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Goal: In this handout we will go over the underlying algebra of simplex
method, basically what we covered in the last 2 weeks of our class.

Tools: Linear algebra, matrix multiplication.

Ok, let’s start with our STANDARD form LP.

max cTx
s.t. Ax = b

x ≥ 0
(1)

where A : m × n, b : m × 1, c : n × 1 and rank(A) = m. Let us further
assume {x ∈ Rn|Ax = b, x ≥ 0} ̸= ∅. Which implies the polyhedron {x ∈
Rn|Ax = b, x ≥ 0} has at least one extreme point (why? 1 points). Let’s x =(

B−1b
0

)
be the BFS corresponding to this extreme point (after possible

re-arranging of the columns of A), where B is the basis corresponding to x.
Therefore we use the following decomposition of A = [B,N ], cT =

[
cTB, c

T
N

]
and xT = (xTB, x

T
N ) (let’s remember xB is called the set of basic variables

and xN is called the set of non-basic variables). Let’s re-write the problem:

max cTBxB +cTNxN
s.t. BxB +NxN = b

xB ≥ 0
xN ≥ 0

(2)

or equivalently,

max cTBxB +cTNxN
s.t. xB +B−1NxN = B−1b

xB ≥ 0
xN ≥ 0.

(3)

Let’s remember we are doing Gaussian elimination when we multiply the
set of equations with B−1. As Gaussian elimination preserves the
solutions to a system of linear equations (row equivalence), (2) and
(3) are equivalent. As we are interested in the set of feasible solutions to
the problem, we must have xB = B−1b−B−1NxN for all feasible solutions.
Therefore we can substitute xB in the objective with B−1b−B−1NxN :
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max cTB(B
−1b−B−1NxN ) +cTNxN

s.t. xB +B−1NxN = B−1b
xB ≥ 0

xN ≥ 0.

(4)

Let’s re-arrange the messy objective above,

max cTBB
−1b −(cTBB

−1N − cTN )xN
s.t. xB +B−1NxN = B−1b

xB ≥ 0
xN ≥ 0.

(5)

We call cTBB
−1N − cTN the vector of reduced costs associated to non-basic

variables. Now we reduced the problem into a form, where optimality is
easy observed by the following argument:

KEY TO SIMPLEX: If cTBB
−1N−cTN ≥ 0 (namely the reduced costs

are nonnegative) then the current BFS x =

(
B−1b
0

)
is optimal.

proof. Indeed. As {Ax = b} = {xB + B−1NxN = B−1b} (because B
is a basis, it’s inverse exists and it is a Gaussian elimination operator), if
cTBB

−1N − cTN ≥ 0 then (cTBB
−1N − cTN )xN ≥ 0 therefore any other feasible

solution has objective at most cTx = cTBxB + cTNxN = cTBB
−1b + cTN0 =

cTBB
−1b (which is the objective value of current BFS x =

(
B−1b
0

)
).

Let’s use the following notation, letA = [a1, a2, . . . , an] denote the columns
of A, b̄ = B−1b and J the set of non-basic indices (The column indices cor-
responding to N). Also let yj = B−1aj , zj = cTBB

−1b = cTByj for j ∈ J .
Then (5) reduces to the following,

max cTBB
−1b −

∑
j∈J(zj − cj)xj

s.t. xB +
∑

j∈J yjxj = b̄

xB ≥ 0
xj ≥ 0, j ∈ J.

(6)

Let xTB = (xB1 , xB2 , . . . , xBm) then we can re-write (6) as follows:

max cTBB
−1b −

∑
j∈J(zj − cj)xj

s.t. xBi +
∑

j∈J yjxj = b̄i, i = 1, . . . ,m

xB ≥ 0
xj ≥ 0, j ∈ J.

(7)

Therefore we can define the simplex iteration easily. Let k ∈ J be an
index s.t. zk − ck < 0. Obviously we can increase xk as much as possible
to profit from the situation (we keep all other non-basic variables at 0, and
increase xk). However how much should we increase xk?

Let yik > 0, we can re-write ith row of our problem as follows,
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xBi + yikxk = b̄i

As yik > 0, xk ≥ 0 and b̄i ≥ 0, we can increase xk to at most b̄i
yik

.

Because at that point xBi = 0 (If yik ≤ 0 it is easy to see we can increase xk
as much as we want without violating the non-negativity of xBi , VERIFY
IT!). However we want the non-negativity of all xB. Clearly implying we

should select xk = b̄r
yrk

= min
1≤i≤m

{ b̄i
yik

|yik > 0} > 0. Therefore xBr = 0 and

xk = b̄r
yrk

defines a new BFS, we update the current basis by removing the

column ar replaced by ak and continue with the next iteration of simplex.


