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Abstract. Given an electrical circuit each edge e of which is an isotropic conductor
with a monomial conductivity function y∗e = yre/µ

s
e. In this formula, ye is the

potential difference and y∗e current in e, while µe is the resistance of e; furthermore,
r and s are two strictly positive real parameters common for all edges. In particular,
r = s = 1 correspond to the standard Ohm low.
In 1987, Gvishiani and Gurvich [Russian Math. Surveys, 42:6(258) (1987) 235–236]
proved that, for every two nodes a, b of the circuit, the effective resistance µa,b is

well-defined and for every three nodes a, b, c the inequality µ
s/r
a,b ≤ µ

s/r
a,c +µ

s/r
c,b holds.

It obviously implies the standard triangle inequality µa,b ≤ µa,c + µc,b whenever
s ≥ r and it turns into the ultrametric inequality µa,b ≤ max(µa,c, µc,b) as r/s → 0.
For the case s = r = 1 these results were rediscovered in 90s. Now, in 22 years, I
venture to reproduce the proof of the original result for the following reasons:

• (i) it is more general than the case r = s = 1 and one can get several interesting
examples of metric and ultrametric spaces playing with parameters r and s;

• (ii) several very unpleasant typos are corrected in two of these examples;

• (iii) Communications of the Moscow Math. Society in Russian Math. Surveys
were (and still are) strictly limited to two pages, here more details are given;

• (iv) although translation in English of the Russian Math. Surveys is available,
it is not free in the web and not that easy to find out;

• (v) the last but not the least: priority.

Key words: distance, metric, ultrametric; conductivity function, conductance,
resistance, potential, voltage, current, flux; Ohm low, Joule-Lenz heat, Maxwell
principle; maximum flow, shortest path, bottleneck path
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1 Introduction

We consider an electrical circuit modeled by a (non-directed) connected graph G = (V,E)
in which each edge e ∈ E is an isotropic conductor with the monomial conductivity law
y∗e = yre/µ

s
e. Here ye is the voltage, or potential difference, y

∗
e current, and µe is the resistance

of e; furthermore, r and s are two strictly positive real parameters independent on e ∈ E.
In particular, the case r = 1 corresponds to Ohm’s low, while r = 0.5 is the standard

square law of resistance typical for hydraulics or gas dynamics.
Parameter s, in contrast to r, is redundant; yet, it will play an important role too.
It is not difficult to show that the effective resistance µa,b is well-defined for any two

nodes a, b; also µ(a, b) = µ(b, a), due to symmetry (isotropy) of the conductivity functions.
Furthermore, µ(a, b) > 0 whenever nodes a and b are distinct.
Finally, by definition we set µ(a, b) = 0 whenever a = b.
In [4], it was shown that for every three nodes a, b, c the following inequality holds.

µ
s/r
a,b ≤ µs/r

a,c + µ
s/r
c,b . (1)

In [6], it was also shown that equality in (1) holds if and only if note c belongs to every
path between a and b. Clearly, if r ≤ s then (1) implies the standard triangle inequality

µa,b ≤ µa,c + µc,b. (2)

Furthermore, if r/s → 0 then (1) turns into the ultrametric inequality

µa,b ≤ max(µa,c, µc,b). (3)

Thus, in these two cases, we obtain respectively metric and ultrametric spaces, in which
distance between a and b is the effective resistance µa,b. Playing with parameters r and s,
one can obtain several interesting examples. In particular, we obtain:

• (j) the effective electric resistance between poles a and b, when r = s = 1, or more
generally, s → 1, r → 1;

• (jj) the standard length (or travel time) of a shortest path between terminals a and b,
when r = s → 0, or more generally, s → 0, r/s → 1;

• (jjj) the inverse capacity, that is, the inverse value of a maximum flaw per unit time
from source a to sink b, or (equivalently) vice versa, when s = 1, r → 0, or more
generally, s → 1, r → 0;

• (jv) the width of a bottleneck path between terminals a and b when s → 0, r/s → 0.

