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Games of no return 1

Jack Edmonds and Vladimir Gurvich

Abstract. Let D = (V,A) be a finite directed graph (digraph) each vertex v ∈ V
of which is interpreted as a position and each arc a = (v, v′) ∈ A as a possible move
from position v to v′. Two players, 1 and 2, take turns moving a token from a given
initial position v0. The game ends as soon as the token returns to a position, where
it has already been. By definition, the player who made the last move loses, while
the opponent wins (in the standard version, and vice versa in the misere version).
The defined games of no return generalize classical combinatorial (NIM-type) games.
Indeed, every such game (D, v0) on an acyclic digraph D turns into a game of no
return (D′, v0) after adding a loop to every terminal vertex of D. In this case, D has
a unique kernel K ⊆ V and player 2 wins iff v0 ∈ K. The kernel can be obtained in
linear time by the well-known von Neumann algorithm.
Interestingly, a no return games (D, v0) can be solved in polynomial time also in case
when digraph D = (V,A) is symmetric, that is, a = (v, v′) ∈ A iff a′ = (v′, v) ∈ A.
Let us replace every such pair of arcs by a non-directed edge e = (v, v′) and denote
by G the obtained non-directed graph. We show that player 1 wins in the symmetric
game (D, v0) iff every maximum matching of G contains v0. Moreover, a move (v0, v)
is winning iff edge (v0, v) belongs to such a maximum matching. Both conditions
can be verified in polynomial time, due to the polynomial algorithm for finding a
maximum matching of a graph given by the first author in 1965.
We suggest a polynomial algorithm for solving games for a slightly larger class of
digraphs, which contains both acyclic and symmetric ones. Let us note that these
games (as well as the symmetric and combinatorial games) can be solved in the
positional strategies, that is, an optimal move (v, v′) in any position v depends only
on v, not on the preceding positions and moves. Yet, for general digraphs, it is not
always the case and a winning strategy might require an exponential description.
We show that problem Q of solving a no return game is both NP- and coNP-hard.
Moreover, Q ∈ NP iff Q ∈ coNP . Thus, it is unlikely that Q belongs to NP or coNP.
Indeed, then Q would be both NP- and coNP-complete, implying NP = coNP .
In fact, the same construction proves NP-hardness of the four types of games, in
which a position or move should or should not be repeated; the games of (no) return
and of (no) repetition. Yet, for the acyclic and symmetric digraphs, problem Q is
polynomial in all four cases.
Keywords: games of no return, combinatorial games, positional strategy, symmet-
ric digraph, kernel, Sprague-Grundy function, maximum matching, NP, coNP .
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1 Introduction

1.1 General definitions and results

Let D = (V,A) be a finite directed graph (digraph). Its vertex v ∈ V and arc a = (v, v′) ∈ A
will be interpreted as a position and possible move from it, respectively.

Loops and oppositely directed arcs, a = (v, v′), a′ = (v′, v) are allowed but for convenience
we will not allow parallel arcs, that is, no two distinct arcs can lead from v to v′.

Two players, 1 and 2, take turns moving a token along the arcs of A; player 1 begins
from a given initial position v0. The game ends as soon as the token returns to a position
in which it has already been before. By definition, the player who made the last move loses,
while the opponent wins; in the standard version, and vice versa in the misere version, which
we will logically call the game of return. The standard version will be considered unless it
is explicitly said otherwise.

The obtained trajectory of the token in D will be called a lasso and a simple directed
path beginning from v0 (that is a lasso without several last moves) will be called a debut.

Let us notice that the number of lassos and debuts might be exponential in n = |V |.
The pair (D, v0) is called a game of no return in positional form.
A strategy of player 1 (respectively 2) is a mapping that assigns a move a = (v, v′) ∈ A

to every debut that ends in v and consists of even (respectively, odd) number of moves.
A strategy is called positional if this move a = (v, v′) ∈ A depends only on v, that is, it

does not depend on the preceding positions or moves of the debut.
To specify a positional strategy it would suffice to fix at most n arcs: one in each vertex.

In contrast, for a general (not necessarily positional) strategy an arc should be chosen for
each odd, or respectively even, debut. Both these sets of debuts might be exponential in n.
Thus, an exponential input might be required to fix a general strategy.

Respectively, the number of general strategies might be doubly exponential, while the
number of positional strategies is at most exponential in n = |V |.

