On Generation of Cut Conjunctions, Minimal k-Connected Spanning Subgraphs, Minimal Connected and Spanning Subsets and Vertices

Konrad Borys

kborys@eden.rutgers.edu

Rutgers University
Outline

- Generating k-vertex connected spanning subgraphs
 - Incremental polynomial time algorithm
 - Application: network reliability
- Vertex generation
 - Two representations of polyhedra
 - Proof of NP-hardness
- Monotone generation problem
Generating k-Vertex Connected Spanning Subgraphs
k-Vertex Connected Spanning Subgraphs

Input: k-vertex connected graph G

\[G = \begin{array}{c}
\text{\includegraphics{example.png}}
\end{array} \quad k = 1 \]
k-Vertex Connected Spanning Subgraphs

Input: k-vertex connected graph G

$$G = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \quad k = 1$$

Output: list of all minimal k-vertex connected spanning subgraphs of G
k-Vertex Connected Spanning Subgraphs

Input: k-vertex connected graph G

\[
G = \begin{array}{c}
\bullet \\
\bullet \\
\bullet
\end{array} \quad k = 1
\]

Output: list of all minimal k-vertex connected spanning subgraphs of G

$\Omega(2^{|V|})$ spanning trees
Complexity of Generation Problems

\[n = \text{input size}, \quad N = \text{output size} \]

Polynomial Total Time

\[\text{start} \rightarrow \text{poly}(n,N) \rightarrow \text{halt} \]

\[\text{time} \]
Complexity of Generation Problems

\[n = \text{input size}, \ N = \text{output size} \]

Polynomial Total Time

\[
\text{start} \quad \text{poly}(n,N) \quad \text{halt}
\]

Incremental Polynomial Time

\[
\text{start} \quad \text{poly}(n,K) \quad \text{halt}
\]

\[\text{K elements} \]
Complexity of Generation Problems

\[n = \text{input size}, \quad N = \text{output size} \]

Polynomial Total Time

Incremental Polynomial Time

Polynomial Delay
Previous Results

Polynomial delay algorithms for generating spanning trees ($k = 1$)

\(n = \# \text{ of vertices}, \ m = \# \text{ of edges}, \ N = \# \text{ of trees} \)

- Read, Tarjan 1975 \(O(Nm + n + m) \) time, \(O(n + m) \) space
- Gabow, Myers 1978 \(O(Nm + n + m) \) time, \(O(n + m) \) space (directed and undirected graphs)
- Kapoor, Ramesh 1992 \(O(N + n + m) \) time, \(O(nm) \) space
- Matsui 1993 \(O(Nn + n + m) \) time, \(O(n + m) \) space
- Shioura, Tamura 1995 \(O(N + n + m) \) time, \(O(nm) \) space
- Shioura, Tamura, Uno 1994 \(O(N + n + m) \) time, \(O(nm) \) space
New Result

We can generate all minimal k-vertex connected spanning subgraphs in incremental polynomial time (for any given k).
Supergraph Approach

Supergraph = directed graph
Vertices = objects to be generated
Supergraph Approach

Supergraph = directed graph
Vertices = objects to be generated

Supergraph strongly connected \rightarrow breadth-first-search outputs all objects
Supergraph Approach

Supergraph = directed graph
Vertices = objects to be generated

Supergraph strongly connected \Rightarrow breadth-first-search outputs all objects

Generating neighbors in incremental polynomial time \Rightarrow breadth-first-search in incremental polynomial time
Supergraph Approach

Our tasks:

Define neighborhoods that make the supergraph strongly connected

Show that neighbors can be generated in incremental polynomial time
Generating Neighbors

minimal 4-connected

\((V,X)\)
Generating Neighbors

minimal 4-connected 3-connected

(V,X) \rightarrow (V,X-e_1)
Generating Neighbors

minimal 4-connected 3-connected 4-connected

(V,X)

(V,X-e₁)

