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CONCAVITY AND EFFICIENT POINTS OF DISCRETE
DISTRIBUTIONS IN PROBABILISTIC PROGRAMMING

Darinka Dentcheva Andras Prékopa Andrzej Ruszczynski

Abstract. We consider stochastic programming problems with probabilistic con-
straints involving integer-valued random variables. The concept of a p-efficient point
of a probability distribution is used to derive various equivalent problem formula-
tions. Next we introduce the concept of r-concave discrete probability distributions
and analyse its relevance for problems under consideration. These notions are used
to derive lower and upper bounds for the optimal value of probabilistically con-
strained stochastic programming problems with discrete random variables. The
results are illustrated with numerical examples.
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1 Introduction

Probabilistic constraints are one of the main challenges of modern stochastic programming.
Their motivation is clear: if in the linear program

min Tz
subject to Tz > ¢,
Azx > b,
x>0,

the vector ¢ is random, we require that Tz > ¢ shall hold at least with some prescribed
probability p € (0,1), rather than for all possible realizations of the right hand side. This
leads to the following problem formulation:

T

min c'x
subject to IP{Tz > ¢} > p, (1)
Azx > b,
x>0,

where the symbol IP denotes probability.

Programming under probabilistic constraints was initiated by Charnes, Cooper and
Symonds in [7]. They formulated probabilistic constraints individually for each stochas-
tic constraint. Joint probabilistic constraints for independent random variables were used
first by Miller and Wagner in [16]. The general case was introduced and first studied by the
second author of the present paper in [21, 24].

Much is known about problem (1) in the case where ¢ has a continuous probability dis-
tribution (see [26] and the references therein). However, only a few papers handle the case
of a discrete distribution. In [25] a dual type algorithm for solving problem (1) has been
proposed. Bounds for the optimal value of this problem, based on disjunctive program-
ming, were analyzed in [32]. The case when the matrix T' is random, while ¢ is not, has
been considered in [34]. Recently, in [27], a cutting plane method for solving (1) has been
presented.

Even though the literature for handling probabilistic constraints with discrete random
variables is scarce, the number of potential applications is large. Singh at alin [33] con-
sider a microelectronic wafer design problem that arises in semiconductor manufacturing.
The problem was to maximize the probability rather than to optimize an objective function
subject to a probabilistic constraint, but other formulations are possible as well. Another
application area are communication and transportation network capacity expansion prob-
lems, where arc and node capacities are restricted to be integers [20, 26]. Bond portfolio
problems with random integer-valued liabilities can be formalized as (1) (see [9] for first such
attempts). Many production planning problems involving random indivisible demands fit to
our general setting as well.

If the decision vector z in (1) is restricted to be integer and T is integer, then there
1s no need to consider other right hand side vectors than integer. In fact, for any random
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vector 17 we have then P{Tx > n} = IP{Tz > ¢}, where { = [5] (the roundup of 5). This
transformation may additionally strengthen the description of the feasible set by deleting
some non-integer points.

In section 2 we introduce the key concept of a p-efficient point of a discrete distribution
and we analyse properties of such points. In section 3 we define the class of r-concave dis-
tribution functions of discrete random variables and we show how r-concavity can be used
to derive various equivalent formulations of probabilistically constrained problems. Section
4 discusses a Lagrangian relaxation of the problem. In section 5 we propose a new method,
called the cone generation method, for generating lower bounds of probabilistically con-
strained problems. Section 6 is devoted to upper bounds. Finally, in section 7 we present
two illustrating examples.

Although we concentrate on integer random variables, all our results easily extend to
other discrete distributions with non-uniform grids, under the condition that a uniform
lower bound on the distance of grid points in each coordinate can be found.

To fix some notation we assume that in the problems above A is an m x n matrix, T is
an s X n matrix; ¢,z € IR", b € IR™ and ¢ is a random vector with values in IR*. We use Z
and Z, to denote the set of integers and nonnegative integers, respectively. The inequality
‘>’ for vectors is always understood coordinate-wise.

2 p-Efficient Points
Let us define the sets:

D={ecR": Az >b, x>0} 2)
and

Z,={ye R : P({ <y)=p} (3)

Clearly, problem (1) can be compactly rewritten as

min
subject to Tz € Z,, (4)
x € D.