Example 1 Consider game of (no) return (D, v0) with a bipartite digraph D in Figure 1.
It is easy to verify that player 2 wins both the standard and misere versions. Let us notice
that in each case the winning strategy is unique and not positional. Indeed, it is easy to see
that in the most right position v the winning move of player 2 depends on the debut; it also
depends on the the played version, the standard or misere one.

For a similar example, see construction in the proof of Theorem 1 in Section 3.1.

Being finite games with perfect information, games of no return can be solved in general
(pure) strategies; in other words, either (Q1) player 1 has a winning strategy, or (Q2) player
2 has such a strategy; see Section 2.4 for more details.

Yet, what is the complexity of the corresponding two decision problems? Obviously, Q1
holds if Q2 fails and vice versa. It is also clear that problems Q1 and Q2 are polynomially
equivalent. Indeed, in order to reduce Q1 to Q2, or vice versa, it is enough to add to the
digraph D one new arc leading from a new vertex v00 to v0. Obviously, players 1 ad 2 swaps
in the two games and 1 wins in one of them iff 2 wins in the other.
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v0

Figure 1: Player 2 wins in four games: of (no) return and (no) repetition, both standard
and misere versions, but none of them (s)he can win in positional strategies.

Theorem 1 Problem Q1 is NP-hard.

The proof will be given in Section 2. This claim can be immediately extended to the
statement that both Q1 and Q2 are both NP- and coNP-hard. Thus, it is unlikely that Q1
or Q2 is in NP or coNP, that is, {Q1, Q2} ∩ (NP ∪ coNP ) = ∅. Indeed, otherwise both Q1

and Q2 would be both NP - and coNP -complete, and hence, NP = coNP .

1.2 Polynomially solvable cases

Yet, there are two important types of digraphs for which problems Q1 and Q2 are polynomial.
In both cases the corresponding games will be solved in positional strategies.

1.2.1 Combinatorial games on acyclic digraphs

First, let us demonstrate that the classical combinatorial games are a special case of games
of no return. Given a finite acyclic digraph D = (V,A) and initial position v0 ∈ V , the
combinatorial game (D, v0) is defied by the same rules as the corresponding game of no
return, with one natural correction. Since no position of the digraph D can appear in a play
twice, due to the acyclicity of D, the game is over as soon as a player has no move. By
definition, this player loses, while the opponent wins; in the standard version, and vice versa
in the misere version.

Combinatorial games are well known. In particular, digraph D has a unique kernel K ⊆ V
and player 2 wins iff v0 ∈ K; the kernel can be found in linear time by von Neumann’s
algorithm; see Section 2.1 for the precise definitions, more details, and references.

Let us add a loop to each terminal vertex of D and denote the obtained digraph D′. The
original combinatorial game (D, v0) and obtained game of no return (D′, v0) are equivalent,
since there is an obvious one-to-one correspondence between the lassos of D′ and plays
(directed paths from v0 to a terminal) of D.

1.2.2 Games of no return on symmetric digraphs

Interestingly, a game of no return (D, v0) can be solved in polynomial time also in case when
digraph D = (V,A) is symmetric, that is, a = (v, v′) ∈ A iff a′ = (v′, v) ∈ A.
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Figure 2: EGGS function g(v0) taking values 1 or 2

Let us replace every such two arcs by a non-directed edge e = (v, v′) and denote the
obtained non-directed graph by G.

Theorem 2 In a symmetric game of no return (D, v0) player 1 wins iff v0 belongs to every
maximum matching of G. Moreover, a move (v0, v1) of player 1 is winning iff edge (v0, v1)
belongs to such a maximum matching.

A simple and constructive proof will be given in Section 3.3.
Now, let us notice that Theorem 2 allows us in polynomial time to decide whether player

1 wins in game (D, v0) and to find all winning moves when the answer is positive.
This is due to the polynomial time algorithm of finding a maximum matching in a graph

developed by the first author in 1965 [6]. Indeed, making use of this algorithm, let us
find maximum matchings M in G and M ′ in G[V \ {v0}]. Obviously, player 2 wins when
|M | = |M ′| and player 1 wins if |M | > |M ′|. In the last case, we can find all winning moves in
v0 as follows. For every move (v0, v1) let us find a maximum matching M1 in G[V \ {v0, v1}].
Clearly, the move (v0, v1) is winning when |M | = |M1|+ 1 and it is losing if |M | > |M1|+ 1.
For example, one can easily verify the above conditions for the games in Figure 2, in which
one move from v0 is winning, while the other one is losing.