(V,X-e₁+Y₁₁)
Generating Neighbors

minimal 4-connected 3-connected 4-connected minimal 4-connected

(V,X) → (V,X-e₁) → (V,X-e₁+Y₁₁) → (V,X₁)
Generating Neighbors

minimal 4-connected 3-connected 4-connected minimal 4-connected

(V,X)

(V,X-e₁ + Y₁₁)

(V,X-e₁ + Y₁₂)

(V,X-e₁ + Y₁₃)

(V,X₁)

(V,X₂)

(V,X₃)
Generating Neighbors

\[(V, X) \rightarrow (V, X-e_1) \rightarrow (V, X-e_1+Y_{11}) \rightarrow (V, X_1)\]

\[(V, X) \rightarrow (V, X-e_2) \rightarrow (V, X-e_2+Y_{21}) \rightarrow (V, X_2)\]

\[(V, X) \rightarrow (V, X-e_2) \rightarrow (V, X-e_2+Y_{12}) \rightarrow (V, X_3)\]

\[(V, X) \rightarrow (V, X-e_2) \rightarrow (V, X-e_2+Y_{13}) \rightarrow (V, X_4)\]
Generating Neighbors

minimal 4-connected 3-connected 4-connected minimal 4-connected

(V,X)

(V,X-e₁) ➔ (V,X-e₁+Y₁₁) ➔ (V,X₁)

(V,X-e₁) ➔ (V,X-e₁+Y₁₂) ➔ (V,X₂)

(V,X-e₁) ➔ (V,X-e₁+Y₁₃) ➔ (V,X₃)

(V,X-e₂) ➔ (V,X-e₂+Y₂₁) ➔ (V,X₄)

(V,X-e₂) ➔ (V,X-e₂+Y₂₂)

(V,X-e₃) ➔ (V,X-e₃+Y₃₂)
Generating Neighbors

minimal 4-connected 3-connected 4-connected minimal 4-connected

\((V, X) \)

\((V, X-e_1) \) \((V, X-e_1+Y_{11}) \) \((V, X_1) \)

\((V, X-e_2) \) \((V, X-e_1+Y_{12}) \) \((V, X_2) \)

\((V, X-e_3) \) \((V, X-e_1+Y_{13}) \) \((V, X_3) \)

\((V, X-e_2+Y_{21}) \) \((V, X-e_2+Y_{22}) \) \((V, X_4) \)

\((V, X-e_3+Y_{32}) \)

\(\approx 2|X| \)
Black Box

\[G = (V, E) - k\text{-vertex connected graph} \]
\[(V, X) - \text{minimal } k\text{-vertex connected subgraph of } G \]

Input:

\((k - 1)\text{-vertex connected graph } (V, X \setminus e)\)

list of edges \(E \setminus X\)

Output:

list of minimal edge sets \(Y \subseteq E \setminus X\) such that
\((V, (X \setminus e) \cup Y)\) is \(k\)-vertex connected
k-Separators

minimal 4-vertex connected graph
k-Separators

3-vertex connected graph
k-Separators

3-vertex connected graph

3-separator
k-Separators

3-vertex connected graph

3-separator

3-source
Lattice of k-Sources
Black Box

Input:

Available edges: (2,11), (8,t), (s,9), (s,1), (2,12)

3-vertex connected

3-separators: {2,3,4}, {5,3,4}, {10,3,4}, {5,8,9}, {10,8,9}, {5,11,9}, {5,8,12}, {10,11,9},
{10,8,12}, {5,11,12}, {10,11,12}
Input:
Available edges: (2,11), (8,t), (s,9), (s,1), (2,12)
Add (2,11)

3-vertex connected

3-separators: {2,3,4}, {5,11,9}, {10,11,9}, {5,11,12}, {10,11,12}
Input:

Available edges: (2,11), (8,t), (s,9), (s,1), (2,12)
Add (8,t)

3-vertex connected

3-separators: {2,3,4}
Input:
Available edges: (2,11), (8,t), (s,9), (s,1), (2,12) Add (s,9)

3-vertex connected

4-vertex connected

3-separators:
Black Box

Input:
Available edges: (2,11), (8,t), (s,9), (s,1), (2,12)

