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Abstract. Consider an embedding of a graph G in a surface S (map). Assume that
the difference splits into connected components (countries), each one homeomorphic
to an open disk. (It follows from this assumption that graph G must be connected).
Introduce a graph G∗ dual to G realizing the neighbor relations among countries.
The graphs G and G∗ have the same set of edges. More precisely, there is a natural
one-to-one correspondence between their edge-sets. An arbitrary pair of graphs with
common set of edges is called a plan. Every map induces a plan. A plan is called
geographic if it is induced by a map. In terms of Eulerian graphs we obtain criteria
for a plan to be geographic. We also give an algorithm of reconstruction a map from
a geographic plan. A case when this map is unique is singled out. Partially, these
results were announced by Gurvich and Shabat in 1989
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1. Introduction. Consider an embedding of a graphG in a surface S (map). Assume that
the difference splits into connected components (countries), each one homeomorphic
to an open disk. (It follows from this assumption that graph G must be connected).
Introduce a graph G∗ dual to G realizing the neighbor relations among countries. The
graphs G and G∗ have the same set of edges. More precisely, there is a natural one-to-
one correspondence between their edge-sets. An arbitrary pair of graphs with common
set of edges is called a plan. Every map induces a plan. A plan is called geographic
if it is induced by a map.

In terms of Eulerian graphs we obtain criteria for a plan to be geographic, and we also
give an algorithm of reconstruction a map from a geographic plan. The case when this
map is unique is singled out. Some of these results were announced in [1].

2. Graphs. Finite undirected graphs are considered. Loops and nmultiple edges are
allowed. We need the following concepts; for more details see for instance [2; ch.1, §1;
ch.2, §§1− 3, and ch.7, §1].
A cyclic sequence of alternating vertices and edges in which any adjacent edge and
vertex are incident is called a closed route. A closed route in which all the edges are
different is called a cycle. A cycle is called simple if all its vertices are different.

The degree, or valence, of a vertex is defined as as the number of edges incident to
it, where loops are considered with multiplicity 2. The degree of vertex v in graph G
is denoted by deg(G, v).

A cycle containing all the vertices of a graph, and a graph itself in which such a cycle
exists, are called Eulerian. Clearly, an Eulerian graph must be connected. Criteria for
a connected graph to be Eulerian are given by the following Lemma (see, for instance,
[2, Theorem 7.1]).

Lemma 1. For a connected graph three properties are equivalent:
a) The graph is Eulerian.
b) There exist a collection of simple cycles such that their edge-sets represent a partition
of the edge-set of the graph.
c) All vertices have even degrees.

3. Surfaces. The topological classification of surfaces (i.e. two-dimensional,compact,
smooth manifolds without boundary) is well known; see, for instance, [2, ch.3]. They
are divided into
orientable: (Sp; p = 0, 1, 2, · · · ), and nonorientable (Cq; q = 1, 2, · · · ).
For example, S0 is a sphere, S1 is a torus, C1 is a projective plane, C2 is a Klein bottle.

The ”sphere with p handles” serves as a standard model for Sp, and the ”sphere with
q holes pasted by Möbius strips” for Cq.

4. Maps. Let S be a surface and G =< A0, A1 > be a graph where A0 = a01, a
0
2, ... is the

set of vertices, A1 = a11, a
1
2, ... is the set of edges.
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Then let ϕ be an embedding of Gin S such that the edges do not have intersections on
the surface apart from their common vertices of the graph, and also they have no self-
intersections apart from the vertices of loops. Let us cut surface S along the edges of
graph G; in other words, partition the difference S − ϕ(G) into connected components
(countries). Remind that every country must be homeomorphic to an open disk and
therefore graph G must be connected. Denote the set of countries by A2 = a21, a

2
2, ....

A triple M =< S,G, ϕ > satisfying the conditions stated above will be called a map.
Two maps M ′ =< S ′, G′, ϕ′ > and M ′′ =< S ′′, G′′, ϕ” > are considered isomorphic if
there exists a homeomorphism g : S ′ → S ′′ carrying ϕ′(G′) into ϕ′′(G′′).

5. Dual graphs. There is an obvious incidence relation between the countries and edges.
The graph of this relation will be called dual to G on surface S and denoted by
G∗ =< A2, A1 >. Thus two countries are neighbor if and only if they have a common
edge (but it is not enough to have a common vertex). Duality is an involution, i.e.
G∗∗ = G. Dual graph is also connected and it induces a dual map on the same surface.
See§31 for more details concerning dual graphs, maps and plans.

6. The Euler characteristic. It is well known that for every map on a given surface S
the number #A0 −#A1 +#A2 takes the same value, called the Euler characteristic of
the surface and denoted by χ(S). For the surfaces considered in §2 one has

χ(Sp) = 2− 2p, p = 0, 1, 2, ...; χ(Cq) = 2− q, q = 1, 2, .... (1)

Therefore always χ ≤ 2 , and χ = 2 only in case of a sphere; then only two surfaces
can have a given Euler characteristic χ less than 2 : these are Cq with q = 2− χ and
Sp with p = 1− χ

2
, where the second one exists only for even χ.

7. Plans. Let A0, A
1 and A2 be three pairwisely disjoint sets, whose elements will be

callyed 0-, 1- and 2-cells respectively, and let G01 =< A0, A1 > and G21 =< A2, A1 >
be two graphs with the same set of edges A1. The pair P =< G01, G21 > will be called
a plan.