While the set D 1s a convex polyhedron, the structure of Z, needs to be analysed in more
detail.

Let F' denote the probability distribution function of ¢, and F; the marginal probability
distribution function of the ¢th component ¢;. By assumption, the set Z of all possible values
of the random vector ¢ is included in Z°.

We shall use the concept of a p-efficient point, introduced in [25].

Definition 2.1 Let p € [0,1]. A point v € IR? is called a p-efficient point of the probability
distribution function F, if F(v) > p and there is no y < v, y # v such that F(y) > p.
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0,1) there is exactly one p-

Obviously, for a scalar random variable ¢ and for every p € (0,
) < Fi(v;) for every v € IR* and

efficient point: the smallest v such that F(v) > p. Since F(v
t=1,...,s, we have the following result.

Lemma 2.2 Letp € (0,1) and let I; be the p-efficient point of the one-dimensional marginal
distribution F;, ¢ = 1,...,s. Then every v € IR’ such that F(v) > p must satisfy the
inequality v > 1= (l1,...,15).

Rounding down to the nearest integer does not change the value of the distribution function,
so p-efficient points of a random vector with all integer components (shortly, integer random
vector) must be integer. We can thus use Lemma 2.2 to get the following interesting fact
(noticed earlier in [35] for non-negative integer random variables).

Theorem 2.3 For each p € (0,1) the set of p-efficient points of an integer random vector
s nonempty and finite.

Proof. The result follows from Dickson’s Lemma [3, Cor. 4.48] and Lemma 2.2. For
convenience we provide a short proof here.

We shall at first show that at least one p-efficient point exists. Since p < 1, there must
exist y such that F(y) > p. By Lemma 2.2, all v such that F'(v) > p are bounded below
by the vector [ of p-efficient points of one-dimensional marginals. Therefore, if y 1s not
p-efficient, one of finitely many integer points v such that [ < v <y must be p-efficient.

We shall now prove the finiteness of the set of p-efficient points. Suppose that there exisits
an infinite sequence of different p-efficient points v?, 7 =1,2,... . Since they are integer, and
the first coordinate v} is bounded from below by Iy, with no loss of generality we may select
a subsequence which is non-decreasing in the first coordinate. By a similar token, we can
select further subsequences which are non-decreasing in the first k coordinates (k =1,... ,s).
Since the dimension s is finite, we obtain a subsequence of different p-efficient points which
1s non-decreasing in all coordinates. This contradicts the definition of a p-efficient point. O

Our proof can be easily adapted to the case of non-uniform grids for which a uniform lower
bound on the distance of grid points in each coordinate exists.

Let p € (0,1) and let v?, j € J, be all p-efficient points of (. By Theorem 2.3, J is a
finite set. Let us define the cones

K;=v+R,, jel

Remark 2.4 Z, = J,.; K;.

Proof. If y € Z, then either y is p-efficient or there exists an integer v <y, v #y, v € Z,.
By Lemma 2.2, one must have I < v. Since there are only finitely many integer points
[ <v <y one of them, v;, must be p-efficient, and so y € Kj. a

Figure 1 illustrates this formulation.
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Figure 1: Example of the set Z, with p-efficient points v',... v*

Thus, we obtain (for 0 < p < 1) the following disjunctive formulation of (4):

min
subject to Tx € UjeJ K;, (5)
x € D.

Its main advantage is an insight into the nature of the non-convexity of the feasible set. In
particular, we can formulate the following necessary and sufficient condition for the existence
of an optimal solution of (5).

Assumption 2.5 The set A := {(u,w) € RT** | ATw + TTu < ¢} is nonempty.

Theorem 2.6 Assume that the feasible set of (5) is nonempty. Then (5) has an optimal
solution iof and only if Assumption 2.5 holds.