All four example define metric spaces, since s/r ≥ 1, at least, when both parameters are
sufficiently close to their limits. Moreover, the last two examples define ultrametric spaces,
since r/s → 0.
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For the case s = r = 1, inequality (1) was rediscovered in [9]. Then, several interesting
related results were obtained in [1, 10, 12, 15, 17] and surveyed in [3, 18, 19]. Now, in 22
years, I venture to reproduce the original proof of (1), for the following reasons:

• (i) The original inequality (1) is slightly more general than (2) and one can get several
interesting metric and ultrametric spaces playing with parameters r and s.

• (ii) Two very unpleasant typos appeared in [4] and then were copied in [6, 7]:

r = s → ∞, in case (jj) and s → ∞, r = const in case (jv).

• (iii) Communications of the Moscow Math. Society in Russian Math. Surveys were
(and still are) strictly limited to two pages; so the proofs in [4] were sketched; here we
give more details.

• (iv) Although translation of [4] in English is available, yet, it is not free on the web
and not that easy to find out.

• (v) The last but not the least: priority.

Recently, these results were presented as a sequence of problems and exercises for high-
school students in the Russian journal Math. Prosveschenie (Education) [7]. Here, these
problems and exercises are given with solutions and in English.

2 Conductivity law

Let e be an electrical conductor with the monomial conductivity law

y∗e = fe(ye) = λs
e|ye|rsign(ye) =

|ye|r

µs
e

sign(ye), (4)

where ye is the voltage or potential difference, y∗e current, and µe is the resistance of e;
furthermore, r and s are two strictly positive real parameters independent on e.

It is easy to see that the monomial function fe is

• continiuos, strictly monotone increasing, and taking all real values;

• symmetric (isotropic), or odd, that is, fe(−ye) = −fe(ye);

• the inverse function f−1
e is also monomial with parameters r′ = r−1 and s′ = s−1.
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3 Main variables

An electrical circuit is modeled by a connected weighted non-directed graph G = (V,E, µ) in
which weights of the edges are positive resistances µe, e ∈ E. Let us introduce the following
four groups of real variables; two for each vertex v ∈ V and edge e ∈ E:

potentials xv; difference of potentials, or voltage ye; current y
∗
e ; sum of currents, or flux x∗

v.

We say that the first Kirchhoff law holds for a vertex v whenever x∗
v = 0.

The above variables are not independent. By (4) , the current y∗e depends on voltage ye.
Furthermore, the voltage (flux) is a liner function of potentials (currents).
To define these linear functions, we shall have to fix an arbitrary orientation of edges.
Then, let us introduce the vertex-edge incidence function as follows:

inc(v, e) =


+1, if vertex v is the beginning of e;

−1, if vertex v is the end of e;

0, in every other case.

(5)

We assume that the next two systems of linear equations always hold:

ye =
∑
v∈V

inc(v, e)xv; (6)

x∗
v =

∑
e∈E

inc(v, e)y∗e . (7)

Let us notice that equation (6) for edge e = (v′, v′′) can be simplified and reduced to
ye = inc(e, v′)xv′ + inc(e, v′′)xv′′ and even further to ye = xv′ − xv′′ , yet, in the last case it
should be assumed that e is directed from a to b.

Let us introduce four vectors, one for each group of variables:

x = (xv | v ∈ V ), x∗ = (x∗
v | v ∈ V ), y = (ye | e ∈ E), y∗ = (y∗e | e ∈ E).

Obviously, x, x∗ ∈ Rn; y, y∗ ∈ Rm, where n = |V | and n = |E| are numbers of vertices
and edges of graph G = (V,E). Let A = AG be the edge-vertex m × n incidence matrix of

ye

y∗e
r < 1

ye

y∗e r = 1

ye

y∗e r > 1

Figure 1: Monomial conductivity law.
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graph G, that is, A(v, e) = inc(v, e) for all v ∈ V and e ∈ E. Equations (6) and (7) can be
rewritten in this matrix notation as y = Ax and x∗ = ATy∗, respectively.