Let us also note that, by Theorem 2, if if a player wins then (s)he has a positional winning
strategy that, as we already mentioned, can be determined in polynomial time.

Remark 1 Let us refer to [14, 15, 16, 4] for another problem of positional game theory that
seems too difficult in general but can be efficiently solved for symmetric digraphs.

Finally, let us remark that the misere version of a symmetric game, or in other words, a
symmetric game of return, is trivial, since player 2 obviously wins.

1.2.3 Games of no return on symacyclic digraphs

The results of the above two subsections can be easily combined as follows.
A digraph D = (V,A) will be called symacyclic if it can be partitioned in symmetric

components such that every directed cycle of D belongs to one of them, or in other words,
if an acyclic digraph appears after contraction of all these components.

Obviously, both symmetric and acyclic digraphs are symacyclic. They correspond to the
cases of one and n = |V | trivial components, respectively.
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Theorem 3 A game of no return (D, v0) with a symacyclic digraph D has a solution in
positional strategies, which can be found in polynomial time.

The proof will be given in Section 3.4.

1.3 Games of no repetition

Let us slightly modify the rules and assume that the game is over as soon as an arc (rather
than a vertex) appears in the play the second time. By definition, the player who made the
last, ”repeated”, move loses; in the standard version, and (s)he wins in the misere version.
The latter will be consistently called a game of repetition.

The games of (no) repetition differ substantially from the games of (no) return, yet, can
be polynomially reduced to them by the following simple transformation.

Given a game (D, v0) of no repetition, let us extend digraph D by one vertex v00 and one
arc a0 = (v00, v0) and denote the obtained extended digraph by D′. Furthermore, let L(D′)
be the line digraph of D′, that is, a vertex w of D′ is assigned to each arc (v1, v2) of D and
D′ contains an arc (w,w′) iff two corresponding arcs of D are series: (v1, v2), (v

′
1, v
′
2), and

v2 = v′1. The initial position v0 is assigned to a0 by convention.

Proposition 1 The original game of (no) repetition (D, v0) and the obtained game (L(D′), a0)
of (no) return are equivalent.

Proof . Indeed, there is an obvious one-to-one correspondence between the repetition-free
debuts of the first game and the (return-free) debuts of the second one. In particular, there
is a one-to-one correspondence between the plays of the two games and it is immediate to
verify that the results of the corresponding plays are always the same. 2

For example, if (D, v0) is an arborescence T with the root v0 and a loop added to each
terminal of T then we obtain L(D′) from D by inserting one extra arc before each loop.

A more complicated, example is given in Figure 3.

Thus, combinatorial games provide four polynomially solvable cases: games of (no) return
and (no) repetition, in the standard or misere version.

However, for games of no return there are other interesting polynomial cases: symmetric
and symacyclic games. It would be interesting to find some polynomial cases for the games
of no repetitions, too. In general, the problem is hard.

Theorem 4 To solve a game of (no) repetition is NP-hard.

The problem is reduced from SAT by the same gadget as for Theorem 1, see Section 3.1.
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Figure 3: A game of no repetition and the equivalent game of no return.
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2 Reducing games of no return to combinatorial games

2.1 Finite acyclic combinatorial games

Given a finite acyclic digraph D = (V,A) and initial position v0 ∈ V , two players 1 and 2
take turns moving a token along the arcs of A; player 1 begins in v0. Since D is finite any
play will terminate. By definition, the player who made the last move wins (in the standard
version, and the opponent wins in the so-called misere version).

A kernel is a set of positions K ⊆ V which is

(i) independent, i.e., there is no move (v, v′) such that both v, v′ ∈ K and

(ii) absorbing, that is, for each v 6∈ K there is a move (v, v′) such that v′ ∈ K.

Every acyclic digraph has a unique kernel K [21]. By (ii), each final position belongs to
K. It is easy to show that a player who came to a position v ∈ K, say player 2, can win.
Indeed, by (i), player 1 must leave K, then by (ii), player 2 can reenter K, then 1 must leave
K again, and 2 can again reenter, etc. Note that by (ii), player 1 cannot enter a terminal
position, so player 2, sooner or later, will enter it, since digraph D is acyclic and finite.

