Generic Branch and Bound Ramp-Up Procedure

- **Ramp-Up**: all processors redundantly develop top of tree, synchronously parallelizing some of each subproblem’s work
- Application-specified virtual function decides when tree parallelism is likely to be better
- **Crossover**: partition tree evenly (no communication!)
- Then start usual *asynchronous search*

Specialization to MIP: during ramp-up, use synchronous parallelism for

- Pseudocost initialization (“Lazy strong branching”):
 - The *first* time you encounter x_j being fractional, “probe” subproblem bounds
 - Subsequently, just track average behavior from actually branching on x_j
- Heuristic
Crossover:
- Let $P = \text{pool size}$, $p = \text{number of processors}$
- Use exponential smoothing to track average number of new fractional variables:
 $$\tilde{k} \leftarrow \lambda \tilde{k} + (1 - \lambda)k$$
- End ramp-up if $P \geq \beta p$ or $P \geq \gamma \tilde{k}$

Merit-Function-Based MIP Heuristic

Use *merit function* to measure integrality for binary variables: differentiable and strictly concave

![Image of a graph]

C^1 quadratic spline defined by
- $\phi(0) = 0$
- $\phi(\alpha) = 1$
- $\phi'(\alpha) = 0$
- $\phi(1) = 0$

$\alpha = 0.75$ shown

"Lite" version of heuristic for use with branch and bound
- Couple closely to branch-and-bound process
- Start from solution to current subproblem, with same bounds
- Try not to run for very long at a time
Sum/Frank-Wolfe approach: use weighted combination of merit function and original objective

\[\hat{\psi}(x) = \psi(x) + wc^T x \]

- Use Frank-Wolfe method to find local min of \(\hat{\psi} \) (no line search needed)
- If \(\psi(x) = 0 \), stop with an integer point.
- Otherwise, add Gomory cuts and repeat (use globalized version of COIN’s \texttt{CglGomory})
- Handle general integer variables by converting to a small number of binary variables representing a range around the current value

Where’s the Parallelism for Ramp-Up?

1. Randomize \(\psi \)
 - For each \(x_j \) that’s supposed to be integer, use the merit function \(\phi_{\alpha} \), where \(\alpha \) is random
 - \(\alpha \)’s vary randomly with both variables and processors
 - Processors simultaneously execute heuristic with different merit functions

2. “Pre-splitting”
 - Fix some (small) subset of the currently fractional variables (Note: can count SOS sets as “variables” in this procedure)
 - On different processors,
 - Fix different subsets of variables and/or...
 - Fix same subset to different value combination

... and combinations of these two
Pre-Splitting Configuration

\tilde{m} is the “preferred” number of different merit functions; p is the number of processors. Compute the desired number of pre-splitting configurations,

$$\tilde{\lambda} = \max\left\{ \left\lfloor \frac{p}{\tilde{m}} \right\rfloor, 1 \right\}$$

Use pseudocost probing to gather information on which variables affect integrality the most

- When you pseudocost-probe x_j, record how much its integrality increases in the up and down branches; call changes δ_j^+, δ_j^-
- Sort the currently fractional variables by $\max\{\delta_j^+, \delta_j^-\}$
- Highest variables are most attractive for pre-splitting
- Also gather data on which variables stay fractional when you branch up/down on each x_j

Build Pre-Splitting Tree

Overlapping splits allowed!

- Each node has a list of further possible splitting variables.
- Start with root, with list = \{all fractional variables in subproblem\}
- We specify a *depth limit* \tilde{d}
While possible, until there would be more than $\tilde{\lambda}$ leaves, pick node

- That is above the depth limit, and has a nonempty list
- Has already been split as little as possible
- Is as high as possible
- Add a (possibly overlapping) split on highest-ranked variable x_j
- Delete variables from children’s lists if they are “in conflict” with x_j
- Effect: build tree as symmetrically as possible down to depth d.

Then sweep down from root again, adding overlapping splits:

Allocating Pre-Splitting Configurations to Processors

- When the loop ends, there will be $1 \leq \lambda \leq \tilde{\lambda}$ leaf nodes.
- Apportion an approximately equal number of processors to each leaf node (about p/λ).
- Each processor selects a random merit function.
- Optionally, force one processor per leaf node to use the canonical $\alpha = 0.5$ merit function.
- Each processor fixes variables according to its leaf node, and then runs the heuristic.
Computational Results

Hardware platform: 32 dual Xeon 2.8 GHz = 64 processors, two dual Xeon 3 GHz control nodes, gigabit ethernet w/switch, RH 9 Linux on all nodes

LP solver is CLP (old version for technical reasons)

Test problems:
- 52 problems from MIPLIB 3.0
- Remaining problems have very slow root LP’s or crash in CLP (very likely due to old CLP version; should change soon)

End ramp-up based on $\beta = \gamma = 1$ criterion

Abort each problem after ramp-up, and check gap from known optimum

Caveats: Cuts used in heuristic, but not bounding (should change soon)

Target merit functions: $\tilde{m} = 1, 2, 4, 8, 16, 32, 64$

Depth limit: $\tilde{d} = 0, 1, 2, 3, 4, 5, 6$

Force one processor per group to use canonical merit function, or don’t bother

All sensible combinations of \tilde{m}, \tilde{d} for 64 processors

“Conflict” between variables defined statically -- two variables are in conflict if they appear in any common constraint
Results: Big Picture

- 10 problems (19%): no solution found for any parameter setting
- 31 problems (60%): solution found for every parameter setting
- 11 problems (21%): solution found for some but not all settings
- Between 4 and 18 calls to heuristic, with average of 9.5

Baseline comparison to runs without heuristic:
- With best-first search: no feasible solutions at all
- Diving on integrality: solutions found to only 5 problems (10%)

Run time (in seconds) of ramp-up phase

<table>
<thead>
<tr>
<th>Method</th>
<th>Average</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heuristic (all settings)</td>
<td>9.8</td>
<td>19.0</td>
</tr>
<tr>
<td>No heuristic, best-first</td>
<td>2.9</td>
<td>10.1</td>
</tr>
<tr>
<td>No heuristic, diving</td>
<td>2.2</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Aside: experiments with empirical conflict graph:
- Define conflict dynamically from pseudocost probing: if probing x_j leaves x_l fractional, they are not in conflict
- Requires significant extra communication between processors after pseudocost probing
- Experiments suggest there is no significant benefit over a static conflict graph