It is both obvious and well known that these two equations imply the identity

(x, x∗) =
∑
v∈V

xvx
∗
v =

∑
e∈E

yey
∗
e = (y, y∗).

Let us also recall that vectors y and y∗ uniquely define each other, by (4). Thus, given
x, the remaining three vectors y, y∗, and x∗ are uniquely defined by (6), (7), and (4).

Lemma 1 For a positive constant c, two quadruples (x, y, y∗, x∗) and (cx, cy, cry∗, crx∗) can
satisfy all equations of (6), (7), and (4) only simultaneously.

Proof is straightforward. �

4 Two-pole circuits

Let us fix two distinct vertices a, b ∈ V and call them poles. Then, let us add to equations
(6), (7), and (4) the first Kirchhoff law

x∗
v = 0, for all v ∈ V \ {a, b} (8)

and fix the potentials in both poles

xa = x0
a, xb = x0

b . (9)

Lemma 2 The obtained system of equations (4)-(9) has a unique solution.

Respectively, we will say that the corresponding unique potential vector x = x(G, a, b)
solves the circuit (G, a, b) for xa = x0

a and xb = x0
b .

Proof of existence. Given x0
a and x0

b , let us assume without any loss of generality that
x0
a ≥ x0

b and apply the method of successive approximations to compute xv for all remaining
vertices v ∈ V \ {a, b}. To do so, let us order these vertices and initialize xv = x0

a for all
v ∈ V \ {b}. Then, obviously,

x∗
v ≥ 0 for all v ∈ V \ {b}. (10)

Moreover, the inequality is strict whenever v is adjacent to b and x0
a > x0

b , In this case,
there is a unique potential x′

v such that the corresponding flux x′∗
v becomes equal to 0 after

we replace xv with x′
v leaving all other potentials unchanged. Finally, it is clear that (10)

still holds and, moreover,

x0
a ≥ xv ≥ x′

v ≥ x0
b for all v ∈ V. (11)
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We shall consider the vertices of V \ {a, b} one by one in the defined (cyclical) order and
apply in turn the above transformation to each vertex. Obviously, equations (10) and (11)
hold all time. In particular, xa ≡ x0

a, xb ≡ x0
b , and xv, for each v ∈ V \ {a, b}, is a monotone

non-increasing sequence bounded by x0
b from below. Hence, it has a limit x0

v ∈ [x0
a, x

0
b ].

The limit values of potentials uniquely define the values of all other variables.
Let us show that these limit values satisfy all equations (4)-(9).
To do so, we shall watch x∗

v for all v ∈ V . First, let us notice that x∗
a is non-negative and

monotone non-decreasing, while x∗
b is non-positive, and monotone non-increasing.

[Moreover, the voltage ye and current y∗e are non-negative and monotone non-decreasing
for each e = (a, v) and non-positive and monotone non-increasing for each e = (v, b).]

Then, x∗
v ≥ 0 all time for all v ∈ V \ {b}. Yet, the value of x∗

v is not monotone in time: it
becomes zero when we treat v and then it monotone increases, while we treat other vertices
of V \ {a, b}. Finally,

∑
v∈V x∗

v = 0 all time, by the conservation of electric charge.
If the first Kirchhoff law holds, that is, x∗

v = 0 for all V \ {a, b}, then x∗
a + x∗

b = 0,
all equations are satisfied, and we stop. Yet otherwise, we obviously can proceed with the
potential reduction. Thus, the limit values of x solve (G, a, b) for xa = x0

a and xb = x0
b . �

Remark 1 A very similar monotone potential reduction, or pumping, algorithm for stochas-
tic games with perfect information was recently suggested in [2].

Remark 2 Let us note that the connectivity of G is an essential assumption. Suppose for a
moment that G is not connected. If a and b are in one connected component then, obviously,
all potentials of any other component must be equal. Yet, the corresponding constants might
be arbitrary. If a and b are in two distinct connected components then, obviously, all poten-
tials in these two components must be equal to x0

a and x0
b , respectively, and to an arbitrary

constant for another component, if any. Clearly, in this case x∗
v = 0 for all v ∈ V .