Proof. If (5) has an optimal solution, then for some j € J the linear program

min Tz
subject to Tz > v7,
A= (©)
x>0,

has an optimal solution. By duality in linear programming, its dual

max (vj)Tu + bTw
subject to TTu 4+ ATw < ¢, (7)
u,w > 0,
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has an optimal solution and the optimal values of both programs are equal. Thus, Assump-
tion 2.5 must hold. On the other hand, if Assumption 2.5 is satisfied, all dual programs (7)
for j € J have nonempty feasible sets, so the objective values of all primal problems (6)
are bounded from below. Since one of them has a nonempty feasible set by assumption, an
optimal solution must exist. a

A straightforward way to solve (1) is to find all p-efficient points and to process all corre-
sponding problems (6) (an example of such an approach is presented in [17]). Specialized
bounding—pruning techniques can be used to avoid solving all of them. For example, any
feasible solution (@, w) of the dual (7) can be used to generate a lower bound for (6). If it is
worse than the best solution found so far, we can delete the problem (6); otherwise it has to
be included into a list of problems to be solved exactly.

For multi-dimensional random vectors ¢ the number of p-efficient points can be very large
and their straightforward enumeration — very difficult. It would be desirable, therefore, to
avoid the complete enumeration and to search for promising p-efficient points only. We shall
return to this issue in section 5.

In the case of independent subvectors, p-efficient points have a specific structure.

Lemma 2.7 Let ¢ be an s-dimensional integer random vector and let p € (0,1). Assume
that & = (€Y, ... &L), where the s;-dimensional subvectors ¢, 1 =1,... L, are independent
(Ele s = 8). A wvector v = (vl,... oY), where vt € Z*, 1 = 1,... L, is a p-efficient
point of the distribution function F of ¢ if and only if there exist py € (0,1] with T py = p
such that each v' is pi-cfficient for the corresponding marginal distribution function Fy(2') =

P <y, 1=1,...,L.

Proof. Let v be p-efficient. Define p* = P{¢' < 9'}. By independence, P{¢ < v} =
L, piax > p. Bach o' is pi#*-efficient for Fj, since otherwise v would not be p-efficient. If

HL max min

L PP = p. we are done. Otherwise, let p™® = max{Fj(z') : 2} € Z*, 2 <!, 2! # o'}
Since v is p-efficient, ITIZ, p™® < p. Consequently, we can choose p; € (p™®, p#*] such that
-,y = p and each v' is still pj-efficient.

The opposite implication is obvious. a

3 r-Concave Discrete Distribution Functions

Since the set Z, need not be convex, it is essential to analyse its properties and to find
equivalent formulations with more convenient structures. To this end we shall recall and
adapt the notion of r-concavity of a distribution function. It uses the generalized mean

function m, : IRy x IRy x [0,1] — IR defined as follows:

m,(a,b,A) =0 for ab=0,
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and if ¢ > 0,5 >0, 0 <X <1, then

a*bt=* if r =0,
B max{a, b} if r = oo,
mo(a,b,4) = min{a, b} if r = —o0,

(Aa” + (1 — )\)b’“)l/’“ otherwise.

Definition 3.1 A distribution function F : IR® — [0,1] is called r-concave, where v €
[—O0,00], Zf

F(Az + (1= Ay) = m,(F(z). F(y), A)
for all z,y € IR® and all X € [0,1],

If r = —00 we call F' quasi-concave, for r = 0 1t is known as log-concave, and for r = 1
the function F' is concave in the usual sense.

The concept of a log-concave probability measure (the case r = 0) was introduced and
studied in [22, 23]. The notion of r-concavity and corresponding results were given in [4, 5].
For detailed description and proofs, see [26].

By monotonicity, r-concavity of a distribution function is equivalent to the inequality

F(z) =2 m,(F(z), F(y),A)

for all z > Az + (1 — A)y.

Clearly, distribution functions of integer random variables are not continuous, and cannot
be r-concave in the sense of the above definition. Therefore, we relax Definition 3.1 in the
following way.

Definition 3.2 A distribution function F is called r-concave on the set A C IR® with r €
[—OO, OO], Zf

F(2) > m(P(2), Fly), )
forall z,z,y € A and X € (0,1) such that z > Az + (1 — N)y.

To illustrate the relation between the two definitions let us consider the case of integer
random vectors which are roundups of continuously distributed random vectors.

Remark 3.3 If the distribution function of a random vector n is r-concave on IR® then the
distribution function of £ = [n] is r-concave on Z°.

