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Abstract

This project is dedicated to present the main ideas of [1]. We
consider a Newton-CG augmented Lagrangian method for solving
semidefinite programming (SDP) problems from the perspective of
approximate semismooth Newton methods. For the inner problems,
we show that the positive definiteness of the generalized Hessian of
the objective function in these inner problems is equivalent to the con-
straint nondegeneracy of the corresponding dual problems. Numerical
experiments on a variety of large-scale SDP problems with the matrix
dimension n up to 4110 and the number of equality constraints m up
to 2, 156, 544 show that the proposed method is very efficient.

1 Introduction

Let Sn be the linear space of all n×n symmetric matrices and Sn+ be the cone
of all n × n symmetric positive semidefinite matrix. The notation X < 0
means that X is a symmetric positive semidefinite matrix. We study an
augmented Lagrangian method for solving the following SDP problem:

min
{
bTy | A∗y − C < 0

}
(D)
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where C ∈ Sn, b ∈ Rm, A is linear operator from Sn to Rm and A∗ : Rm →
Sn. Its dual is

max {〈C,X〉 | A(X) = b,X < 0} (P)

Given a penalty parameter σ > 0, the augmented Lagrangian function for
(D) is

Lσ(y,X) = bTy +
1

2σ

(∥∥∥ΠSn+ (X − σ(A∗y − C))
∥∥∥2

− ‖X‖2

)
where (y,X) ∈ Rm × Sn. Since ‖Π(·)‖2 is continuously differentiable [2], for
any given X ∈ Sn, we have

∇yLσ(y,X) = b−AΠSn+ (X − σ(A∗y − C))

Throughout the presentation, the following condition for (P) is assumed to
hold.

ASSUMPTION 1. Problem (P) satisfies the condition{
A : Sn → Rmis onto,

∃X0 ∈ Sn+ such that A(X0) = b,X0 � 0

The remaining parts of this article are as follows. In Section 2, we give
some preliminaries including a brief introduction about concepts related to
the method of multipliers. In Section ??, we introduce a semismooth Newton-
CG method for solving the inner optimization problems. In Section 4, we
shall give the complete algorithm. We list some numerical results in Sec-
tion ??. Finally we conclude this paper in Section ??.

2 Preliminaries

It is well known that conjugate gradient method can solve the linear system

Ax = b

where b ∈ Rm and A is assumed to be a symmetric positive definite matrix.
We will use a practical conjugate gradient algorithm in implementation.

2



Assume f(x) is convex and twice continuously differentiable so its Hessian
∇2f(x) is positive definite. A typical iteration of Newton’s method as follows:

xk+1 = xk − αk[∇2f(xk)]−1∇f(xk)

where αk is step size of kth iteration. In practical, we do not directly compute
[∇2f(xk)]−1∇f(xk), instead, we solve

∇2f(xk)dk = −∇f(xk)

with a practical CG method.
For given X0 ∈ Sn, σ0 > 0 and ρ ≥ 1 the augmented Lagrangian method

for solving (D) and (P)generates sequences {yk} ⊂ Rm and {Xk} ⊂ Sn as
follows: 

yk+1 ≈ arg min
y∈Rm

Lσk(y,X),← inner problem

Xk+1 = ΠSn+
(
Xk − σk(A∗yk+1 − C)

)
, k = 0, 1, 2, . . . ,

σk+1 = ρσk

3 Solving the inner problem

We focus on inner problem, i.e.

min {ϕ(y) = Lσ(y,X) | y ∈ Rm}

We know that ϕ(y) is not twice continuously differentiable, but we can de-
velop locally a Newton-CG method [3] to solve

∇ϕ(y) = b−AΠSn+ (X − σ(A∗y − C)) = 0

Since ΠSn+ is nonexpansive, it is Lipschitz continuous with modulus 1. Thus
the mapping ∇ϕ(y) is Lipschitz continuous on Rm. By Rademacher’s theo-
rem, ∇ϕ(y) is almost everywhere differentiable in Rm.

Define the generalized Hessian of ϕ at y as

∂̂2ϕ(y) := σA∂ΠSn+ (X − σ(A∗y − C))A∗

where ∂ denotes the Clarke’s generalized Jacobian [4]. To carry out the
algorithm, we need to actually compute one element of ∂̂2ϕ(y). First since
X−σ(A∗y−C) ∈ Sn, there exists an orthogonal matrix Q ∈ Rn×n such that

X − σ(A∗y − C) = QΓyQ
T
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where Γy = diag(λ[1], λ[2], . . . , λ[n]) The recent progress shows that this spec-
tral decomposition can be computed with a new iterative method [6]. the
part II of this project cover the issue.