8. Geographic plans. Every map M induces in the obvious way a plan P = P (M) in
which the 0-, 1- and 2-cells are respectively the vertices, edges and countries of the
map, while G01 = G and G21 = G∗ are the dual graphs neighborhood for vertices and
countries respectively.

A plan will be called geographic if it is induced by a map.

Note that the Euler characteristic of the corresponding surface (but not the map itself)
is unambiguously determined by the geographic plan due to formula

χ = #A0 −#A1 +#A2.

The aim of this note is to characterize the geographic plans.
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9. Loops. In any plan, every 1-cell is incident to one or two 0-cells and 2-cells. Let 1-cell
a1 be incident to unique 0-cell a0 (2-cell a2 ). Then a1 is called a loop incident to
a0 in G01 (a loop incident to a2 in G21). In case of a geographic map or plan a0 is
called a loop with vertex a0 (an interior edge of country a2).

10. Bimatrices of plans. Let P =< G01, G21 > be a plan and let B01 : A
1×A0 → 0, 1, 2

and B21 : A1 × A2 → 0, 1, 2 be the incidence matrices of the graphs G01 and G21

respectively. These matrices have the same set of lines A1 corresponding to 1-cells; the
sets of columns A2 and A2correspond to 0- and 2-cells respectively. Elements take only
three values 0, 1 and 2, where the last one corresponds to loops.

Sum of elements in each line is equal to 2 for both matrices.

The pair B =< B01, B21 > will be called the bimatrix of the plan.

11. Examples. 11.1. Let S = S0 be a sphere and graph G = G01 consists of two vertices
and one edge. Then G∗ = G21 is a loop, and B = (11|2). Let vise-versa G be a loop;
then G∗ consists of one edge with two vertices, and B = (2|11). These two graphs are
dual.

11.2. Let S be a sphere and graph G consists of the pair of edges with common pair

of vertices. Then G is selfdual, that is G = G01 = G∗ = G21, and B =

(
11 | 11
11 | 11

)
.

11.3. Selfdual bimatrix B = (11|11) is not associated with a geographic plan, because
it can not be induced by a map, because χ = #A0 −#A1 +#A2 = 2− 1 + 2 = 3 > 2;
see also §§16, 17.
11.4. Let S be a sphere again and graph G consists of two edges with one common ver-

tex. Then G∗ consists of two loops with the common vertex, and B =

(
110 | 2
101 | 2

)
.

11.5. Let S be again a sphere and G consists of two vertices, one edge joining them
and one loop incident to one of them. Then G∗ is isomorphic to G but the loop
in G∗ is identified with the edge in G and vise-versa; thus G is not selfdual, and

B =

(
11 | 20
20 | 11

)
.

11.6. Selfdual bimatrix B =

(
11 | 11
02 | 20

)
is not associated with a geographic plan

because it can not be induced by a map. The reason will be explained in §§16, 17.
11.7. Let S be again a sphere and G consists of two vertices, one edge joining them
and two loops incident to each. Then G∗ consists of two adjacent edges and one loop

incident to their common vertex, and B =

 20 | 110
11 | 020
02 | 011

.

11.8. Let S = C1 be a projective plane and G is a basic loop. Then G is selfdual, that
is G∗ is also the loop, and B = (2|2).
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11.9. Let S = S1 be a torus or S = C2 be a Klein bottle and in both cases G consists of
one vertex and two basic loops (which are not homotopic to each other and to a point).

Then in both cases there is only one country, G is selfdual, and B =

(
2 | 2
2 | 2

)
.

The last example demonstrated that the same plan can be induced by different maps
and even on different surfaces but with the same Euler characteristic). Different maps
on the same surface also can induce the same plan; see §§20.3− 20.6.

12. The incidence matrix of 0- and 2-cells of a plan defined as a matrix product B02 =
B∗

01 ×B21, where B01 : A
1 ×A0 → 0, 1, 2 and B21 : A

1 ×A2 → 0, 1, 2 are the incidence
matrices of the graphs G01 and G21 respectively, and * is the transposing. In other
words B02 is a mapping equal to the scalar product of two columns corresponding to
0-cell a0 ∈ A0 and 2-cell a2 ∈ A2.

13. Circuits of countries and vertices of a map. By definition, any country is home-
omorphic to an open disk. Let us fix a country a2 in a map M and go around it along
its boundary. As a result a certain cycle Ca2 (maybe not simple) will be selected in the
graph G01. This cycle contains all edges and vertices adjacent with country a2. The
same vertex a0 may occur in it several (b(a0, a2)) times, and the same edge may occur
only once or twice; and the latter possibility occurs only for interior edges of country
a2.

It is well known that an arbitrary sufficiently small neighborhood of an arbitrary point
of a surface is homeomorphic to an open disk. Let us fix a vertex a0 on a map M
and go around it along the boundary of such a neighborhood. As a result a certain
cycle Ca0 (maybe not simple) will be selected in the graph G21. This cycle contains
all the edges and vertices adjacent with vertex a0. The same country a2 may occur in
it several (b(a2, a0)) times, and the same edge may occur only once or twice; and the
latter possibility occurs only for loops with vertex a0.

14. The respective degrees of vertices and countries. Lemma 2. For any map,
vertex a0 ∈ A0 and country a2 ∈ A2 one has

2b(a0, a2) = 2b(a2, a0) = B02(a
0, a2) (2)

Sketch of the proof. All three numbers are equal to the same sum
∑

a1∈A1 B01(a
0, a1)×

B21(a
2, a1).

Consequence. For any geographic plan all the elements of matrix B02 are even.