The kernel in D can be found by in linear time as follows [21]. For i = 0, . . . , n − 1 in
iterations i find in the current digraph the set of all terminals Vi and then the set V ′i of all
vertices from which Vi can be reached in one move. Delete Vi ∪ V ′i from i and repeat;

⋃
i Vi

is the (unique) kernel in D. Starting in V ′i one can win in 2i + 1 moves; beginning in Vi one
cannot win but can resist 2i moves.

The theory of combinatorial games was started by Charles Bouton in 1901 by the paper
”Nim, a game with a complete mathematical theory” [5]. Let us notice that in fact already
in this paper the concept of kernel and the above linear time algorithm for its computing
appears, yet, only for the digraph of NIM. In [21] these results were just extended to general
digraphs. It is also worth mentioningg that in [5] both the standard and misere versions of
NIM were studied. Now, the standard and misere combinatorial games have an extensive
literature; see, e.g., [1, 3, 5, 3, 7, 8, 9, 10, 11, 12, 13, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32].

2.2 Sum of combinatorial games and Sprague-Grundy functions

Given two combinatorial games G1 = (D1, v
1
0) and G2 = (D2, v

2
0), their sum G1 +G2 is defined

as follows. By each move, a player chooses either G1 or G2 and moves the token in it leaving
the token in the other game in its place. The game G1 + G2 is over as soon as terminal
positions are reached in both G1 and G2. The player who cannot move loses. Respectively,
in the misere version this player wins. Obviously, the operation G1 +G2 is associative, hence
the sum G1 + . . . + Gm is well defined. How to play the sum? Even if we know both kernels
K1 and K2 we still do not know the kernel K of G1 + G2. Indeed,

if v1 ∈ K1 and v2 ∈ K2 then (v1, v2) ∈ K,

if v1 ∈ K1 and v2 6∈ K2 then (v1, v2) 6∈ K,

if v1 6∈ K1 and v2 ∈ K2 then (v1, v2) 6∈ K,
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and yet, if v1 6∈ K1 and v2 6∈ K2 then the status of (v1, v2) is unknown, it can be in K or not.
Theory of playing the sums was developed by Sprague, 1936 [30], and Grundy, 1939 [17].
They generalized the concept of kernel as follows. Given S ⊆ ZZ+ = {0, 1, . . .}, the

minimum excluded value of S is defined as mexS = min(ZZ+ \ S). Given a digraph D =
(V,A), its Sprague-Grundy function (SG-function) g is defined recursively as folllows: g(v) =
0 if v is a terminal position of D and g(v) = mex{g(w)|(v, w) ∈ A}, that is, the SG-value
of v is the smallest non-negative integer which does not appear among SGF’s values of the
immediate successors of v.

Lemma 1 The SG-function g(v) is strictly less than the out-degree of v. In particular, the
SG-function of a digraph is strictly bounded by its maximum out-degree.

Proof . It follows immediately from the above recursive definition of the SG-function. 2

The main two results of the Sprague-Grundy theory are given by the next two claims.

Theorem 5 The kernel of a digraph is the set of zeros of its Sprague-Grundy function. 2

Yet, not only zeros are important. Given a, b ∈ ZZ+, let us write them as binary numbers
and add them bitwise mod 2. The obtained number c = a ⊕ b is called the Nim-sum
of a and b. For example, 1 ⊕ 2 = 012 + 102 = 112 = 3, 2 ⊕ 3 = 102 + 112 = 012 = 1,
3⊕ 1 = 112 + 012 = 102 = 2, 1⊕ 2⊕ 3 = 012 + 102 + 112 = 002 = 0.

Since the NIM-sum is associative, it is well defined for m numbers.

Theorem 6 The Sprague-Grundy function of the sum of m games G1 + . . . + Gm is the
NIM-sum of their Sprague-Grundy functions, g(v1, . . . , vm) = g1(v1)⊕ . . .⊕ gn(vm). 2

For example, NIM with m piles of beans is the sum of m games with one pile each.
Of course, one-pile NIM is trivial: the first player can win immediately. Yet, the one-
pile NIM SGf is g(xi) = xi and hence, the SGf of the m pile NIM is g(x1, . . . , xm) =
g1(x1)⊕ . . .⊕ gm(xm). The zeros of this function are exactly the positions of NIM in which
the beginning player cannot win (in other words, they form the kernel). These arguments
lead to the solution of NIM obtained by Bouton [5].