The last property follows from the observation that at integer points both distribution func-
tions coincide. For the relations between the r-concavity of the distribution function of 5
and the r-concavity of its density the Reader is referred to [4, 5, 28].

The concept of r-concavity on a set can be used to find an equivalent representation of
the set Z, given by (3).
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Theorem 3.4 Let Z be the set of all possible values of an integer random vector ¢. If the
distribution function F of £ is r-concave on Z + Z7,, for some r € [—o0, 00|, then for every
p € (0,1) one has

Zp:{yems3yZZZZ)\jvj,Z)\jZI,)\jZO,ZEZS},

jeJ jeJ
where v7, j € J, are the p-efficient points of F.
Proof. By the monotonicity of F' we have F(y) > F(z) if y > z. It is, therefore, sufficient

to show that IP(¢ < z) > pfor all z € Z° such that z > ZjeJ Mod with A; >0, 3. A =1.
We consider five cases with respect to r.

jeJ
Case 1: 7 = oco. It follows from the definition of r-concavity that F(z) > max{F(v’),j €

J:A #£0} >p.

Case 2: 7 = —oo. Since F(v?) > p for each index j € J such that A\; # 0, the assertion
follows as in Case 1.

Case 3: r = 0. By the definition of r-concavity,

F(z) 2 [[IF@) = [[pY = ».

JjeJ JjeJ
Case 4: r € (—00,0). By the definition of r-concavity,
[F(2)]" <Y N <Y A" =7
JjeJ JjeJ

Since 7 < 0, we obtain F(z) > p.
Case 5: r € (0,00). By the definition of r-concavity,
[F(2)]" 2 Y NIF@) =) Ny =7
JjeJ jeJ
O

For example, the set Z, illustrated in Figure 1 cannot correspond to any r-concave distri-
bution function, because its convex hull contains integer points which do not belong to Z,,.

namely, the points (3,6), (4,5) and (6,2).
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Under the conditions of Theorem 3.4, problem (5) can be formulated in the following
equivalent way:

min fa (8)
subject to x €D (9)
Te > z, (10)
ze’, (11)
z > Z Ajv? (12)
JeJ

doAi= (13)

JeJ
A >0,7 € (14)

So, the probabilistic constraint has been replaced by linear equations and inequalites, to-
gether with the integrality requirement (11). This condition cannot be dropped, in general.
However, if other conditions of the problem imply that Tz is integer (for example, we have
an additional constraint in the definition of D that @ € Z", and T has integer entries), we
may dispose of z totally, and replace constraints (10)—(12) with

Tz > Z /\jvj )
jeJ
If ¢ takes values on a non-uniform grid, condition (11) should be replaced by the requirement
that z is a grid point.

The difficulty comes from the implicitly given p-efficient points v;,5 € J. Our objective
will be to avoid their enumeration and to develop an approach that generates them only
when needed.

An obvious question arises: which distributions are r-concave in our sense? We devote
the remaining part of this section to some useful observations on this topic.

Directly from the definition and Holder’s inequality we obtain the following property.

Remark 3.5 If a distribution function F is r-concave on the set A C IR® with some r €
[—00,00], then it is p-concave on A for all p € [—o0,7r].

For binary random vectors we have the strongest possible property.

Proposition 3.6 FEvery distribution function of an s-dimensional binary random vector is
r-concave on Z’, for all r € [—oo, c0].

Proof. Letz,y € Z7, A € (0,1) and let z > Az+(1—X)y. By projecting z and y on {0,1}”
we get some ¢’ and y’ such that F'(z') = F(z), F(y') = F(y) and z > Az’ + (1 — A)y’. Since
z is integer and «’ and y’ binary, then z > @’ and z > y'. Thus F(z) > max(F(z'), F(y')) =
max(F(z), F(y)). Consequently, F' is co-concave and the result follows from Remark 3.5. O
For scalar integer random variables our definition of r-concavity is related to log-concavity

of sequences. A sequence py, k= ...,—1,0,1,...,1s called log-concave, if p; > p_1pr41 for
all k. By [10] (see also [26, Thm. 4.7.2]) and Remark 3.5, we have the following property.
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Proposition 3.7 Suppose that for a scalar integer random variable & the probabilities p, =
P{¢=k}, k=...,-1,0,1,..., form a log-concave sequence. Then the distribution function
of & is r-concave on Z for every r € [—o0,0].