15. Graphs of 0- and 1-cells of a plan. Let P =< G01, G21 > be a plan. Let us fix
an arbitrary 0-cell a0 ∈ A0 and consider the set of all 1- and 2-cells incident to it.
The subgraph of G21 formed by them will be denoted by G′

a0 . In this subgraph let us
double each 1-cell a1 corresponding to a loop (incident to a0) in G01, that is replace a

1

by a pair of multiple (parallel) edges a1′, a1′′ with the same pair of vertices. If a1 is a
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loop in G21 also then let us double this loop. The obtained graph will be denoted by
Ga0 .

Graphs Ga2 and G′
a2 are defined analogously for every 2-cell a2 ∈ A2 of the plan P .

It is enough to interchange the indices 0 and 2 in the above definition.

Lemma 3. For any a0 ∈ A0, a2 ∈ A2 the chain of equalities (2) can be prolonged in
the following way

B02(a
0, a2) = deg(Ga0 , a

2) = deg(Ga2 , a
0) (3)

Each 1-cell a1 ∈ A1 occurs exactly twice in the set of graphs Ga0 , a
0 ∈ A0 as well as

in the set Ga2 , a
2 ∈ A2, but some 1-cells can occur only once in the sets G′

a0 , a
0 ∈ A0,

G′
a2 , a

2 ∈ A2.

Proof follows from the definitions.

16. Properties of plans. A plan P =< G01, G21 > will be called:

a) even if all the elements of its matrix B02 are even;
b) connected if graph G01 (or equivalently G21) is connected;
c) locally connected if the graphs Ga0 , Ga2(or equivalently (G′

a0 , G
′
a2) are connected

for any a0 ∈ A0, a2 ∈ A2.
d) Eulerian if the graphs Ga0 , Ga2 (not G′

a0 , G′
a2) are Eulerian for any a0 ∈ A0,

a2 ∈ A2.
Evidently d) is equivalent to a) & c), according to Lemma 1.

17. Criterion for plans to be geographic. Theorem 1. A plan is geographic if and
only if it is even, connected and locally connected.
Proof of ⇒. Let a plan be geographic, that is induced by a map. Then this plan is
connected and graphs Ga0 , Ga2 are Eulerian for any a0 ∈ A0, a2 ∈ A2, according to
§§13− 15. Thus, considered plan is also Eulerian, that is even and locally connected,
according to Lemmas 1-3.

Proof of ⇐is more complicated and will be given later in §23.
Remark. A connected and locally connected plan can be induced by different maps
on the same surface or even on different surfaces; see example in §11.9. Still the
Euler characteristic is unambiguously determined by the plan, according to equality
χ = #A0−#A1+#A2 . Thus in any case there exist not more than two such surfaces,
there is only one if χ = 2 or χ = 2i+ 1 < 2, and there is none if χ > 2.

In particular, inequality #A0 − #A1 + #A2 ≤ 2 holds for any plan which is even
connected and locally connected, because otherwise there exists no surface for a corre-
sponding map.

18. The plane representation of maps. The classical combinatorial approach to sur-
faces will be considered here briefly; see more details in [3], chapter 3. Fix few polygons
on a plane. Each one can have any number of edges including even 2 and 1. The sum
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of all these numbers is supposed to be even, and the set of all the edges is supposed
to be divided into pairs. Fix an arbitrary direction for each edge and denote the edges
directed clockwise by a, b, c, · · · and counterclockwise by a, b, c, · · · Two edges in any
pair are supposed to be denoted by the same letter. Thus in the set of all the polygon
each letter occurs twice. It is supposed also that this property does not hold for the
subsets, that is for any subset of the set of all the polygons there exist a letter which
occurs once. A surface will be obtained if one glues all the pairs of edges denoted by
the same letter in accordance with their directions. The last assumption provides the
obtained surface to be connected, but not a disjunctive sum of few different surfaces.
Note also that except for the surface one obtaines a map on it. For this map the
number of countries is equal to the number of polygons; the number of edges is equal
to the number of different letters; the number of vertices is more difficult to compute,
but still it is unambiguously determined by the identification of edges in polygons.

The following operations preserve both the surface and the map.

a) A cyclic shift of letters in a polygon. For example,

(a a c d c b e f f e) (d c b e f f e a a c).

b) Reorientation of an edge: a → a, overlinea → a
c) Reorientation of a polygon. That is a combination of two operations: the redirection
of all the edges of the polygon according to b), and replacement of the cyclic order of
letters in the polygon by the inverse one. For example, (a c c b d e) (e d b c c a).

A map and the corresponding surface are called orientable if there exist orientations
of all the polygons such that each edge occurs in both directions. In other words, it
is possible to apply few times operation c) above in such a way that any letter a will
occur twice only in combination (a, a), but not (a, a) or (a, a).

One can find out in [3] more operations which preserve only the surface given by a map
but not the map itself. These operations enable us to obtain the classification given in
§3. The surfaces Sp and Cq can be represented by the following normal forms.

Sp = (a1 b1 a1 b1 a2 b2 a2 b2 · · · ap bp ap bp), S0 = (a a);

Cq = (c1 c1 c2 c2 · · · cq cq); p, q ∈ {1, 2, · · · }. (4)

Note that each map contains only one polygon and only one vertex. For this reason
the Euler characteristics are given by formula (1).
Surfaces Sp are orientable and Cq are not.