Let us also note that the above successive approximation method does not prove the
uniqueness of solution. For example, it needs to be shown that the limit potential values do
not depend on the order of vertices in the above successive approximations. Moreover, even
then it is not clear whether one can get another solution by a different method.

Unfortunately, I have no elementary proof for uniqueness. Of course, existence and
uniqueness are both well known; see, e.g., [14, 16, 5, 6]. For example, uniqueness results
from the Maxwell principle of minimum dissipation of energy: potential vector x that solves
the circuit (G, a, b) for xa = x0

a and xb = x0
b must minimize the ”Joule-Lenz heat”

F (y) =
∑
e∈E

Fe(ye) =
∑
e∈E

∫
fe(ye) dye, (12)

where y = AGx, by (6), and fe is the conductivity function of edge e.
Obviously, Fe is (strictly) convex if and only if fe is (strictly) monotone increasing. In

particular, strict monotonicity and convexity hold when fe is defined by (4). In this case
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Fe(ye) =

∫
fe(ye) dye =

|ye|r+1

(r + 1)µs
e

. (13)

Let us notice that (13) turns into the Joule-Lenz formula when r = s = 1.
Clearly, F (AGx) is a strictly convex function of x, since r > 0. In remains to recall that

if a strictly convex function has a minimum then it is reached in a unique vector. �

The difference ya,b = xa − xb is called the voltage, or potential difference, and the value
y∗a,b = x∗

a = −x∗
b is called the current in the two-pole circuit (G, a, b).

Proposition 1 The current y∗a,b and voltage ya,b are still related by a monomial conductivity
law with the same parameters r and s:

y∗a,b = fa,b(ya,b) = λs
a,b|ya,b|rsign(ya,b) =

|ya,b|r

|µa,b|s
sign(ya,b). (14)

Proof follows immediately from Lemmas 1 and 2. �
The values λa,b and µa,b = λ−1

a,b are called the conductance and, respectively, resistance of
the two-pole circuit (G, a, b).

Remark 3 In fact, we restricted ourselves by the monomial conductivity law (4), because
Proposition 1 cannot be extended to any other family of continuous monotone non-decreasing
functions, as it was shown in [6].

Remark 4 Again, the connectivity of graph G is an essential assumption. Suppose for a
moment that G is not connected and poles a and b belong to distinct connected components.
Then, obviously, y∗a,b ≡ 0.

Remark 5 Given a two-pole circuit (G, a, b), where G = (V,E, µ), and an edge e0 ∈ E,
let us replace a resistance µe0 by a larger resistance µ′

e0
and denote by G′ = (V,E, µ′) the

obtained circuit. Of course, the total resistance will not decrease either, that is, µ′
a,b ≥ µa,b.

Yet, how to prove this ”intuitively obvious” statement? Somewhat surprisingly, according
to [11], the simplest way is to apply the Maxwell principle of the minimum energy dissipation.

Let x and x′ be unique potential vectors that solve (G, a, b) and (G′, a, b), respectively,
while y and y′ be the corresponding voltage vectors defined by (6). Let us consider G′ and
vector x, instead of x′. Since µe0 ≤ µ′

e0
, inequality F ′

e(ye0) ≤ Fe(ye0) is implied by (13).
Furthermore, F ′

e(ye) = Fe(ye) for all other e ∈ E and, hence, F ′(y) ≤ F (y). In addition,
F ′(y′) ≤ F ′(y), by the Maxwell principle. Thus, F ′(y′) ≤ F (y) and, by (13), µ′

a,b ≥ µa,b.

Let us say that a vertex v is between a and b if v ̸= a, v ̸= b, and v belongs to a path
(without self-intersections) between a and b. Then, Lemma 2 can be extended as follows.