Output: blue edges

3-vertex connected

4-vertex connected
Black Box - Key Observation

edge \leftrightarrow sublattice

$\{s, 1, 2, 3, 4, 6, 7\}$ belongs to sublattice corresponding to edge $(2, 11)$
Black Box - Key Observation

edge $(2, 11) \longleftrightarrow$ black sublattice

$\{s, 1, 2, 3, 4, 5, 6, 7, 8\}$

$\{s, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

$\{s, 1, 2, 3, 4, 5, 6, 7\}$

$\{s, 1, 2, 3, 4, 6, 7, 8\}$

$\{s, 1, 2, 3, 4, 6, 7, 9\}$

$\{s, 1, 2, 3, 4, 5, 6\}$

$\{s, 1, 2, 3, 4, 6\}$

$\{s, 1, 2, 3, 4, 5\}$

$\{s, 1, 2, 3\}$

$\{s, 1\}$

$\{s\}$
edge $(8, t) \leftrightarrow \text{red sublattice}$
Black Box - Key Observation

edge $(s, 9) \leftrightarrow$ blue sublattice
Sublattice Covers

Input: k-conformal hypergraph
Output: list of minimal transversals

Input: collection of sublattices
Output: list of minimal covers

hypergraph whose edges are sublattices is 2-Helly
Sublattice Covers

Input: collection of sublattices
Output: list of minimal covers

Input: k-conformal hypergraph
Output: list of minimal transversals

The hypergraph whose edges are sublattices is 2-Helly.

Incremental polynomial time algorithm [Boros, Elbassioni, Gurvich, Khachyian 2004]
Complexity Results

\[n = \# \text{ of vertices}, \quad m = \# \text{ of edges}, \quad N = \# \text{ of subgraphs} \]

- \(k \)-vertex connected: \(O(N^3nm^3 + N^2n^4m^5 + Nn^k m^2) \)
Complexity Results

\(n = \# \text{ of vertices}, \ m = \# \text{ of edges}, \ N = \# \text{ of subgraphs} \)

- **\(k \)-vertex connected:** \(O(N^3nm^3 + N^2n^4m^5 + Nn^k m^2) \)

- for \(k = 1 \) (spanning trees): \(O(Nn) \)

- for \(k = 2, 3 \): \(O(N^2 \log(N)m^2 + N^2m^3) \) (improvement due to decomposition theory)

- when \(k \) is part of the input: OPEN
Two-Terminal Reliability

\[\text{Independent probabilities of edge failure} \]

\[P \text{rob}(\exists \text{ an operating } s-t \text{ path}) \]
Two-Terminal Reliability

Independent probabilities of edge failure

\[
\text{Prob}(\exists \text{ an operating } s-t \text{ path})
\]

Hard to compute since counting 1-element, 2-element, \ldots, |E|-element s-t cuts is hard
How To Compute $\text{Prob}(\exists \text{ an operating } s-t \text{ path})$

1. Generate all N $s-t$ paths
2. Calculate $\text{Prob}(\exists \text{ an operating } s-t \text{ path})$ using the inclusion-exclusion principle ($A_i = \text{ path } i \text{ is operating}$)

$$\text{Prob}(\exists \text{ an operating } s-t \text{ path}) = \text{Prob}(A_1 \cup \ldots \cup A_N)$$

$$= \sum_{k=1}^{N} (-1)^{k-1} S_k$$

where $S_k = \sum_{l \leq l_1 \leq \ldots \leq l_k \leq N} \text{Prob}(A_{l_1} \cap \ldots \cap A_{l_k})$
How To Compute $\text{Prob}(\exists \text{ an operating } s-t \text{ path})$

1. Generate all N $s-t$ paths

2. Calculate $\text{Prob}(\exists \text{ an operating } s-t \text{ path})$ using the inclusion-exclusion principle ($A_i = \text{path } i \text{ is operating}$)

$$\text{Prob}(\exists \text{ an operating } s-t \text{ path}) = \text{Prob}(A_1 \cup \ldots \cup A_N)$$

$$= \sum_{k=1}^{N} (-1)^{k-1} S_k$$

where $S_k = \sum_{l \leq l_1 \leq \ldots \leq l_k \leq N} \text{Prob}(A_{l_1} \cap \ldots \cap A_{l_k})$