19. The maps inducing a given plan. Fix a plan P =< G01, G21 > which is even
connected and locally connected. Consider all the graphs of 2-cells Ga2 , a2 ∈ A2

. Remind that each 0-cell a0 ∈ A0 occurs in these graphs at least once but maybe
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more, and each 1-cell a1 ∈ A1 occurs exactly twice; see §§13 − 15. Fix directions of
all the edges (1-cells) in the graphs Ga2 , a

2 ∈ A2 arbitrarily, but one condition: the
directions of doubled edges must be the same. Remind that all the graphs Ga2 , a

2 ∈ A2

are Eulerian and chose an arbitrary Eulerian cycle in each one. These cycles induce
polygons and these polygons induce a map, according to§18. Theorem 1 seems proved,
however there is one important ”but”. The sets of countries and edges of the map are
the sets A2 and A1 respectively, but the set of vertices can differ from A0. Of course,
different vertices of A0 can not be glued in the map, but the same vertex can occur few
times. The maps with identified vertices and countries (mm-maps) will be considered
later; see§§25−28. But Theorem 1 claim the existence of a standard map, and it is not
still proved. Thus our aim is to chose Eulerian cycles so that to minimize the number
of vertices and make it equal to #A0, or equivalently, to minimize Euler characteristic
and make it equal to #A0 −#A1 +#A2.

20. Examples. Considered plans will be given by their bimatrices .
20.1. Let B = (2|2), then #A0 = #A1 = #A2 = χ = 1 Graph Ga2 of the unique 2-cell
a2 ∈ A2 consists of the unique 0-cell a0 ∈ A0 and the unique 1-cell a = a1 ∈ A1, which
is a loop. This loop must be doubled in Ga2 ; see §15. There are two Eulerian cycles
in Ga2 :(a a) and (a a),
The first one (a a)generates a map on projective plane C1. It is easy to check that
this map has only one vertex, and thus really induces the considered plan given by
bimatrix B = (2|2).
The second cycle (a a) generates a map on sphere S0 with two vertices, which must be
identified because there is only one vertex in the plan. (Thus, it is not really a map
but a mm-map; see§§25− 28.)

20.2 Let B =

(
2 | 2
2 | 2

)
, then #A0 = #A2 = 1 , #A1 = 2 ,χ = 0 . Now graph Ga2

contains not one but two doubled loops a and b. There exist five different Eulerian
cycles (a b a b) , (a a b b), (a b b a), (a a b b), (a b a b), The first two cycles generate
the normal form maps on torus S1 and on Klein bottle C2 respectively. The third one
generates a map on sphere S0 with three vertices, which must be identified because
there is only one vertex in the plan. The last two cycles generate two different (not
isomorphic) maps on projective plane C1; each map has two vertices which also must
be identified.

20.3 Let B =

 2 | 2
2 | 2
2 | 2

 then #A0 = #A2 = 1 ,#A1 = 3 , χ = −1. Graph Ga2

contains three doubled loops a, b and c. Eulerian cycles (a a b b c c), (a b c c b a)
generate two different maps on the same surface C3. Cycle (a b c a b c) generates a
maps on projective plane C1 with three vertices which must be identified.
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20.4 Let B =


2 | 2
2 | 2
2 | 2
2 | 2

 then #A0 = #A2 = 1 ,#A1 = 4, χ = −2. Graph Ga2

contains four doubled loops a, b, c and d. Eulerian cycles (a b a b c d c d) (a b c d a b c d)
and (a a b b c c d d), (a a b b c d d c) generate two pairs of different maps on two
different surfaces: S2 and on C4 respectively. Each map has only one vertex.
20.5. Let us generalize the four previous examples and consider #A0 = #A2 = 1 ,
#A1 = r, χ = 2 − r. If r is even then this plan is induced by different maps on two
different surfaces Sp and Cq where p = r

2
and q = r. Between these maps there are the

normal forms of these two surfaces respectively given by two cycles

(a11 a12 a11 a12 a13 a14 a13 a14 · · · a1r−1 a1r a1r−1 a1r), (a11 a11 a12 a12 · · · a1r a1r)

If r is odd then maps on Sp no longer exist. The same plan can be induced by different
maps on any surface. For C3, C4 and S2 it was demonstrated by examples 20.3 and
20.4. The following example will demonstrate this fact for S0.
20.6 Let A1 = {a, b, c, d, e, f} #A1 = 6, #A0 = 7, #A2 = 1; then χ = 7+1−6 = 2,
graph G01 = Ga2 must be a tree on a sphere. It is not difficult to check that two
Eulerian cycles

(a a c d d c b b e f f e) and (a a b b c d d c e f f e)

from graph Ga2generate two maps which are not isomorphic, but the induced trees,
and consequently plans, are equal. The above example is due to the following simple
topological remark: isomorphism of two trees not always can be prolonged for the
whole spheres containing these trees.

20.7. Let B =

 11 | 2
11 | 2
11 | 2

, then #A0 = 2, #A2 = 1, #A1 = 3, χ = 0. Graph

Ga2 contains two vertices a02, a
0
1 and three doubled edges a, b and c connecting them.

Let us direct a and cfrom a01 to a02, and b from a02 to a01. Check that (a b c a b c) and
(a b c b a c) are Eulerian cycles, which generate two different maps on a torus and on
a Klein bottle respectively.

20.8. Let B =

 20 | 2
11 | 2
11 | 2

, then #A0 = 2, #A2 = 1, #A1 = 3, χ = 0. Graph Ga2

contains two vertices a01, a
0
2, one doubled loop a incident to a01 and two doubled edges

b and c . Let us direct them oppositely, b from a01 to a02 and c from a02 to a01. Check
that (a b c a c b) and (a a b c b c) are Eulerian cycles, which generate two different
maps on a torus and Klein bottle respectively.