In general, given m combinatorial games G1, . . . ,Gm whose SG-functions g1, . . . , gm are
known, the Sprague-Grundy theory enables one to play the sum G = G1 + . . .+Gm. It is not
more difficult than playing NIM with m piles. To find an optimal move in a position v =
(v1, . . . , vm) of G, one should just compute the NIM-sum g(v1, . . . , vm) = g1(v1)⊕. . .⊕gm(vm),
by Theorem 6. The zeros of g form the kernel of G, by Theorem 5.

2.3 Games of no return in extensive form

Every game of no return (D, v0) can be equivalently represented as a combinatorial game
(T,w0) on an arborescence (directed tree) T . Yet, such a transformation is exponential.
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To every debut (that is, a simple directed path p in D beginning in v0) let us assign a
vertex w = w(p) and include an edge (w,w′) from w = w(p) to w′ = w(p′) in T iff p′ is a one
move extension of p. The initial position w0 in T is defined by the 0-path, which contains
only v0, in D. By construction, w = w(p) is a terminal position of T iff every one-move
extension p′ of p is a lasso, or in other words, if each move from w returns to p.

Proposition 2 The original game of no return (D, v0) and obtained combinatorial game
(T,w0) are equivalent. 2

Proof . It follows immediately from the above construction and definitions.
Let us also remark that for each vertex w of T its in-degree is 1, while its out-degree is

at most the out-degree of the end-vertex v of the path p(v) in D; this is also a strict upper
bound for the SG-value in w.

2.4 Sums of games of no return and EGGS functions

In particular, the SG-function g can be translated from T to D. However, in D it will be a
function of the debuts, not positions. Still, g is well defined in the initial position v0.

Following its recursive definition, one can compute in linear time the SG-function in T .
Yet, the size of T might be exponential in the size of D, and the complexity of computing
g(v0) remains an open problem. We will call g(v0) EGGS-function.

These functions are instrumental in solving the sums of games of no return. Given m
such games Gi = (Di, v

i
0); i ∈ [m] = {1, . . .m}. The sum G = ⊕m

i=1Gi = G1 ⊕ . . . ⊕ Gm is
defined, similarly to the sum of combinatorial games, as follows. By each move, a player
chooses an i ∈ [m] and moves the token in the game Gi leaving m−1 tokens of the remaining
games in their places. The sum G is over as soon as one token returns to a position in which
it has already been before. The player who made the last move loses; respectively, in the
misere version this player wins.

An efficient algorithm, or oracle, that outputs the EGGS-functions gi = gi(v
i
0) for i ∈ [m]

would allow us to find an optimal move in the initial position v0 = {vi0; i ∈ [m]} of the sum
G as follows. Let us compute all m EGGS-functions and their NIM-sum g0(v0) = ⊕m

i=1gi(v
i
0).

If g0(v
0) = 0 then, by Theorem 5, in v0 there are no winning moves. Yet otherwise, if

g0(v
0) > 0, by Theorem 6, there is a j ∈ [m] such that in game Gj = (Dj, v

j
0) there is a move

(vj0, v
j
1) reducing the EGGS-function gj = gj(v

j
0) by a positive integer ` so that the NIM-sum

becomes 0. Such j ∈ [m] and ` can be found, in the same standard way as in the classical
game of NIM [30, 17].

Then, we can find the winning move in G as follows. Let us consider one by one all first
moves (vj0, v

j
1) in the game Gj; in each case eliminate vj0 from Gj and make use of the oracle

to compute the EGGS-function g1j (vj1) for the obtained subgame Gj1 = (Dj[Vj \ {v0j}], v
j
1).

By Theorem 6, there is a move (vj0, v
j
1) such that gj(v

j
0) is reduced by ` and, by this, the

NIM-sum of the EGGS-functions is reduced to 0. This is the winning move in G.
Unfortunately, it is difficult to compute the EGGS-functions, in general. Given a game

of no return (D, v0) and a positive integer threshold t, let us consider the following decision
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problem Qt: whether g(v0) ≤ t or g(v0 > t? By Theorem 1, the problem is NP-hard, in
general. Yet, by Theorem 2, problem Q0 is polynomial in case of the symmetric (and even
symacyclic) digraphs. Still, problem Q1 remains open, even for the symmetric digraphs
whose degree is bounded by a constant c. By Lemma 1, in this case the EGGS function is
bounded by c − 1. Examples on the Figure 2 show that even in this case the length of the
debuts that should be analyzed might be unbounded.