Many well-known one-dimensional discrete distributions satisty the conditions of Proposition
3.7: the Poisson distribution, the geometrical distribution, the binomial distribution [26, p.
109].

We end this section with sufficient conditions for the r-concavity of the joint distribution
function in the case of integer-valued independent subvectors. Our assertion, presented in
the next proposition is the discrete version of an observation from [19]. The same proof,
using Holder’s inequality, works in our case as well.

Proposition 3.8 Assume that ¢ = (£,... ¢L), where the s;-dimensional subvectors ¢,
v = 1,...,L, are independent (El 151 = s). Furthermore, let the marginal distribution
functzons Fl IR* — [0, 1] be r;-concave on sets Ay C Z*.

(t) Ifry >0,1=1,...,L, then F is r-concave on A= A; x --- X Ar with
-1
= <ZlL:1rl_1> y
(it) Ifry=0,1=1,...,L, then F is log-concave on A= Ay x --- x Ay,

4 Lagrangian Relaxation

Let us split variables in problem (4):

min ¢’z

Te = z, (15)
x €D,
z € Z,.

Associating Lagrange multipliers w € IR’ with constraints (15) we obtain the Lagrangian
function:

L(z,z,u) = cTe +uf (2 — Tx).

Owing to the structure of Z, (Lemma 2.2), we could have replaced equality Tx = z in (15)
by an inequality Tz > z, and use v > 0 in the Lagrangian. However, formal splitting (15)
leads to the same conclusion. The dual functional has the form

U(w)= inf L(z,z,u)=h(u)+d(u),

(z,2)EDxZ,
where
h(v) = inf{(c—TTu)Tz |z c D}, (16)
du) = inf{u’z|zc Z,}. (17)
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Lemma 4.1 dom¥ = {u € R}, : there ezists w € IR such that ATw + TTu < c}.
Proof. Clearly, dom¥ = domh N domd. Let us calculate dom h. The recession cone of D,
C={ycR": Ay >0, y > 0},
has the dual cone
C*={veR":vTy>0forally € C} ={v € R™: v > ATw, w >0},
as follows from Farkas’ lemma. Thus
domh={ucR :c—TTuc C*}={uc R : TTu+ ATw < ¢, w > 0}.

On the other hand, by Remark 2.4, dom d = IR, and the result follows. O

The lemma implies that Assumption 2.5, which is necessary and sufficient for the existence
of solutions, is also necessary and sufficient for the nonemptiness of the domain of the dual
functional.

For any u € IR, the value of ¥(u) is a lower bound on the optimal value F* of the original
problem. This is true for all problems of form (1), irrespective whether the distribution
function of ¢ is or is not r-concave.

The best Lagrangian lower bound will be given by

D* = sup ¥(u). (18)
If an optimal solution of (4) exists, then Assumption 2.5 holds, so, by Lemma 4.1,
—o00o < D" < F~.

We shall show that the supremum D* is attained. Indeed, h(u) = —85(—c + T7u), where
65(+) is the support function of D. Thus h(-) is concave and polyhedral (see [29], Corollary
19.2.1). By Remark 2.4, for v > 0 the minimization in (17) may be restricted to finitely
many p-efficient points v/, j € J. For u # 0 one has d(u) = —oo. Therefore, d(-) is concave
and polyhedral as well. Consequently, ¥(-) is concave and polyhedral. Since it is bounded
from above by F™, it must attain its maximum.

Another lower bound may be obtained from the convexification of problem (4)

Fr =min{c’z | Te =2, €D, z € co Z,}. (19)
It is known (see [18]) that
F* = D" < F",

We now analyse in more detail the structure of the dual functional ¥. Let us start from
h(-). If Assumption 2.5 is satisfied, then for each u € IR’

h(u) = sup{bTw | TTu + ATw < ¢, w > 0},
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according to the duality theory in linear programming. This allows us to reformulate the
dual problem (18) in a more explicit way:

max  d(u) + brw (20)
TTu + ATw < c, (21)
>0, w>0. (22)

Let us observe that we may write ‘max’ instead of ‘sup’ because we already know that the
supremum is attained. We may also add the constraint ‘w > 0’ explicitly, since it defines the
domain of d.