20.9. Let B =

 20 | 2
20 | 2
11 | 2

, and again #A0 = 2, #A2 = 1, #A1 = 3, χ = 0. Graph
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Ga2 contains two vertices a01, a
0
2 , two doubled loops a and b incident to a01 and one

doubled edge cdirected from a01 to a02. Check that (a b a b c c) and (a a b b c c)
are Eulerian cycles, which generate two different maps on a torus and Klein bottle
respectively.

21. A geographic plan which can be induced by maps on a Klein bottle but not on a torus.
Let us consider geographic plans with three 1-cells and zero Euler characteristic, that

is #A0 −#A1 + #A2 = 0, #A1 = 3. There are four such plans B1 =

 11 | 2
11 | 2
11 | 2

,

B2 =

 20 | 2
11 | 2
11 | 2

, B3 =

 20 | 2
20 | 2
11 | 2

, B4 =

 20 | 2
02 | 2
11 | 2


(and also of course four dual plans, which can be obtained from B1 − B4 by permu-
tation of matrices B01 and B21). The first three plans can be induced by maps on
toruses; see examples 20.7-20.9 and also [4]. Let us check that the fourth plan can not.
Really, there is only one country. Its graph Ga2 consists of two vertices, two doubled
loops a and b incident to each one, and one doubled edge c joining both. (This graph
looks like ”spectacles”.) There is only one Eulerian cycle (a a c b b c) which induce a
map on orientable surface; see §18. But this surface is a sphere with two identified
vertices, not a torus.
At the same time there exist Eulerian cycle in Ga2 which induces nondegenerate maps
on a Klein bottle, for example (a, a, c, b, b, c).
Thus Theorem 1 will not hold if we restrict ourself by orientable surfaces only and
the following four problems appear: in the set of all the geographic plans to find the
subsets of plans which can be induced by maps on: a) orientable surfaces, b) nonori-
entable surfaces, c) both, d) some. The last problem is solved by Theorem 1, and all
four problems are solved by this theorem provided χ is odd or χ ≥ 2, because then not
more than one surface can exist.

22. A proof of Lemma 1 was proposed in 1736 by Euler in the his-torically first publi-
cation on graph theory dealing with the problem of circuits of the K nigsberg bridges.
a) ⇒ b). Let us go along an Eulerian cycle. It is divided by any vertex into a sum
of cycles with pairwisely disjoint edge-sets. Apply the same approach to each of these
cycles and so on. Thus a given Eulerian cycle can be split into edge-disjoint simple
cycles. Note that they must have common vertices because the graph is connected.
b) ⇒ a). Chose any two cycles with a common vertex. They can be united into one
cycle (not simple). It can be even done by at least two different ways. This remark is
of no use now but it will be a matter of principle when we shall prove Theorem 1 in
§23. Now we can use any of two ways. Then chose another two cycles with a common
vertex and so on. We shall finish with only one cycle left, which must be Eulerian.
b) ⇒ c). The degree of a vertex in a simple cycle is equal to 2.
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c) ⇒ b). Let us go along the edges of the graph. There can not be dead ends because
all the degrees are even. Fix the first time we have come twice to the same vertex.
Then our route contains a cycle which must be simple. Subtract the edges of this cycle
from the graph. In the obtained graph the degrees of all the vertices are even again.
Repeat the whole procedure from the beginning and so on.

23. The rest of the proof of Theorem 1. Implication ⇒ was proved in §17. A proof
of ⇐ was started in §19. Arbitrary Eulerian cycles were chosen in graphs Ga2 , a

2 ∈ A2.
They generate a map according to §18. But this map possibly has duplicated vertices
and induces the given plan only if these vertices are identified; see examples in §20.
In other words, the map induces a partition of the Eulerian graphs Ga0 , a

0 ∈ A0 into
simple cycles with pairwisely disjoint sets of edges. If there is only one cycle (Eulerian)
for any a0 ∈ A0 then O.K., but if there are few cycles for at least one vertex then the
obtained map is degenerate. However it can be reconstructed.
Now an algorithm is suggested which will diminish one by one the total number of
cycles in graphs Ga0 , a

0 ∈ A0 until all these cycles became Eulerian, while the cycles in
graphs Ga2 , a

2 ∈ A2 are changed but still remain Eulerian. This algorithm is analogous
to Eulerian one; see §22, b) ⇒ a).
Suppose all the cycles are already Eulerian then the present map is nondegenerate and
O.K. Suppose not. Then there exist a0 ∈ A0, a2 ∈ A2 such that graph Ga0 contains
two cycles with common 2-cell a2. Then the Eulerian cycle of graph Ga2 can be split
into two cycles with common 0-cell a0 . Thus we have two ”eights” respectively in the
graphs Ga0 and Ga2 and with a2 and a0 in the middle.
For each ”eight” there exist three different circuits; one of them (”bad”) consists of
two separate cycles, and two others (”nice”) consist of one cycle each. Really, start
the circuit of an ”eight” in the middle of it; go along the first cycle in any one of two
possible directions; return again to the middle; then go along the second cycle; now two
directions are no longer equivalent; thus two different ”nice” cycles can be obtained.
So we have two ”eights”. The associated two triplets of circuits are in correspondence.
In each triplet there are two ”nice” circuits and only one ”bad”. Thus we can chose two
corresponding circuits, one from each triplet. In other words we can unite two cycles
in graph Ga0 by two different ways, one of them spoils the Eulerian cycle of graph Ga2

but the other one does not, that is the cycle changes but still remains Eulerian.
Then chose another vertex a0′ ∈ A0 and two cycles with a common vertex in Ga0′ and
so on, until all the cycles in graphs Ga0 , a