Lemma 3 (o) If x0
a = x0

b then x0
v = x0

a = x0
b for all v ∈ V ;

Otherwise, let us assume without any loss of generality that x0
a > x0

b . Then
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• (i) Inequalities x0
a ≥ x0

v ≥ x0
b holds for all v ∈ V ;

• (i’) If v is between a and b then x0
a > x0

v > x0
b .

• (ii) The voltage ye and current y∗e are non-negative whenever e = (a, v) or e = (v, b).

• (ii’) Moreover, they are strictly positive if also v is between a and b.

Proof Claim (i),(ii), and (o) result immediately from Lemma 2, yet, connectivity is essential.
In fact, the same is true for (i’) and (ii’). Indeed, let us recall the successive approxi-

mations, which were instrumental in the proof of Lemma 2; consider a path between a and
b and any vertex v in it, distinct from a and b. . Obviously, potential xv will be strictly
reduced from xa but it cannot reach xb. �

Remark 6 If v is not between a and b then inequalities in the above Lemma might be still
strict, yet, they might be not strict, too.

5 Proof of the main inequality and related claims

Theorem 1 Given an electrical circuit, that is, a connected graph G = (V,E, µ) with strictly
positive weights-resistances (µe|e ∈ E), three arbitrary vertices a, b, c ∈ V , and strictly posi-

tive real parameters r and s, then inequality (1) holds: µ
s/r
a,b ≤ µ

s/r
a,c + µ

s/r
c,b .

It holds with equality if and only if vertex c belongs to every path between a and b in G.

Remark 7 The proof of the first statement was sketched in [4]; see also [7]. Both claims
were proven in [6]. Here we shall follow the plan suggested in [4], yet, give more details.

Proof Let us fix arbitrary potentials x0
a and x0

b in vertices a and b. Then, by Proposition 1,
all variables, and in particular all remaining potentials, are uniquely defined by equations
(4)-(9). Let x0

c denote the potential in c.
Without any loss of generality, let us assume that x0

a ≥ x0
b . Then, x0

a ≥ x0
c ≥ x0

b , by
Lemma 2. Let us consider the two-pole circuit (G, a, c) and fix in it xa = x0

a and xc = x0
c .

Lemma 4 The currents in the circuits (G, a, b) and (G, a, c) satisfy inequality y∗a,b ≥ y∗a,c.
Moreover, the equality holds if and only if c belongs to every path between a and b.

Proof As in the proof of Lemma 2, we will apply successive approximations to compute
a (unique) potential vector x̄ = x(G, a, c) that solves the circuit (G, a, c) for x̄a = x0

a and
x̄c = x0

c . Yet, as an initial approximation, we shall now take the unique potential vector
x = x(G, a, b) that solves the circuit (G, a, b) for xa = x0

a and xb = x0
b . As we know, x

uniquely defines all other variables, in particular, x∗ = x∗(G, a, b). Obviously, for x∗ the first
Kirchhoff law holds for all vertices of V \ {a, b}. Yet, for b, it does not hold: x∗

b < 0. Let us
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replace the current potential xb by x′
b to get x

′∗
b = 0. Obviously, there is a unique such x′

b

and x′
b > xb. Yet, after this, the value x∗

v will become negative for some v ∈ V \ {a, c}.
Let us order the vertices of V \ {a, c} and repeat the same iterations as in the proof of

Lemma 2. By the same arguments, we conclude that in each v ∈ V \ {a, c}, the potentials
xv form a monotone non-decreasing sequence that converges to a unique solution x̄v =
xv(G, a, c). By construction, potentials x̄a = x0

a and x̄c = x0
c remain constant.

Thus, the value x∗
a is monotone non-increasing and the inequality y∗a,b ≥ y∗a,c follows.

