Lift Contractions

Petr Golovach1
Marcin Kamiński2
Daniël Paulusma1
Dimitrios Thilikos3

1Durham University, UK
2Université Libre de Bruxelles, Belgium
3National and Kapodistrian University of Athens, Greece

1 September 2011
$G = (V, E)$ is finite, undirected graph, no loops, no multiple edges
We study graph containment relations.
These are defined by the type of graph operation permitted.
We consider a number of basic graph operations, such as the

- vertex deletion
- edge deletion
- edge contraction
- vertex dissolution

The edge contraction of an edge $e = uv$ removes u and v from G, and replaces them by a new vertex adjacent to precisely those vertices to which u or v were adjacent.

If one of the two vertices, say u, has exactly two neighbors which in addition are nonadjacent, then we call this operation the vertex dissolution of u.
Known Graph Containment Relations

<table>
<thead>
<tr>
<th>Containment Relation</th>
<th>VD</th>
<th>ED</th>
<th>EC</th>
<th>VDi</th>
</tr>
</thead>
<tbody>
<tr>
<td>minor</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>induced minor</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>topological minor</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>induced topological minor</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>contraction</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>dissolution</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>subgraph</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>induced subgraph</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>spanning subgraph</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>isomorphism</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

VD = Vertex Deletion
ED = Edge Deletion
EC = Edge Contraction
VDi = Vertex Dissolution

Example. A graph G contains a graph H as an induced minor if G can be modified to H by a sequence of graph operations which may only include vertex deletions and edge contractions (and vertex dissolutions) but no edge deletions.
Another Graph Operation

Let \(e = uv \) and \(e' = uw \) be two different edges incident with the same vertex \(u \) in a graph \(G \).

The lift (or splitting off) of \(e \) and \(e' \) removes \(e \) and \(e' \) from \(G \) and then adds the edge \(vw \) in case \(v \) and \(w \) are nonadjacent.

- A lift does not change the number of vertices of \(G \).
- A dissolution can be simulated by a lift and a vertex deletion.
Immersions are known.

Theorem (Robertson & Seymour, 2010)

In every countable sequence of graphs, there exist two different graphs such that one contains the other one as an immersion.

We introduce the other two containment relations.

In particular we are interested in lift contractions.

Our results also hold for lift minors as any lift contraction is a lift minor.
1. We present three useful lemmas on
 - complete graphs
 - grids
 - fans.

2. We give our main results and sketch their proofs using these lemmas.
Complete Graphs

Let K_p denote the complete graph on p vertices.

Lemma (Complete Lemma)

The graph K_{2n} contains every n-vertex graph as a lift contraction.

Proof. Let G be an n-vertex graph.

Each vertex u in G corresponds to two vertices u and u' in K_{2n}.

Then, for each non-edge uv in G, we perform the following sequence of graph operations in K_{2n}.
Afterwards contract any remaining edge ww' in K_{2n}. This yields G.
Let $M_{k,\ell}$ denote the $k \times \ell$ grid.

![Grid Diagram]

Lemma (Grid Lemma)

The grid $M_{2n,2n^2-2}$ contains every n-vertex graph as a lift contraction.

By the **Complete Lemma** we only have to show that $M_{2n,2n^2-2}$ contains K_{2n} as a lift contraction.
$n = 2$
Let F_k denote the k-vertex fan.

Lemma (Fan Lemma)

The fan F_{4n^2-2n+2} contains every n-vertex graph as a lift contraction.

By the **Complete Lemma** we only have to show that F_{4n^2-2n+2} contains K_{2n} as a lift contraction.
$n = 2$
Our Main Results

1. Every connected graph of degeneracy $\geq 400n$ has every n-vertex graph as a lift contraction.

2. There is a constant c such that every connected graph of treewidth $\geq c \cdot n^4$ has every n-vertex graph as a lift contraction.

3. There is a function $f : \mathbb{N} \to \mathbb{N}$ such that every 2-connected graph of pathwidth $\geq f(n)$ has every n-vertex graph as a lift contraction.

4. There is a function $f : \mathbb{N} \to \mathbb{N}$ such that every connected graph on $\geq f(n)$ vertices and minimum degree ≥ 3 has every n-vertex graph as a lift contraction.

1-4 do not hold if lift contractions are replaced by contractions or lifts, respectively.

Counter example: a sufficiently large complete graph.
Theorem

Every connected graph of degeneracy at least $400n$ contains every n-vertex graph as a lift contraction.

DeVos, Dvorak, Fox, McDonald, Mohar and Scheide (2011) showed that such a graph contains K_{2n} as an immersion.

Due to the **Complete Lemma**, we only have to show that the sequence S of graph operations that yields K_{2n} can be modified into a **sequence of edge contractions and lifts**.

By definition, S consists of vertex deletions, edge deletions and lifts.

1. Remove all vertex deletions and edge deletions from S.
2. Replace every lift that makes the graph disconnected by a sequence of edge contractions and one vertex dissolution.
3. Contract all edges adjacent to a vertex not in the K_{2n}.
Theorem

There exists a constant c such that every connected graph G of treewidth at least $c \cdot n^4$ contains every n-vertex graph as a lift contraction.

Robertson and Seymour (1986) showed that a graph G contains a large grid as a minor provided the treewidth of G is large enough.

We can use this and the Grid Lemma to show a bound on the treewidth.

We can obtain the bound of the theorem as follows.

Birmelé, Bondy and Reed (2007) showed that any graph that does not contain the k-prism (i.e. the $C_k \times K_2$) as a minor has treewidth $O(k^2)$.

Note that F_k is a minor of the k-prism.

We then show how to use the Fan Lemma.
Proof Sketch 3

Theorem

There exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that every 2-connected graph of pathwidth at least $f(n)$ contains every n-vertex graph as a lift contraction.

Thomas (1996) showed that for any two graphs G and H such that G is an outerplanar graph and H has a vertex whose removal leaves a tree, there is a constant $c_{G,H}$ such that every 2-connected graph of pathwidth at least $c_{G,H}$ contains G or H as a minor.

The fan is outerplanar and can be changed to a tree (path) after removing the dominating vertex.

Hence, we take both G and H to be a fan.

We then show how to apply the Fan Lemma.
Future Work

Determine the computational complexity of the problems that are to test whether

- a given graph G contains a fixed graph H as a lift minor;
- a given graph G contains a fixed graph H as a lift contraction.

- When both G and H are part of the input, these two problems are NP-complete. This can be observed from a corresponding result of Matoušek and Thomas (1992) for minors and contractions, respectively.

- Grohe, Kawarabayashi, Marx and Wollan (2011) showed that for any fixed graph H the problem of testing if a given graph G contains H as an immersion can be solved in cubic time.