0 ∈ A0 and all the corresponding cycles in
graphs Ga2 , a

2 ∈ A2 be Eulerian.
Consider the simplest example. Let plan P is given by bimatrix B = (2|2), then
#A0 = #A1 = #A2 = χ = 1; see §20.1. Both graphs Ga0 and Ga2 are ”simple
eights”, that is each one consists of doubled loop a. The corresponding two triplets are
{(a a), (a a), ((a), (a))} and {((a), (a)), (a a), (a a)} respectively. Thus Eulerian
cycle (a a) in graph Ga2 does not fit because it generates a map on a sphere with
two identified vertices instead of one. But the next Eulerian cycle (a a) generates the
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normal form map for a projective plane. This map has only one vertex and realizes
plan P .

24. An algorithm for the construction of a map realizing a given geographic plan is ob-
tained. This algorithm reduces to the construction of two associated sets of Eulerian
cycles in two given collections of Eulerian graphs {Ga0 ,a

0 ∈ A0} and {Ga2 , a
2 ∈ A2}.

One can use the standard method of successive union of cycles with a common vertex
applied by Euler in 1736. But only one from two possible ways of such a union should
be chosen on each step.

25. Multiplanet and multicolored maps (mm-maps). It will be convenient to ex-
pand the class of maps so that any even plan could be induced. A union of maps on
few different surfaces (planets) will be called a multiplanet map. Then let us color all
the vertices a0 ∈ A0 and all the countries a2 ∈ A2 of such a map with two different
sets of colors Co0 and Co2, where Co0 ∩Co2 = ∅. We assume that all the vertices and
all the countries of the same color are identified.
A coloring will be called:
proper if any two vertices (countries), incident to the same edge, that is adjacent, are
colored with different colors;
perfect if any two vertices (countries), incident to the same country (vertex), that is
neighbor, are colored with different colors;
motley if any two vertices (countries) are colored with different colors. A motley col-
oring is perfect, and a perfect coloring is proper.
A mm-map is referred to as a map if it is singleplanet and motley colored.

26. The corresponding operations with plans and their bimatrices. Let us con-
sider an arbitrary plan P =< G01, G21 >, where G01 =< A0, A1 > and G21= <
A2, A1 >. Then color all the 0-cells a0 ∈ A0 and all the 2-cells a2 ∈ A2 with two differ-
ent sets of colors Co0 and Co2, where Co0 ∩Co2 = ∅. Then identify all the 0-cells and
all the 2-cells of the same color and denote the obtained plan by P ′ =< G′

01, G
′
21 >.

Now let us consider bimatrices B =< B01, B21 > and B′ =< B′
01, B

′
21 > corresponding

to the plans P and P ′. Note that B′ can be obtained from B by the following simple
operations. For each color c ∈ Co0, (resp. c ∈ Co2) replace all the columns in matrix
B01 (resp. B21), corresponding to the 0-cells (2-cells) colored with c , by one column
equal to the sum of all these columns. Let us consider the examples

B =

 101 | 200
020 | 020
002 | 101

 → B′ =

 11 | 20
20 | 02
02 | 11

; (11|11) → (2|11) ⇒ (2|2).

Note that the first plan is locally connected but not connected, while the second one
is connected but not locally connected; the third plan is not even, while all the others
are even. Remind also that the sum of elements in each line is equal to 2 for any plan.
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Lemma 4. If plan P is even then P ′ is also even.
Proof. Let b′01, b

′′
01 be two columns from B01 and b01 = b′01 + b′′01. Then < b01, b21 >=<

b′01 + b′′01, b21 >=< b′01, b21 > + < b′′01, b21 > for any column b21 from B21, and the sum
of two even numbers is even.
Inverse implication does not hold; see the second example above. Still there is an
important special case when it holds.
Lemma 5. Any plan P ′ is generated by the unique locally connected and properly
colored plan P . Plans P and P ′ can be even only simultaneously.
Sketch of the proof. Let us chose in P ′ all the 0-cells from G01 (2-cells from G21) which
are not connected, split them into connected components, replace each component by
a separate cell, and color this cells by the same color. The obtained plan P is locally
connected and properly colored. To prove the second statement note that two columns
of B′

01 (resp. B′
21) are associated with adjacent 0-cells (2-cells) if and only if they do

not intersect, that is their scalar product is equal to 0. Thus elements of matrices B
and B′ take the same values and there may be only more elements equal to 0 in B.
The analogous statement holds for matrices B02 and B′

02.
See the first example above; note that P ′ is connected while P is not. For this reason
we can not restrict ourself by consideration of connected plans only.

27. Plans induced by mm-maps. Let us fix a mm-map M . Exchange provisionally
its coloring by the motley one. Denote the obtained multiplanet map by M ′. Each
planet of M ′ is a map, thus it induces a plan. Take the union of these plans for all
the planets of M ′ and denote the obtained plan by P ′ =< G′

01, G
′
21 >. Identify in

the graphs G′
01 and G′

21 respectively 0- and 2-cells, corresponding to vertices and coun-
tries of M ′ colored with the same color in M . Denote the obtained plan by P = P (M).