Let us show that it is strict whenever there is a path P between a and b that does not
contain c. Without loss of generality, we can assume that path P is simple, that is, it has
no self-intersections. Also without loss of generality, we can order V \ {a, c}, so that vertices
of V (P ) \ {a} go first in order from b towards a. Obviously, after the first |P | successive
approximations, potentials will strictly increase in all vertices of P , except a. Thus, the
value x∗

a will be strictly reduced. Let us remark, however, that the above arguments do not
work when c belongs to P , since potential xc = x0

c cannot be changed.

Moreover, if c belongs to every path between a and b then clearly y∗a,b = y∗a,c = y∗c,b. �

Remark 8 The same arguments prove that inequality y∗a,b ≥ y∗a,c holds not only for mono-
mial but for arbitrary monotone non-decreasing conductivity functions.

Furthermore, by symmetry, we conclude that y∗a,b ≥ y∗c,b, too, and obtain two inequalities

y∗a,b =
(x0

a − x0
b)

r

µs
a,b

≥ (x0
a − x0

c)
r

µs
a,c

= y∗a,c; y∗a,b =
(x0

a − x0
b)

r

µs
a,b

≥ (x0
c − x0

b)
r

µs
c,b

= y∗c,b, (15)

which can be obviously rewritten as follows(
µa,c

µa,b

)s/r

≥ x0
a − x0

c

x0
a − x0

b

;

(
µc,b

µa,b

)s/r

≥ x0
c − x0

b

x0
a − x0

b

(16)

Summing up these two inequalities we obtain (1).

Obviously, (1) holds with equality if and only if y∗a,b = y∗a,c = y∗c,b, which, by Lemma 4,
happens if and only if c belongs to every path between a and b. �

Remark 9 As a corollary, we obtain that y∗a,b = y∗a,c if and only if y∗a,b = y∗c,b.

Let us also note that µ(a, b) = µ(b, a) for all a, b ∈ V . This easily follows from the fact
that conductivity functions fe are odd for all e ∈ E. Furthermore, obviously, µ(a, b) > 0
whenever vertices a and b are distinct. By definition, let us set µ(a, b) = 0 whenever a = b.

As we already mentioned, the main inequality (1) obviously implies the triangle inequality
(2) whenever s ≥ r and it turns into the ultrametric inequality (3), as s/r → +∞.
Thus, in these two cases the resistances form the metric and ultrametric space, respectively.
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6 Parallel and series connection of edges

Let us consider two simplest two-pole circuits given in Figure 2.

a b a b
c

Figure 2: Parallel and series connection

Lemma 5 The resistances of these two circuits can be determined from formulas

µ−s
a,b = (µ−s

e′ + µ−s
e′′ ) and µ

s/r
a,b = (µ

s/r
e′ + µ

s/r
e′′ ), (17)

respectively, where e′ and e′′ denote two edges of each circuit.

Proof If r = s = 1 then (17) turns into familiar high-school formulas. The general case is
not much more difficult. Without loss of generality let us assume that ya,b = xa − xb ≥ 0.

In case of parallel connection we obtain the following chain of equalities.

y∗a,b = fa,b(ya,b) =
yra,b
µs
a,b

= fe′(ya,b) + fe′′(ya,b) =
yr
e′

µs
e′
+

yr
e′′

µs
e′′

=
yra,b
µs
e′
+

yra,b
µs
a,b
.

To arrive at (17) it is sufficient to compare the third and the last terms.
In case of series connection we stat with determining xc from the first Kirchhoff law:

y∗a,b = fa,b(ya,b) =
yra,b
µs
a,b

= (xa−xb)
r

µs
a,b

=

y∗e′ = fe′(ye′) = fe′(xa − xc) =
(xa−xc)r

µs
e′

= y∗e′′ = fe′′(ye′′) = fe′′(xc − xb) =
(xc−xb)

r

µs
e′′

.

It is sufficient to compare the last and eighth terms to get

xc =
xbµ

s/r
e′ + xaµ

s/r
e′′

µ
s/r
e′ + µ

s/r
e′′

.