Properties of d(-) can also be analysed in a more explicit way.

Lemma 4.2 For every uw > 0 the solution set of the subproblem

min u” 2 (23)
2EZ,

is nonempty and has the following form.:
Zw)= |J {}+Cw),
jed(u)
where J(u) is the set of p-efficient solutions of (23), and
Clu)={d € R} :d; =0 tfu; >0, i =1,... s} (24)

Proof. The result follows from Remark 2.4. Let us at first consider the case u > 0. Suppose

that a solution z to (23) is not a p-efficient point. Then there is a p-efficient v € Z, such that

Ty < uTz, a contradiction. Thus, for all « > 0 all solutions to (23) are p-efficient.

T

v < 2,80 U

In the general case v > 0, if a solution z is not p-efficient, we must have uTv = uTz for all

p-efficient v < z. This is equivalent to z € {v} + C(u), as required. O

The last result allows us to calculate the subdifferential of d in a closed form.

Lemma 4.3 For every u > 0 one has dd(u) = co{v?, j € J(u)} + C(u).
Proof. From (17) it follows that

d(u) = =83, (—u),

where 5§P(-) 1s the support function of Z, and, consequently, of coZ,. This fact follows
from the structure of Z, (Remark 2.4) by virtue of Corolarry 16.5.1 in [29]. By [29, Thm
23.5], g € 96% (—u) if and only if 07 (—u) +deoz,(g9) = —gTu, where 8, z,(+) is the indicator
function of co Z,. It follows that ¢ € coZ, and 5§P(—u) = —gTu. Thus, g is a convex
combination of solutions to (23) and the result follows from Lemma 4.2. O

Therefore the following necessary and sufficient optimality conditions for problem (20)—(22)
can be formulated.
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Theorem 4.4 A pair (u,w) € A is an optimal solution of (20)—(22) if and only if there
exists a point x € IR such that:

Az > b, w'(Az —b) =0, (25)
and
Te € cofv’ - j € J(u)} + C(u), (26)

where j(u) is the set of p-efficient solutions of (23), and C(u) is given by (24).

Proof. The vector z plays the role of the Lagrange multiplier associated with the constraint
(21). The necessary condition of optimality for (20)—(22) (Kuhn—Tucker condition) has the
form

6<bTw +d(u) 4+ 27 (c — T u — ATw)> N K(u,w) # 0,

where K (u,w) is the normal cone to IRT at (u,w). Using the closed-form expression for
the subdifferential of d from Lemma 4.3, we obtain:

T T, T, 4T ~{ co{v i je )} +C(u) - Ta

0<b wtdu)+z (c—T u Aw)>_(b—Aw :

On the other hand:

K (u,w) = {(u",w") 10 < 0,0 < 0, (u",u) = 0, (0", w) = 0} = ( o )

Consequently, the condition co {v? : j € j(u)}—l—C(u) —TazN—C(u) # 0 implies the existence
of elements v € co{v? : j € j(u)} and ¢1, ¢y € C(u) such that: v + ¢; — T = —¢,, which
is equivalent to the condition (26). Furthermore, we obtain that b — Az N —C(w) # 0. The
definition of C'(w) implies condition (25). O

It follows that the optimal Lagrangian bound is associated with a certain primal solution
z which is feasible with respect to the deterministic constraints and such that T'z € co Z,,.
Moreover, since (u,w) € A, the point « is optimal for the convex hull problem:

min ¢’z (27)
Az > b, (28)
Tz > Z)\jvj, (29)
jeJ
d =1, (30)
jeJ
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Indeed, associating with (28) multipliers w, with (29) multipliers «, and with (30) a
multiplier ¢ = d(u), we can show that (z, ) is optimal for (27)-(31) provided that \; are
the coefficients at v’ in the convex combination in (26).

Since the set of p-efficient points is not known, we need a numerical method for solving
(20)—(22) or its dual (27)—(31).

Let us stress that all considerations of this section apply to non-uniform grids Z. The
same is true for the method to be presented in the next section.