28. Criterion for plans to be mm-geographic. Theorem 2. For any mm-map the
corresponding plan is even, and any even plan is induced by a properly colored mm-
map. Moreover any locally connected even plan is induced by a motley colored mm-
map, but it can not be induced by a map which is colored perfectly but not motley.
Sketch of the proof. Let us fix an even plan P ′; then construct the locally connected
properly colored plan P , according to Lemma 5. (If P ′ is locally connected itself then
P = P ′.) Replace the coloring of P by the motley one. Each connected component
of the obtained plan is induced by a map according to Theorem 1. Take the union of
these maps realized by separate planets, and identify the colors backwards according
to the coloring of P . The obtained mm-map induces P ′.
All the operations applied above are unambiguous except for one: few maps and mm-
maps can induce the same even connected and locally connected plan; see the proof of
Theorem 1 in §23. Still, all the maps are motley colored by the definition, and there
is no perfectly colored one between mm-maps considered in §23, because any Eulerian
graph is connected and therefore coloring of P is either motley or not perfect.
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29. Semiregular maps and plans. Plan P =< G01, G21 > will be called semiregular
if it satisfies the following equivalent conditions.
a) There are no loops in graphs G01 and G21

b) All the elements of the corresponding bimatrix are equal 0 or 1, but not 2. c)
Ga0 = G′

a0 ∀a0 ∈ A0 and Ga2 = G′
a2 ∀a2 ∈ A2.

Map M will be called semiregular if it satisfies the following equivalent demands (see
§§9, 13 for definititions).
a) The corresponding plan is semiregular.
b) There are no loops and interior edges in M .
c) Circuits Ca0 and Ca2 are cycles for any a0 ∈ A0 and a2 ∈ A2.
d) Circuit Ca0 is a cycle but not a loop for any a0 ∈ A0.
e) Circuit Ca2 is a cycle but not a loop for any a2 ∈ A2.

30. Regular maps and plans. Plan P =< G01, G21 > will be called regular if it sat-
isfies the following equivalent conditions.
a) P is semiregular and graphs Ga0 and Ga2 are simple cycles for any a0 ∈ A0 and
a2 ∈ A2.
b) P is semiregular, graphs Ga0 and Ga2 are connected and B02(a

0, a2) = deg(Ga0 , a
2) =

deg(Ga2 , a
0) take only two values 0 and 2 for any a0 ∈ A0 and a2 ∈ A2.

Map M will be called regular if it satisfies the following equivalent conditions.
a) The corresponding plan is regular.
b) Circuits Ca0 and Ca2 are simple cycles for any a0 ∈ A0 and a2 ∈ A2.
c) Circuit Ca0 is a simple cycle but not a loop for any a0 ∈ A0.
d) Circuit Ca2 is a simple cycle but not a loop for any a2 ∈ A2.

Proposition 1. A map induced by a regular plan is unique (and by the definition
regular).
Proof. Graphs Ga0 and Ga2 are simple cycles for any a0 ∈ A0 and a2 ∈ A2 , thus
circuits Ca0 and Ca2 are unique simple cycles.

31. Dual maps and plans. Plan P ∗ dual to P is defined by formulas
P =< G01, G21 >, G01 =< A0, A1 >, G21 =< A2, A1 >;
P ∗ =< G∗

01, G
∗
21 >, G∗

01 =< A0∗, A1∗ >, G∗
21 =< A2∗, A1∗ >;

A0∗ = A2, A2∗ = A0, G∗
01 = G21, G

∗
21 = G01.

Let M =< S,G,Φ > be a map. In the interior of each country select a vertex (capital),
and in the interior of each edge select a vertex (custom-house). In every country a2

connect the capital with all custom-houses by paths not intersecting the boundary of
the country and each other. If an edge is interior then two different paths lead to the
same custom-house. Then eliminate the custom-houses. The resulting map will be
called dual of M and denoted by M∗.
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Proposition 2.
* a) A dual map M∗ is unique and is defined on the same surface S.
b) P ((M))∗ = P (M∗).
c) The operation * is an involution, that is P ∗∗ = P , M∗∗ = M .
d) The operation * preserves the regularity and semiregularity of maps and plans.
* e) Vertices (countries) of M∗ correspond to countries (vertices) of M , and their
circuits are also in correspondence.
f) Dual graphs G and G∗ of mapsM andM∗ have the edge-sets of the same cardinality;
there is a fixed one-to-one correspondence between these sets. Via this correspondence
loops in G are associated with loops in G∗ and conversely.
g) Pair of graphs G, G∗ uniquely determines the plan of the map:

P (M) =< G,G∗ >=< G01, G21 >

Proof and more details see in [3],§4.2.

32. The problem of realizing of a given set of degrees by a map. Let us fix #A1

Then it follows from inequality χ ≤ 2 that #A0 and #A2 can take a finite number of
integer positive values such that

#A0 +#A2 ≤ #A1 + 2. (5)

Consider two sets of integer positive numbers

p0 = {p01, p02, ..., p0#A0
}, p2 = {p21, p22, ..., p2#A2

}. (6)

The problem is to construct a map with sets of degrees of vertices and countries given
by (6) or to prove that there is no such a map. All the degrees are unambiguously
determined by the corresponding plan. Thus the problem can be radically simplified
due to Theorem 1. The degrees of vertices and countries of a map are equal to the
sums of elements in the columns of the corresponding bimatrix. Remind that the sum
of elements in each line of each matrix must be equal to 2. Thus