Then, we compare the last and forth terms, substitute the obtained xc, and get (17). �

Let us consider convolution µ(t) = (µt
e′ + µt

e′′)
1/t. It is well known and easy to see that

µ(t) → max(µe′ , µe′′) as t → +∞ and µ(t) → min(µe′ , µe′′) as t → −∞. (18)

7 Four examples of resistance distances

A two-pole circuit (G, a, b), where G = (V,E, µ) is a weighted graph (non-directed and
connected, can model the following four situations.

Example 1: effective resistance of an electrical circuit. In this case µe is the
resistance of edge e and r = s = 1. Respectively, µa,b is the standard effective resistance
between poles a and b.
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Example 2: the length of a shortest route. Let G = (V,E, µ) model a road network
in which µe is the length (milage or traveling time) of road e.

In this case, µa,b is the distance between terminals a and b, that is, the length of a
shortest path between a and b. For parallel and series connection of two edges e′ and e′′, as
in Figure 2, from (18) we obtain, respectively

µP
a,b = min(µe′ , µe′′) and µS

a,b = µe′ + µe′′ .

Hence, −1/s → −∞ and s/r = 1; or in other words, s → 0 and r/s → 1.

Example 3: the inverse value of a maximal flaw. Let G = (V,E, µ) model a
pipeline or transport network in which λe = µ−1

e is the capacity of the pipe or road e.
Then, λa,b = µ−1

a,b is the capacity of the whole network with respect to terminals a and b.
In this case, for parallel and series connection we obtain, respectively:

λP
a,b = λe′ + λe′′ and λS

a,b = min(λe′ , λe′′). Hence,

−1/s = −1, s/r → ∞; or in other words, s = 1, or more generally, s → 1, while r → 0.

Example 4: the width of a bottleneck route. Let G = (V,E, µ) model a system of
passages (rivers, canals, bridges, roads, etc.) in which µe is the ”width” of passage e, that
is, the maximum size or weight of a ship or car that can still pass e.

Then, λa,b = µ−1
a,b is the maximum width of a (bottleneck) path between a and b.

In this case, for parallel and series connection we obtain, respectively

λP
a,b = max(λe′ , λe′′) and λS

a,b = min(λe′ , λe′′). Hence,

−1/s → −∞ and −s/r → −∞; or in other words, s → 0 and r/s → 0.

Theorem 2 In each of the above four examples, every distances d(a, b) indeed equals the
effective resistances µa,b of the two-pole circuit (G, a, b), where G = (V,Eµ) is the weighted
graph corresponding to the example, and parameters r and s behave as it was explained above.

Proof (sketch). The claim is obvious for Example 1 and also for the series-parallel circuits.
Yet, it holds in general too. Indeed, it is not difficult to demonstrate for Examples 2 and
4 that all currents tend to concentrate on, respectively, the shortest and bottleneck paths
between a and b. In particular, if an edge e does nor belong to such a path then y∗e → 0 as
r and s tend to the corresponding limit values. For Example 3, the limit currents form a
maximal flaw between a and b. �

As we already mentioned, in all four examples the distances form a metric and in the
last too ultrametric space.

8 k-pole circuits with r = s = 1

By Proposition 1, in a two-pole circuit (G, a, b), the total current y∗a,b and voltage ya,b = xa−xb

are related by a (uniquely defined) conductivity function fa,b with the same parameters r
and s as in the functions fe for each e ∈ E. In other words, every two-pole circuit (G, a, b)
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with parameters r and s can be effectively replaced by a single edge (a, b) with the same
parameters.

Remark 10 In [14], Minty proved that the last claim holds not only for monomial but for
arbitrary monotone conductivity laws, as well. More precisely, if fe is non-decreasing for
each edge e ∈ E then there is a (unique) non-decreasing conductivity function fa,b such that
the whole two-pole circuit (G, a, b) can be effectively replaced by the single edge (a, b).

In the case of standard electric resistances, r = s = 1, the above ”effective replacement
statement” can be extended from the two-pole circuits to the k-pole ones.

