows or columns totally
unobserved happen.

Let M be the following matrix:

M = e1xT =


x1 x2 · · · xn2

0 0 · · · 0
...

...
...

...
0 0 · · · 0


Clearly, this matrix cannot be recovered from a sampling of its entries unless
the sample is close to exhaustive. The reason is that for most sampling sets
we would never be able to see all the entries of the first row, which cannot be
recovered in any other way.

More generally, consider a row (column) that has no relationship with the
other rows (columns) in the sense that it is orthogonal to them, so it occupies its
own separate component of the singular value decomposition of M. Such a row
(column) is then impossible to complete exactly without sampling the entire
row (column). Thus, to get exact matrix completion from a small fraction of
entries, one needs some geometric assumption on the singular vectors, which
spreads them out across all coordinates in a roughly even manner, as opposed
to being concentrated on just a few values.
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Such informal considerations led the authors of [8] to introduce the incoher-
ence assumption, that somehow quantifies how close to the standard basis the
vectors of a subspace are.

Definition 1 (Coherence parameter, [1]) Let U be a subspace of Rd of di-
mension r, and PU be the orthogonal projection onto U. The coherence of U

(with respect to the standard basis, {e1, ..., ed}, is defined to be

µ(U) =
d

r
max

1≤i≤n
‖PUei‖2. (2)

Observation 2 For any subspace U the coherence parameter is always such
that:

1 ≤ µ(U) ≤ d

r
.

Note that µ(U) ≤ d
r since if one of the standard basis vectors is in U then the

norm of its projection is 1. An intuition behind why µ(U) ≥ 1 is that the smallest
value for µ(U) will correspond to a space U where all vectors of the standard
basis are “equally close” to U. So, for instance, when U is the subspace (of Rd)
generated by the vector x = 1√

d
[1, 1, ..., 1]d then, for any i = 1, ..., d:

PUei = xxTei =
1

d
[1, 1, ..., 1]d,

so ‖PUei‖2 = 1
d = r

d for all i = 1, ..., d.

Consider the row space of M, U, and the column space V . Thus, from our
intuition we are interested in matrices whose subspaces U and V have small
coherence. Hence, with that in mind, consider the following definition:

Definition 3 (µ0-Incoherence) Given a n1×n2 matrix M of rank r, we say
that M is µ0-incoherent if:

max(µ(U), µ(V)) ≤ µ0, for some µ0.

Thus we are interested in matrices with low coherence.

Observe that the above definition is equivalent to:

‖PUei‖2 ≤ µ0r

n1
, for all i = 1, ..., n1,

‖PVej‖2 ≤ µ0r

n2
, for all j = 1, ..., n2.

And, naturally, µ0 ≥ 1.

The following theorem reflects the importance of the coherence factor and
imposes a bound on the number of observed entries so that it can be fully
recovered. We present a simplified version to avoid unnecessary technicalties.
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Theorem 4 (Candés and Tao, 2009, [2]) Suppose we want to recover a ma-
trix M of size n1 × n2 and rank r from the set of samples Λ taken uniformly
at random. Suppose M is µ-incoherent and consider n = min{n1, n2} and
0 < δ < 1. Then, if

|Λ| ≤ µnr log
(n

δ

)
,

there are infinitely many µ-incoherent matrices X 6= M of rank at most r such
that Xij = Mij, for (i, j) ∈ Λ, with probability at least δ.

Recall that the number of degrees of freedom is about 2nr (a very rough up-
per bound), so the theorem implies that to recover an arbitrary rank-r and
µ-incoherent matrix with a decent probability by any method, the minimum
number of samples must be about the number of degrees of freedom times
µ log n. Since µ ≥ 1, then at least about nr log n samples are really needed.

5 Exact solution through Nuclear Norm Mini-
mization

As we have seen, the rank minimization approach (1) is not a possible way of
solving our problem. An alternative approach is minimizing the nuclear norm
of the matrix which is a convex function. The nuclear norm of a matrix X is
defined as

‖X‖∗ =

n∑
k=1

σk(X),

that is, the sum of its singular values. In the case where X is positive semi-
definite (PSD) the nuclear norm is exactly the trace of the matrix. Now let
λ(X) be the vector of the eigenvalues of X, and observe that

‖λ(X)‖0 = rank(X),

‖λ(X)‖1 = trace(X).