$\approx 2^{|E|}$ requires 2^N operations
How To Approximate $\text{Prob}(\exists \text{ an operating } s\text{-}t \text{ path})$

Generate only $K << N$ $s\text{-}t$ paths

Approximate $\text{Prob}(\exists \text{ an operating } s\text{-}t \text{ path})$ using only first $L << N$ moments S_1, \ldots, S_L
Other Generation Problems

<table>
<thead>
<tr>
<th>Reliability Measures</th>
<th>Generation Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Prob}(\exists \text{ an operating } s\text{-}t \text{ path}))</td>
<td>(s\text{-}t \text{ paths}) [Read, Tarjan]</td>
</tr>
<tr>
<td></td>
<td>(\text{minimal } s\text{-}t \text{ cuts}) [Tsukiyama et al]</td>
</tr>
</tbody>
</table>
Other Generation Problems

<table>
<thead>
<tr>
<th>Reliability Measures</th>
<th>Generation Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Prob(\exists$ an operating $s-t$ path)</td>
<td>$s-t$ paths [Read, Tarjan]</td>
</tr>
<tr>
<td>$Prob(\text{ all nodes can communicate})$</td>
<td>minimal $s-t$ cuts [Tsukiyama et al]</td>
</tr>
<tr>
<td></td>
<td>spanning trees [Read, Tarjan]</td>
</tr>
<tr>
<td></td>
<td>minimal cuts</td>
</tr>
<tr>
<td></td>
<td>k-connected spanning subgraphs</td>
</tr>
</tbody>
</table>
Other Generation Problems

<table>
<thead>
<tr>
<th>Reliability Measures</th>
<th>Generation Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Prob}(\exists \text{an operating } s\text{-}t \text{ path}))</td>
<td>(s\text{-}t \text{ paths}) [Read, Tarjan]</td>
</tr>
<tr>
<td>(\text{Prob}(\text{all nodes can communicate}))</td>
<td>minimal (s\text{-}t \text{ cuts}) [Tsukiyama et al]</td>
</tr>
<tr>
<td>(\text{Prob}(\exists s_{1}\text{-}t_{1} \text{ path } \land \ldots \land s_{k}\text{-}t_{k} \text{ path}))</td>
<td>spanning trees [Read, Tarjan]</td>
</tr>
<tr>
<td></td>
<td>minimal cuts</td>
</tr>
<tr>
<td></td>
<td>(k)-connected spanning subgraphs</td>
</tr>
<tr>
<td></td>
<td>path conjunctions [Boros et al]</td>
</tr>
<tr>
<td></td>
<td>cut conjunctions [ISAAC 05]</td>
</tr>
</tbody>
</table>
Other Generation Problems

Reliability Measures

\[\text{Prob}(\exists \text{ an operating } s-t \text{ path}) \]

\[\text{Prob}(\text{ all nodes can communicate}) \]

\[\text{Prob}(\exists s_1-t_1 \text{ path } \land \ldots \land s_k-t_k \text{ path}) \]

Generation Problems

\[s-t \text{ paths} \quad \text{[Read, Tarjan]} \]

\[\text{minimal } s-t \text{ cuts} \quad \text{[Tsukiyama et al]} \]

\[\text{spanning trees} \quad \text{[Read, Tarjan]} \]

\[\text{minimal cuts} \]

\[k\text{-connected spanning subgraphs} \]

\[\text{path conjunctions} \quad \text{[Boros et al]} \]

\[\text{cut conjunctions} \quad \text{[ISAAC 05]} \]

Network consists of subnetworks whose edges fail simultaneously
Other Generation Problems