#A0∑
i=1

p0i =

#A2∑
j=1

p2j = 2#A1. (7)

must hold otherwise there are no solutions. Note that there are only a finite number
of solutions of (7) for any given #A1.
Proposition 3. Any two sets of degrees (6) which satisfies to (5,7) can be realized by
an even plan (and consequently by a mm-map).
Proof will be constructive. The promised plan will be given by the corresponding
bimatrix. We are going to chose its ”bilines” one by one in such a way to eliminate all
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the numbers in sets P 0 and p2.
It will be done by two steps. At first we use bilines of the types (2; 1, 1) and (1, 1; 2)
to eliminate all the odd degrees in P 0 and p2. Then we use bilines of the type (2; 2)
to eliminate all the left even degrees. Any plan, obtained by this way, must be even
because there were no bilines of the type (1, 1; 1, 1) at all.
The second step is always possible, but the first one is not. Each number k2 from p0

(resp. p2) enable us to convert f(k) odd numbers from P 2 (resp. p0) into even; where
f(k) = 2⌊k

2
⌋, that is f(k) is equal to k or k − 1 for even and odd k respectively. We

can convert into even at least 2#A1 − #A0 odd numbers from p2 and 2#A1 − #A2

odd numbers from p0. Thus there are no problems if

2#A1 −#A0 ≥ #A2 and 2#A1 −#A2 ≥ #A0

Both these inequalities are equivalent to

#A0 + A2 ≤ 2#A1, i.e. χ ≤ #A1. (8)

Note that (8) ⇐ (5) if only #A1 > 1.
Remark. Proposition 3 holds even if we change (5) by a weaker inequality (8). This
generalization is actual because the multiplanet maps really can really violate (5).
Thus it follows from (5,7) that (6) can be realized by an even plan and consequently by
a mm-map. But it does not follow from (5,7) that (6) can be realized by a geographic
(that is even, connected and locally connected plan) and consequently by a standard
map. Really there are exclusions. They are given below for #A1 ≤ 3.

For #A1 = 1 sets of degrees (2; 1, 1) and (2; 2) are realized by geographic bima-
trices (2|11) and (2|2) respectively; and set (1, 1; 1, 1) does not satisfy (5), because
χ = 2 + 2− 1 = 3 > 2.

For #A1 = 2 sets of degrees
(4; 4), (4; 3, 1), (4; 2, 2), (4; 2, 1, 1), (3, 1; 3, 1), (2, 2; 2, 2)
are realized respectively by the following geographic bimatrices(

2 | 2
2 | 2

)
,

(
2 | 20
2 | 11

)
,

(
2 | 11
2 | 11

)
,

(
2 | 110
2 | 101

)
,

(
20 | 11
11 | 20

)
,

(
11 | 11
11 | 11

)
,

But set (3, 1; 2, 2) is the exclusion. It can not be realized by a geographic plan, though
it satisfies (5,7). All the left sets, which satisfy (7), do not satisfy (5).

For #A1 = 3 sets of degrees
(5, 1; 5, 1), (5, 1; 4, 2), (5, 1; 3, 3), (4, 2; 4, 2), (4, 2; 3, 3);
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(5, 1; 4, 1, 1), (5, 1; 3, 2, 1), (4, 2; 3, 2, 1), (3, 3; 4, 1, 1), (3, 3; 2, 2, 2);
(6; 3, 1, 1, 1), (6; 2, 2, 1, 1)
are realized respectively by the following geographic bimatrices 20 | 11

20 | 20
11 | 20

,

 20 | 11
20 | 11
11 | 20

,

 20 | 11
20 | 20
11 | 02

,

 20 | 20
11 | 11
11 | 11

,

 20 | 11
11 | 11
11 | 11

; 20 | 101
20 | 110
11 | 200

,

 20 | 011
20 | 110
11 | 200

,

 20 | 101
11 | 110
11 | 110

,

 20 | 110
02 | 101
11 | 200

,

 11 | 110
11 | 101
11 | 011

; 2 | 1100
2 | 1010
2 | 1001

,

 2 | 1100
2 | 1010
2 | 0101

.

There are also the following five exclusions:
(3, 3; 3, 3), (3, 3; 3, 2, 1), (4, 2; 4, 1, 1), (4, 2; 2, 2, 2), (5, 1; 2, 2, 2).

And all the left sets are either trivial or do not satisfy (5).
Note that only one set and plan from any dual pair was considered.
Proposition 4. If plan P =< G01, G21 > is is connected and locally connected then
both graphs G01 and G21 must be connected.
Proof. Suppose G01 is not connected. If there exists a 2-cell from G21 which is incident
to two different components of G01 then plan P is not locally connected. If each 2-cell
from G21 is incident to only one component of G01 then plan P is not connected.

33. Platonous maps, plans and bimatrices are defined by equalities

P 0
i = p0 ∀ i = 1, 2, ...,#A0; P 2

j = p2 ∀ j = 1, 2, ...,#A2. (9)

In other words all the degrees of vertices and of countries must be equal. Formulas
(7,9) provide the following replacement of variables

(P 0, p2, χ) ↔ (#A0,#A1,#A2);

p0 = 2#A0/#A1, p2 = 2#A1/#A2, χ = #A0 −#A1 +#A2;

#A0 = χ/(p0 r), #A2 = χ/(p2 r), #A1 = χ/(2r). (10)

r =
1

p0
+

1

p2
− 1

2
= (#A0 −#A1 +#A2)/(2#A1) = χ/(2#A1).

A Platonous map can exist only if numbers #A0 and #A2 are dividers of 2#A1. But
this is not sufficient. Consider the following example
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(#A0,#A1,#A2) = (2, 3, 2); (p0, p2, χ) = (3, 3, 1). (11)

Then there exists only one even plan with such degrees. This plan is given by bima-

trix B =

 20 | 11
11 | 02
02 | 11

; connected. Thus there exists no map with given degrees

(3, 3; 3, 3), in accordance with §32.
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