In any case, a polynomial algorithm or oracle computing the EGGS-function for a family
F of games of no return (for example, for symmetric games) would allow us to solve the
sums of games from F in polynomial time.

3 Proofs

3.1 Arbitrary digraphs; proof of Theorems 1 and 4

Let us show that Q1 is NP-hard, i.e., this is NP-hard to decide whether player 1 wins in the
game (D, v0). We will reduce Q1 from the classical NP-complete problem SAT: satisfiability
of a CNF C =

∧m
j=1 Cj of n variables and m clauses.

First, to every variable xi of C (for i = 1, . . . , n) let us assign a digraph defined by the
four edges (ui, xi), (xi, wi), (ui, xi), (xi, wi) and connect the obtained n digraphs successively
identifying wi and ui+1 for i = 1, . . . , n − 1. We obtain a series-parallel bipartite digraph
with 2n + (n + 1) vertices and 4n arcs; see the example in Figure 4. There are 2n directed
pathes through this digraph from v0 = u1 to wn. They are in a one-to-one correspondence
with 2n assignments of variables x1, . . . , xn. Player 1 is in full control and can chose any
one of these 2n assignments-pathes. Then let us add m + 1 new arcs: (wn, c) and (c, cj) for
j = 1, . . . ,m. Let us assign to each position cj the j-th clause Cj of the CNF C and add
arcs leading from cj to the vertices corresponding to all literals of Cj; see example in Figure
4, where

C = C1 ∧ C2 ∧ C3 = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3).

It is easy to verify that the obtained digraph is bipartite. Hence, for each position v it is
well defined which player makes a move in v. In fact, player 2 makes a non-trivial decision
only in position c, that is, she chooses a clause of CNF C, while player 1 makes all other
decisions, that is, he chooses an assignment and a variable in every clause. It is easy to see
that he wins whenever there is a satisfying assignment for C. To do so, he should choose
a satisfying literal for every clause and then the unique directed path from u1 = v0 to wn

avoiding all chosen literals; see example on Figure 3, where the literals x3, x2, and x1 satisfy
the clauses C1, C2, and C3, respectively.

Let us remark that the above winning strategy of player 1 is positional, by construction.
Conversely, player 2 wins whenever CNF C is not satisfiable. In this case, for every

directed path p from u1 to wn chosen by player 1 there is a vertex cj such that every arc
from cj terminates in p. Hence, (c, cj) is a winning move for player 2.

Let us notice, however, that cj (typically) depends on p. Hence, the winning strategy of
player 2 may be not positional. 2
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x1 x2 x3

v0
x1 x2 x3

Figure 4: Reduction from SAT to games of no return; player 1 wins iff the corresponding
CNF is satisfiable. The same gadget works for both the standard and misere versions of
games of (no) return and (no) repetition.

The same gadget proves Theorem 4 as well. However, let us note that player 1 wins in
the game of no return iff player 2 wins in the game of no repetition.

3.2 Games of return and of repetition are NP-hard to solve, too

The misere version for games of no return (respectively, of no repetition) is defined by the
same rules as the standard version, yet, the result of each play is opposite, that is, the player
repeating a position (respectively, a move) wins rather than loses. Thus, it would be natural
to call these games the games of return (respectively, of repetition).

Let us note that making use of the gadget from the previous subsection we can prove
NP-hardness for both, the standard and misere versions. The only minor difference is that
in the latter case the directed path p is chosen in accordance with the assignment, while in
the former case p is complementary.

Let us notice that in the bipartite digraph in Figure 1 player 2 can win all four games: of
(no) return and of (no) repetition, that is, both the standard and misere versions. Also, let
us note that misere version is trivial for the symmetric games, since player 2 always wins.

The misere combinatorial games have an extensive literature; see, for example, [1, 3, 5,
3, 7, 8, 19, 28, 29, 31, 32].