5 The cone generation method

The idea of a numerical method for calculating Lagrangian bounds is embedded in the
convex hull formulation (27)—(31). We shall develop for it a new specialized method, which
separates the generation of p-efficient points and the solution of the approximation of the
original problem using these points. It is related to column generation methods, which have
been known since the classical work [11] as extremely useful tools of large scale linear and
integer programming [2, 8].

The Method
Step 0: Select a p-efficient point v°. Set Jo = {0}, k = 0.

Step 1: Solve the master problem

min ¢’z (32)
Az > b, (33)
Tz > Z Ajv7, (34)
JEJg
doa=1, (35)
JEJg
x>0, A>0. (36)

Let u* be the vector of simplex multipliers associated with the constraint (34).
Step 2: Calculate an upper bound for the dual functional:
T(u*) = min(u*) v
(u”) = min(u®)
Step 3: Find a p-efficient solution v**! of the subproblem:

: ENT
min(u?)"2

and calculate
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Step 4: If d(u*) = d(u*) then stop; otherwise set Jyy; = Jp U {k + 1}, increase k by one
and go to Step 1.

A few comments are in order. The first p-efficient point v° can be found by solving (23)
for an arbitrary w > 0. All master problems will be solvable, if the first one is solvable, i.e.,
if the set {« € IR} : Ax > b, Tz > v°} is nonempty. If not, adding a penalty term M1%¢ to
the objective, and replacing (34) by

T4t > Z)\jvj,

JEJIL

with ¢+ > 0 and a very large M, is the usual remedy (17 = [1 1 ... 1]). The calculation of
the upper bound at Step 2 is easy, because one can simply select 75, € Ji, with A;, > 0 and
set d(u*) = (u*)Tvi*. At Step 3 one may search for p-efficient solutions only, due to Lemma
4.2.

The algorithm is finite. Indeed, the set Jj cannot grow indefinitely, because there are
finitely many p-efficient points (Theorem 2.3). If the stopping test of Step 4 is satisfied,
optimality conditions for (27)—(31) are satisfied. Moreover Jp = {7 € Jp: (v),u”) =d(u*)} C

When the dimension of z is large and the number of rows of T' small, an attractive
alternative to the cone generation method is provided by bundle methods applied directly to
the dual problem

h(u) + d(u)]
max [ (u) +d(u) |,
because at any w > 0 subgradients of h and d are readily available. For a comprehensive
description of bundle methods the reader is refereed to [13, 14]. It may be interesting to
note that in our case they correspond to a version of the augmented Lagrangian method (see

30, 31]).

Let us now focus our attention on solving the auxiliary problem (23), which is explicitly
written as:

min{u’z | F(z) > p}, (37)

where F'(-) denotes the distribution function of .
Assume that the components ¢, ¢ = 1,... ,s, are independent. Then we can write the
probabilistic constraint in the following form:

In(F(z)) = Zln(Fi(zi)) > In p.

Since we know that at least one of the solutions is a p-efficient point, with no loss of generality
we may restrict the search to grid vectors z. Furthermore, by Lemma 2.2, we have z; > [;,
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where [; are p-efficient points of ¢;. For integer grids we obtain a nonlinear knapsack problem:

min Zuizi
ijl
Zln(Fi(zi)) > Inp,
7=1
ZiZlia ZiEZ, ’I::l,...,s.

If b; is a known upper bound on z;, ¢ = 1,... ,s, we can transform the above problem to a
0-1 linear programming problem:

8 b;
min Y juiy;

=1 j=I;

8 b;
Z Zln(Fi(J))yij > Inp, (38)
=1 j=I;

b
Zyij_]-v 7'_]-7 » 5,
3=l

yijE{O,l}, ’I::l,...,s, j:li,...,ui.

In this formulation, z; = E?Z:l, JYi;-

For log-concave marginals F;(-) the following compact formulation is possible. Setting
z = l; + E?i:l,»+1 0;; with binary ¢;;, we can reformulate the problem as a 0-1 knapsack
problem:

8 b;
min Z Z ;0
1=1 j=I;+1
s b (39)
Z Z aijéw >7°,
=1 j=Il;+1

51',7'6{071}7 ’I::l,...,s, ,j:li—I-l,...bi,

where a;; = In Fi(j) —In F;(j — 1) and » = Inp — In F/(I). Indeed, by the log-concavity, we
have a; j4+1 < a;j, so there 1s always a solution with nonincreasing 9;;, 7 = I;+1,... ,b;. Very
efficient solution methods exist for such knapsack problems [18].