Reliability Measures

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Prob}(\exists \text{ an operating } s-t \text{ path}))</td>
<td>(s-t) paths [Read, Tarjan]</td>
</tr>
<tr>
<td>(\text{Prob}(\text{ all nodes can communicate}))</td>
<td>(s-t) cuts [Tsukiyama et al]</td>
</tr>
<tr>
<td>(\text{Prob}(\exists s_1-t_1 \text{ path} \land \ldots \land s_k-t_k \text{ path}))</td>
<td>spanning trees [Read, Tarjan], minimal cuts, (k)-connected spanning subgraphs path conjunctions [Boros et al], cut conjunctions [ISAAC 05]</td>
</tr>
</tbody>
</table>

Generation Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Prob}(\text{ all nodes can communicate}))</td>
<td>connected spanning sets in matroids [ESA 06]</td>
</tr>
</tbody>
</table>

Network consists of subnetworks whose edges fail simultaneously
Vertex Generation
Minkowski, Weyl: Two representations of a polyhedron P
Minkowski, Weyl: Two representations of a polyhedron P

halfspace representation

$P = \{ x : Ax \leq b \}$

\[-x_1 + x_2 \leq 3\]
\[-4x_1 + x_2 \leq -3\]
\[-x_1 - x_2 \leq -2\]
\[x_1 - x_2 \leq 4\]
Minkowski, Weyl: Two representations of a polyhedron P

Halfspace representation

$$P = \{ x : Ax \leq b \}$$

Vertex representation

$$P = \text{conv}\{v_1, \ldots, v_k\} + \text{cone}\{d_1, \ldots, d_l\}$$

Constraints:

- $-x_1 + x_2 \leq 3$
- $-4x_1 + x_2 \leq -3$
- $-x_1 - x_2 \leq -2$
- $x_1 - x_2 \leq 4$

Vertex:

$$(x_1, x_2) = \lambda_1 (2, 5) + \lambda_2 (1, 1) + \lambda_3 (3, -1) + \mu (1, 1)$$

with:

- $\lambda_1 + \lambda_2 + \lambda_3 = 1$
- $\lambda_1, \lambda_2, \lambda_3, \mu \geq 0$
Two problems

Vertex Generation

Input: halfspace representation
Output: list of vertices and extreme directions

Facet Generation

Input: vertex representation
Output: list of halfspaces

Vertex Generation and Facet Generation are equivalent

\[P^* = \{ y : x^T y \leq 1 \text{ for all } x \in P \} \]

vertices of \(P \) \(\leftrightarrow \) facets of \(P^* \)
facets of \(P \) \(\leftrightarrow \) vertices of \(P^* \)
$2n$ inequalities

$0 \leq x_1 \leq 1$

$0 \leq x_2 \leq 1$

\vdots

$0 \leq x_n \leq 1$

2^n vertices

$\{0, \ldots, 0, 0\}, \{0, \ldots, 0, 1\},$

$\{0, \ldots, 1, 0\}, \{0, \ldots, 1, 1\},$

$\ldots, \{1, \ldots, 1, 1\}$
Irredundant Infeasible Subsystems

IIS Generation

Input: infeasible system $Ax \leq b$

Output: list of minimal infeasible subsystems

IIS Generation and Vertex Generation are equivalent

vertices of $\{y : y^T A = 0, y \geq 0, b^T y = 1\} \leftrightarrow$ minimal infeasible subsystems of $Ax \geq b$ [Gleeson, Ryan]
Previous Results

Efficient algorithms for special classes:

- simple polyhedra (every vertex incident with n facets) [Avis, Fukuda 1992]
- simplicial polyhedra (the dual of simple polyhedra) [Bremner, Fukuda, Marzetta 1998]
- network polytopes [Provan 1994]
- polytopes with zero-one vertices [Bussieck, Lubbecke 1998]
- polyhedra in which every facet defining inequality involves at most two nonzero coefficients [Abdullahi 2003]

All known algorithms perform poorly in general case [Fukuda, Bremner, Seidel 1995]
New Results

Generating vertices of an unbounded polyhedron is NP-hard [SODA 06, DCG].