It is well-known that to obtain a sparse vector from an underdetermined linear
system, minimizing its `1-norm is an effective heuristic that tends to find sparse
solutions. This is the intuition behind the use of the nuclear norm. This heuristic
was studied in [3] where it was shown that the nuclear norm approach can be
used for any matrix (not necessarily PSD or even square).

Thus, we will solve (3) instead of (1):

min ‖X‖∗
s.t. Xij = Mij, (i, j) ∈ Λ

(3)

The first results on the minimum number of needed observed entries of M

so that it can be recovered by minimizing the nuclear norm, were presented
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in [1] using the µ-incoherence property. There, it was proved that at least
O(n1.2r log n) samples were needed to recover the matrix with high probability,
for n = min{n1, n2}. Later, using a stronger version of incoherence, Candès and
Tao in [2] improved the bound above. The following definition allows us to state
their main theorem.

Definition 5 (Strong Incoherence Property, [2]) We say that M obeys the
strong incoherence property with parameter µ if:∣∣∣∣〈ei, PUej〉−

r

n1
1i=j

∣∣∣∣ ≤ µ

√
r

n1
, for all (i, j) ∈ {1, ..., n1}2;∣∣∣∣〈ei, PVej〉−

r

n2
1i=j

∣∣∣∣ ≤ µ

√
r

n2
, for all (i, j) ∈ {1, ..., n2}2;

and, for E :=
∑

1≤k≤r uiv
T
i the following holds

|Eij| ≤ µ

√
r

√
n1n2

for all (i, j) ∈ {1, ..., n1}× {1, ..., n2}

This property is related to, but slightly different from, the incoherence prop-
erty. Also it can be proved that µ ≥ 1.

Theorem 6 (Candès and Tao, 2009, [2]) Let M be a n1 × n2 matrix of
rank r obeying the strong incoherence property with parameter µ. Consider
n = min{n1, n2}. Suppose we observe the entries Λ ⊂ {1, ..., n1} × {1, ..., n2}

sampled uniformly at random. Then there is a constant C > 0 such that if

|Λ| ≥ Cµ2nr log6 n, (4)

then M is the unique solution of problem (3) with probability at least 1 − n−3.

In other words, with high probability and given condition (4) on the number of
observed entries, nuclear norm minimization recovers all the entries of M with
no error.

For an overview of the main ideas behind the proof we refer the reader to [6]
while the proof can be found in [2].

6 Final Remarks

Theorem 6 states that if a matrix is strongly incoherent and the cardinality of
the sampled set is about the number of degrees of freedom times a few logarith-
mic factors, then nuclear norm minimization is exact, a result quite surprising.
Similar results were proved later improving the bound of Theorem 6. To the
best of our knowledge, the best bound was proved in [4] using a slight variation
of coherence. There, for the same probability as in Theorem 6, the bound (4)
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was improved to O(µnr log2 n), where µ corresponds to definition of coherence
adopted in the paper.

A word on what kind of matrices satisfy the strong incoherence property
with a small value of µ is missing. We refer two examples shown in [2]. For that
consider again n = min(n1, n2) and the SVD decomposition of M:

M =
∑

1≤k≤r

σkukvT
k .

• Suppose that the singular vectors of M, obey the following :

‖uk‖∞ ≤
√

α/n1 and ‖vk‖∞ ≤
√

α/n2

with α = O(1), then M obeys the strong incoherence property with µ =
O(
√

log n).

• Assume that the matrices [u1, . . . , ur] and [v1, . . . , vr] are independent
random orthogonal matrices, then with high probability, M obeys the
strong incoherence property with µ = O(log n).

We finally mention that there are other approaches that also use coherence
like definitions to solve the low rank matrix completion other than by minimizing
the nuclear norm. As an example we refer the reader to [5] where they focused
particularly in the positioning from local distances problem.
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