3.3 Symmetric digraphs; proof of Theorem 2

First, let us show that player 2 wins in game (D, v0) whenever there is a maximum matching
M in G avoiding v0. In this case, a winning (positional) strategy of player 2 can be defined
as follows: if vertex v belongs to M (i.e., in G there is an edge (v, v′) ∈ M) then player 2
should chose the corresponding move (v, v′) in D; otherwise an arbitrary move. The point is
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that ”otherwise” will never happen. Indeed, for any move (v0, v1) of player 1, vertex v1 must
belong to M , since M is maximum. Indeed, otherwise M could be extended by edge (v0, v1),
since none of its two vertices belongs to M . Then, according to the chosen strategy, player
2 makes the (unique) move (v1, v2) in D such that (v1, v2) ∈ M in G. And again, for every
move (v2, v3) of player 1, vertex v3 must belong to M , since M is maximum. Otherwise, M
could be enlarged by replacing the edge (v1, v2) by two edges (v0, v1) and (v2, v3), since v0
and v3 do not belong to M , etc.

In general, for every step i = 1, 2, . . . , the 2i-th move (v2i−1, v2i) (of player 2) is uniquely
defined by M , in accordance with the chosen strategy; while for every (2i − 1)-st move
(v2i, v2i+1) (of player 1) vertex v2i+1) must belong to M , since M is maximum. Indeed, oth-
erwise M could be enlarged by replacing {(v1, v2), . . . , (v2i−1, v2i} by {(v0, v1), . . . , (v2i, v2i+1},
since v0 and v2i+1 do not belong to M .

Thus, player 1 always makes a move leading from one edge of M to another, while player
2 always makes a move (v2i−1, v2i) corresponding to an edge of M , in accordance with the
chosen strategy. Let us show that the obtained position v2i could not appear earlier in the
play, which means that player 2 cannot lose. Indeed, v2i 6= v0, since v0 does not belong to
M , while v2i does. Then, who could come to v2i before? If player 1 then the move (v2i, v2i−1)
(of player 2) would follow immediately after; if player 2 then only from v2i−1; in both cases
position v2i−1 would appear in the play twice, earlier than v2i did. 2

Now, let us prove that player 1 wins in game (D, v0) if v0 belongs to all maximum
matchings of G. To do so, let us fix such a matching M and show that the following
(positional) strategy of player 1 is winning : if vertex v belongs to M , i.e., in G there is an
edge (v, v′) ∈ M , then player 1 should choose the corresponding move (v, v′) in D and an
arbitrary move otherwise.

Let us notice that this strategy is defined by exactly the same rule as the above winning
strategy of player 2 and again we will show that ”otherwise” never happens.

Let M contain (v0, v1). This will be the starting move of player 1. Let us show that for any
move (v1, v2) of player 2 vertex v2 belongs to M . Indeed, otherwise one can replace (v0, v1)
by (v1, v2) and get a maximum matching M ′ avoiding v0, a contradiction. Then, player 1
chooses a unique move (v2, v3), in accordance with M . And again for every move (v3, v4) of
player 2, vertex v4 must belong to M . Indeed, otherwise one can replace {(v0, v1), (v2, v3)}
by {(v1, v2), (v3, v4)} and get a maximum matching M ′ avoiding v0, a contradiction.

In general, for every step i = 1, 2, . . . , the 2i − 1-st move (v2i−2, v2i−1) (of player 1)
is uniquely defined by M , in accordance with the chosen strategy; while for every 2i-th
move (v2i−1, v2i) (of player 2) vertex v2i) must belong to M , since otherwise one can replace
{(v0, v1), . . . , (v2i−2, v2i−1)} by {(v1, v2), . . . , (v2i−1, v2i)} and get a maximum matching M ′

avoiding v0, a contradiction. To show that player 1 cannot lose, we just repeat the last part
of the previous proof replacing players 1 and 2. 2

Assuming that v0 belongs to every maximum matching in G, we wish to prove that a move
(v0, v1) of player 1 is winning in game (D, v0) iff (v0, v1) belongs to a maximum matching
of G. We have just finished with the ”if part”. To proceed with the ”only if one”, let us
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consider the partition N = N+ ∪ N−, where N = N(v0) is the set of all vertices adjacent
to v0 in G, while N+ = N+(v0) (respectively, N− = N−(v0)) consists of all vertices v1 such
that (v0, v1) is (respectively, is not) in a maximum matching of G. We have already proven
that move (v0, v1) is winning when v1 ∈ N+ and now want to show that otherwise this move
is losing. It results from the following claim.