Define index set α := {i | λi > 0} and ᾱ = {1, 2, . . . , n}\α and

Ω =

[
Eαα ναᾱ
νT
αᾱ 0

]
, ναᾱ :=

λi
λi − λi

, i ∈ α, j ∈ ᾱ

where Eαα ∈ S |α| is the matrix of 1’s Define the operator W 0
y : Sn → Sn by

W 0
y (H) := Q

(
Ω ◦

(
QT(H)Q

))
QT, H ∈ Sn

where ◦ denotes the entry-wise product of two matrices Since, by [7], Lemma
11,

W 0
y ∈ ∂ΠSn+ (X − σ(A∗y − C))

If we define V 0
y : Rm → Sn by

V 0
y d := σA

[
Q
(
Ω ◦

(
QT(A∗d)Q

))
QT
]︸ ︷︷ ︸

W 0
y (A∗d)

, d ∈ Rm

thus we know that
V 0
y = σAW 0

yA∗ ∈ ∂̂2ϕ(y)

It can be shown that under the primal constraint nondegenerate condition
[5], every element in ∂̂2ϕ(y) is positive definite. Now we are ready to describe
the algorithm for solving inner problem:

Data: A, C, b
Result: return approximate minimizer of Lσk(y,Xk)
initialization;
while the termination criteria are not satisfied do

Step 1. Apply the practical CG algorithm to find solution dj to

(Vj + εI)d = −∇ϕ(y)

where Vj ∈ ∂̂2ϕ(yj);
Step 2. Choose step size αj with Armijo’s Rule;
Step 3. Update all the parameters and set

yj+1 = yj + αjd
j

end
Algorithm 1: Solving inner problem at each outer iteration
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We shall emphasize the termination criterion here. The old, e.g. absolute
summable error criteria:

ϕ(yj)− inf ϕ ≤ εj, εk ≥ 0,
∞∑
0

ε <∞

It is not practical because no direct rules provided for choosing εk. The new
relative error criterion developed by [8] as follow:

2

σk

∣∣〈wj−1 − yj,∇yϕ(yj)
〉∣∣+ ‖∇yϕ(yj)‖2 ≤

τ

(
min

{
1

σk
Xj−1, (A∗yj − C)

})
τ ∈ (0, 1)

wj = wj−1 − σk∇yϕ(yj) ← update parameter

Note that σk is fixed within inner problem. The new relative error criterion
is practical because τ is easy to choose and all other information is known.

4 A Newton-CG augmented Lagrangian method

Now we integrated algorithm for inner problem into augmented Lagrangian
method:

Data: A, C, b
Result: return approximate optimal solutions of (D) and (P)
initialization;
while the KKT conditions are not satisfied do

Step 1. Apply Algorithm 1 to get yk+1, approximate solution for
inner problem Step 2. Xk+1 = ΠSn+

(
Xk − σk(A∗yk+1 − C)

)
Step 3.

σk+1 = ρσk ρ ≥ 1
end

Algorithm 2: A Newton-CG augmented Lagrangian method for solving
(D) and (P)

5 Highlights of numerical results

• SDP from frequency assignment problems (faq): Algorithm 2 takes
only 41 seconds to solve faq09 and inexact IPM takes more than 2.5
hours.
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• Able to solve faq36 in the 7th DIMACS Implementation Challenge
faster and much more accurately than previous attempts

• SDP from maximum stable set problems: about 5-10 times faster than
primal-dual IPM and modified barrier method.

• Binary integer quadratic programming problems: compared with ded-
icated augmented Lagrangian method with lift-and-project procedure
(coded in C). Algorithm 2 is superior in terms of CPU time and the
accuracy of the approximate optimal solution computed.

6 Conclusions

We introduce a Newton-CG augmented Lagrangian algorithm for solving (D)
and (P). Convergence analysis is based on classical results of prximal point
methods along with recent developments in perturbation analysis. Extensive
numerical experiments demonstrated that the algorithm is very efficient on
large-scale SDP problems. Application within a branch-and-bound algorithm
for solving hard combinatorial problems.
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