Generating vertices of a bounded polyhedron which belong to an open half-space H is NP-hard [SODA 06, DCG].
Proof - Negative Circuits in Digraphs

Negative Circuits Generation Problem
Input: directed graph with edge weights
Output: list of all negative circuits

Negative Circuits Extension Problem
Input: directed graph with edge weights, \(\mathcal{X} \) - a collection of negative circuits
Output: Yes, if there is negative circuit which does not belong to \(\mathcal{X} \) No, if \(\mathcal{X} \) contains all negative circuits
Proof

Strategy

3-SAT \leq_p \text{Negative Circuits Extension Problem} \leq_p \text{Negative Circuits Generation Problem}

our result

simulation (standard technique)
Proof

Strategy

3-SAT \leq_P Negative Circuits Extension Problem \leq_P Negative Circuits Generation Problem

our result

simulation (standard technique)

Thus generating negative circuits is NP-hard
Simulation

\(n \) = input size, \(N \) = total number of negative circuits
\(\mathcal{X} \) a collection of negative circuits

Suppose: algorithm \(\textbf{A} \) generates all \(N \) negative circuits in time \(\phi(n, N) \), where \(\phi(n, N) \) is \(\text{poly}(n, N) \)

Run \(\textbf{A} \) and interrupt it after \(\phi(n, |\mathcal{X}|) + 1 \) time (if it did not stop before)
Simulation

\(n = \) input size, \(N = \) total number of negative circuits
\(\mathcal{X} = \) a collection of negative circuits

Suppose: algorithm \(A \) generates all \(N \) negative circuits in time \(\phi(n, N) \), where \(\phi(n, N) \) is \(\text{poly}(n, N) \)

Run \(A \) and interrupt it after \(\phi(n, |\mathcal{X}|) + 1 \) time (if it did not stop before)

\(A \) outputs a negative circuit not in \(\mathcal{X} \) \(\Rightarrow \) Yes
Simulation

\(n = \text{input size}, \ N = \text{total number of negative circuits} \)
\(\mathcal{X} \) a collection of negative circuits

Suppose: algorithm \(\textbf{A} \) generates all \(N \) negative circuits in time \(\phi(n, N) \), where \(\phi(n, N) \) is \(\text{poly}(n, N) \)

Run \(\textbf{A} \) and interrupt it after \(\phi(n, |\mathcal{X}|) + 1 \) time (if it did not stop before)

\(\textbf{A} \) outputs a negative circuit not in \(\mathcal{X} \) \(\Rightarrow \) Yes

\(\textbf{A} \) does not output a negative circuit not in \(\mathcal{X} \) and it does not halt after \(\phi(n, |\mathcal{X}|) + 1 \) time (interrupted) \(\Rightarrow \) Yes
Simulation

\[n = \text{input size}, \quad N = \text{total number of negative circuits} \]
\[\mathcal{X} = \text{a collection of negative circuits} \]

Suppose: algorithm \(A \) generates all \(N \) negative circuits in time \(\phi(n, N) \), where \(\phi(n, N) \) is \(\text{poly}(n, N) \)

Run \(A \) and interrupt it after \(\phi(n, |\mathcal{X}|) + 1 \) time (if it did not stop before)

- \(A \) outputs a negative circuit not in \(\mathcal{X} \) \(\Rightarrow \) Yes
- \(A \) does not output a negative circuit not in \(\mathcal{X} \) and it does not halt after \(\phi(n, |\mathcal{X}|) + 1 \) time (interrupted) \(\Rightarrow \) Yes
- \(A \) outputs all negative circuits of \(\mathcal{X} \) and halts \(\Rightarrow \) No
Our Result - Proof
Proof - Circulation Cone

\[A - \text{incidence matrix of a digraph} \]
\[\{y : y^\top A = 0, y \geq 0\} \]

extreme directions ↔ circuits

extreme direction \(y \) ↔ circuit \(\{(u, v) \in E : y_{uv} \neq 0\} \)
circuit \(C \) ↔ extreme direction: characteristic vector of \(C \)
Proof - Circulation Polyhedron

\[A - \text{incidence matrix of a digraph, } b - \text{vector of edge weights} \]

\[P = \{ y : y^T A = 0, y \geq 0, b^T y = -1 \} \]

vertices \leftrightarrow negative circuits
Proof - Circulation Polyhedron

A - incidence matrix of a digraph, b - vector of edge weights

$P = \{ y : y^T A = 0, y \geq 0, b^T y = -1 \}$

P is unbounded

y_1 negative circuit ($b^T y_1 = -1$)

y_2 positive circuit ($b^T y_2 = 1$)