Lemma 2 Every vertex of N− belongs to each maximum matching of the induced subgraph
G[V \ {v0}].

Proof . Let us assume indirectly that a vertex v1 ∈ N− does not belong to a maximum
matching M of G[V \ {v0}]. Then, adding (v0, v1) to M , we obtain a maximum matching in
G that contains (v0, v1), in contradiction with v1 ∈ N−. 2

Now, the desired statement follows from the first part of Theorem 2, proven above. 2

Remark 2 An algorithm that finds a maximum matching in a bipartite graph was suggested
by Claude Berge in 1957 [2]. This algorithm and the above proof are both based on the method
of augmenting paths.

3.4 Symacyclic digraphs; proof of Theorem 3

By definition, a symacyclic digraph D = (V,A) is partitioned into k ≥ 1 symmetric subgraphs
Di = (Vi, Ai), i ∈ [k] = {1, . . . , k} that form an acyclic digraph Γ; in other words, V = ∪ki=1Vi

is a partition of V and every directed cycle of D is contained in Di for some i ∈ [k].

First, let us solve (in positional strategies) all symmetric games (Dt, v), for each symmet-
ric digraph Dt = (Vt, At), corresponding to a terminal vertex of Γ, and each initial positions
v ∈ Vt. Due to acyclicity of Γ, the obtained solutions of the subgame (Dt, v) coincide with
solution of the original game (D, v) for every v ∈ Vt.

Then, let us choose in Γ a non-terminal vertex such that every its successor is a terminal
and consider the corresponding symmetric digraph Dm = (V m,Am). Let (vm, vt) ∈ A be an
arc from vm ∈ Vm to vt ∈ Vt, where Dt = (Vt, At) is a terminal component. The game (Dt, vt)
is already solved. If the player, who begins in this game from vt, loses (respectively, wins)
then let us extend Dm by one new vertex v′ and two opposite arcs (v, v′), (v′, v) (respectively,
by two new vertices v′, v′′ and two pairs of opposite arcs (v, v′), (v′, v), (v′, v′′), (v′′, v′)).

Let us perform the same procedure for every arc (vm, vt) ∈ A leading from Dm = (Vm, Am)
to a terminal component and denote D′m = (V ′m, A

′
m) the obtained extended symmetric

digraph. Then, let us solve symmetric game (D′m, v) for each possible initial position v ∈ Vm.
It is easy to verify that, for every v ∈ Vm, the obtained solutions (in positional strategies) of
the symmetric game (D′m, v) gives a solution of the original symacyclic game (D, v).

Thus, we can proceed with the standard backward induction to solve game (D, v) in
positional strategies for all v ∈ V . Since a symmetric game can be solved in polynomial
time, the same holds for the symacyclic games too. 2



Page 14 RRR 4-2010

4 Conclusions and open problems

We considered games of (no) return and of (no) repetition, the standard and misere versions.
Each of these four types of games is NP-hard to solve, for arbitrary digraphs; see Theorem
1 and its corollaries. Moreover, none of the corresponding four problems is in NP ∪ coNP
unless NP = coNP .

However, some special cases are polynomially solvable, most notably symmetric (and
symaciclic) games of no return; see Theorems 2, 3, and 4. The solution is based on the
polynomial algorithm finding maximum matching in a on-directed graph [6]. Let us remark
that in the obtained solution the winning strategy in positional.

Also, it would be interesting to find more non-trivial polynomially solvable cases.
It is an open question, whether the sum of symmetric games of no return is polynomially

solvable. A positive answer would be provided by a polynomial algorithm for computing
the EGGS function g(v0) of a symmetric game (D, v0). Yet, the following decision problem
is open: given a symmetric games of no return and positive integer threshold t, whether
g(v0) ≤ t or g(v0) > t? By Theorem 2, the problem is polynomial for t = 0. Is it still true
for t = 1? or larger t? if not in general then, perhaps, for the digraph whose out-degree is
bounded by a constant c ? By Lemma 1, then the EGGS function is bounded by c− 1.

Acknowledgements We are thankful to Endre Boros who suggested the concept of
symacyclic digraphs and to Vladimir Oudalov who kindly prepared the figures.
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