Given a weighted graphG = (V,E, µ), let us fix k ≥ 2 distinct poles A = {a1, . . . , ak} ⊆ V
and add to equations (4), (6), (7) the first Kirchhoff law for all non-poles:

x∗
v = 0 for v ∈ V \ A, (19)

while in the k poles let us fix the potentials:

xa = x0
a for a ∈ A. (20)

The above two equations in the two-pole case turn into (8) and (9), respectively.

Lemma 6 The obtained system of equations (4), (6), (7), (19), (20) has a unique solution.

As in the two-pole case, we shall say that the corresponding (unique) potential vector
x = x(G,A) solves the k-pole circuit (G,A) for xa = x0

a, a ∈ A.

Proof of the lemma is fully similar to the proof of Lemma 2. �

Two k-poles circuits (G; a1, . . . , ak) and (G′; a′1, . . . , a
′
k) are called equivalent if in them

the corresponding fluxes are equal whenever the corresponding potentials are equal, or more
accurately, if x∗

ai
= x∗

a′i
for all i ∈ [k] = {1, . . . , k} whenever xai = xa′i

for all i ∈ [k].

Proposition 2 For every k-pole circuit with n vertices (where n ≥ k) there is an equivalent
k-pole circuit with k vertices.

Proof To show this, we shall explicitly reduce every k-pole circuit with n + 1 vertices to
a k-pole circuit with n vertices, whenever n ≥ k. To do so, let us label the vertices of the
former circuit G by 0, 1, . . . , n and denote by λi,j the conductance of edge (i, j). (If there is
no such edge then λi,j = 0.) Let us construct a circuit G′ whose n vertices are labeled by
1, . . . , n and conductances are given by formula

λ′
i,j = λi,j +

λ0,iλ0,j∑n
m=1 λ0,m

. (21)

Lemma 7 The obtained two k-pole circuits (G,A) and (G′, A) are equivalent.
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Proof (sketch). Since r = 1 the conductance of a pair of parallel edgers is the sum of their
conductances, we can assume, without any loss of generality, that G′ is a star the with center
at 0, that is, G′ consists of n edges: (0, 1), . . . , (0, n).

Due to linearity, it is sufficient to consider the n basic potential vectors xi = (xi
1, . . . , x

i
n)

such that xi
m = δim, that is, x

i
i = 1 and xi

m = 0 whenever m ̸= i. For each such vector xi, by
the first Kirchhoff law at vertex 0, we obtain that

xi
0 =

λ0,i∑n
m=1 λ0,m

, (22)

In its turn, this formula easily implies (21). �
Finally, we derive Proposition 2 applying Lemma 7 successively n− k times. �

Remark 11 Regarding the above proof, we should notice that:

• λ′
i,j gets the same value for vectors xi and xj;

• Let G′ be an n-star, that is, λi,j = 0 for all distinct i and j. Then, we obtain a mapping
that assigns a weighted n-clique Kn to each weighted n-star Sn. Obviously, this mapping
is a bijection. In particular, for n = 3, the obtained one-to-one correspondence between
the weighted claws and triangles is known as the Y -∆ transformation.

As a corollary, we obtain an alternative proof of the triangle inequality (2) in the linear
case. Indeed, every three-pole network can be reduced to an equivalent triangle. In its turn,
the triangle is equivalent to a claw and for the latter, the triangle inequality is obvious.

For the two-pole case, we can also obtain an important corollary, namely, an explicit
formula for the effective conductance λa,b. To get it, let us consider the Kirchhoff n × n
conductivity matrix K defined as follows: Ki,j = λi,j when i ̸= j and K(i, i) = −

∑
j|j ̸=i λi,j.

Applying the reduction of Proposition 2 successively n−2 times we represent the effective
conductance λa,b as the ratio of two determinants:

λa,b =

∣∣∣∣∣det(K ′
a,b)

det(K ′′
a,b)

∣∣∣∣∣ , (23)

where K ′ and K ′′ are two submatrices of K obtained by eliminating (i) row a and column b
and, respectively, (ii) two rows a, b and two columns a, b.
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