$y_1 + t(y_1 + y_2) \in P \ \forall t \geq 0$
Proof - Circulation Polyhedron

\[A - \text{incidence matrix of a digraph, } b - \text{vector of edge weights} \]
\[P = \{ y : y^T A = 0, \ y \geq 0, \ b^T y = -1 \} \]

Corollary 1. *Generating vertices of an unbounded polyhedron is NP-hard.*
Proof - Circulation Polyhedron

\(A \) - incidence matrix of a digraph, \(b \) - vector of edge weights

\[P = \{ y : y^T A = 0, y \geq 0, b^T y = -1 \} \]

vertices of \(\{ y : y^T A = 0, y \geq 0, b^T y = -1 \} \) \(\leftrightarrow \) minimal infeasible subsystems of \(Ax \geq -b \)

Corollary 2. Generating minimal infeasible subsystems of a system of linear inequalities is NP-hard.
Proof - Circulation Polytope

\[P = \{ y : y^T A = 0, \ y \geq 0, \ 1^T y = 1 \} \] is bounded

vertices ↔ circuits
Proof - Circulation Polytope

\[P = \{ y : y^T A = 0, \ y \geq 0, \ 1^T y = 1 \} \text{ is bounded} \]

\[H = \{ y : b^T y < 0 \} \]

- vertices \leftrightarrow circuits
- vertices which belong to H \leftrightarrow negative circuits
Proof - Circulation Polytope

\[P = \{ y : y^T A = 0, \ y \geq 0, \ 1^T y = 1 \} \text{ is bounded} \]

\[H = \{ y : b^T y < 0 \} \]

Corollary 5. \textit{Generating vertices of } \(P \) \textit{ not in } \(H \) \textit{ is NP-hard.}
Vertex Generation For Bounded Polyhedra

NP-hard

open half-space H

NP-hard

open
Monotone Generation Problem
Monotone Generation Problem

Input: set E, monotone Boolean function $\pi : 2^E \rightarrow \{0, 1\}$

Output: list of all minimal subsets of E satisfying π
Monotone Generation Problem

Input: set E, monotone Boolean function $\pi : 2^E \rightarrow \{0, 1\}$

Output: list of all minimal subsets of E satisfying π

$E = \{1, 2, 3, 4\}$

red $\pi = 1$

blue $\pi = 0$
Monotone Generation Problem

Input: set E, monotone Boolean function $\pi : 2^E \rightarrow \{0, 1\}$

Output: list of all minimal subsets of E satisfying π

$E = \{1, 2, 3, 4\}$

red $\pi = 1$

blue $\pi = 0$
Monotone Generation Problem

Let $G = (V, E)$ be a graph, and consider a subset X of edges.

Define

$$
\pi(X) = \begin{cases}
1, & \text{if } (V, X) \text{ is } k\text{-vertex connected;} \\
0, & \text{otherwise.}
\end{cases}
$$
Monotone Generation Problem

- graph $G = (V, E)$, subset X of edges

$$\pi(X) = \begin{cases} 1, & \text{if } (V, X) \text{ is } k\text{-vertex connected}; \\ 0, & \text{otherwise}. \end{cases}$$

- infeasible system $Ax \geq b$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

matrix $A(X)$ of rows of A whose indices belong to $X \subseteq \{1, \ldots, m\}$

$$\pi(X) = \begin{cases} 1, & \text{if } A(X)x \geq b \text{ is an infeasible subsystem}; \\ 0, & \text{otherwise}. \end{cases}$$