If the grid Z is not integer we can map it to integers by numbering the posssible realiza-
tions of each ¢; in an icreasing order.

If the components &; of ¢ are dependent, new specialized algorithms are needed for solving
the subproblem (37). The advantage of the cone generation method is that we can separate
the search for new p-efficient points (via (37)) and the solution of the “easy” part of the
problem: the master problem (32)—(36).
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6 Primal feasible solution and upper bounds

Let us consider the optimal solution z'°% of the convex hull problem (27)-(31) and the
corresponding multipliers ;. Define J°¥ = {j € J: \; > 0}.

If J*% contains only one element, the point z!°7 is feasible and therefore optimal for the
disjunctive formulation (5). If, however, there are more positive A’s, we need to generate a
feasible point. A natural possibility is to consider the restricted disjunctive formulation:

min Tz
subject to Tx € Ujejlow K; (40)
x eD.

It can be solved by simple enumeration of all cases for j € J°":

min ¢’z
subject to Tz > v, (41)
z € D.

In general, it is not guaranteed that any of these problems has a nonempty feasible set, as the
following example shows. Let n = 3, T' = I, and let there be only three p-efficient points:
vt = (1,0,0), v* = (0,1,0), v> = (0,0,1), and two additional deterministic constraints:
1 <1/2, 25 <1/2, and ¢ = (0,0,1). The convex hull problem has Ay = Ay = 1/2, A3 =0,
but both problems (41) for j = 1,2 have empty feasible sets.

To ensure that problem (40) has a solution, it is sufficient that the following stronger
version of Assumption 2.5 holds.

Assumption 6.1 The set A := {(uv,w) € R} | ATw + TTu < ¢} is nonempty and
bounded.

Indeed, then each of the dual problems (7) has an optimal solution, so by duality in linear
programming each of the subproblems (41) has an optimal solution. We can, therefore, solve
all of them and choose the best solution.

An alternative strategy would be to solve the corresponding upper bounding problem
(41) every time a new p-efficient point is generated. If U; denotes the optimal value of (41),
the upper bound at iteration k& is

U* = min Uj. (42)

0<j<k

This may be computationally efficient, especially if we solve the dual problem (7), in which
only the objective function changes from iteration to iteration.



RRR 9-2000 PAGE 17

If the distribution function of ¢ is r-concave on the set of possible values of ¢, Theorem
3.4 provides an alternative formulation of the upper bound problem (40):

min L

subject to x €D

Tx > z,
z € X’ (43)
z > Z vl
J€Jk
-
J€Jk
)\j >0, 5 € Jg.

Problem (43) is more accurate than the bound (42), because the set of integer z dominated
by convex combinations of p-efficient points in Jj, 1s not smaller than Ji. In fact, we need to
solve this problem only at the end, with J; replaced by J*".

7 Numerical Illustration

7.1 Traffic Assignment in Telecommunication

In Time-Division Multiple Access (TDMA) satellite communication systems the following
problem arises: given a nonnegative integer m X m traffic matriz D find an integer n,
nonnegative integers 1, ... , z, (time slots) and m x m permutation matrices Q... Q™
(switch modes) such that

> QW > D, (44)
=1

and 2?21 z; 1s minimized. Each element dj; of the matrix D represents the demand for
transmission from station k to station I; each permutation Q® describes an assignment of
senders to receivers for simultaneous transmission in a time slot x;.

For practical reasons from among n! possible permutations some fixed subset is selected:
usually n» = 2m and

Q(l) _ Cl:_lf ’IE: 1....,n,
C ] i=n+1,...,2n,
where C* stands for the ith power of C' and
1 1 1

I: . R J: - R C:
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The Reader is referred to [1, 6, 15] for the background of the TDMA problem.

If the demand D is random, we obtain the probabilistically constrained problem

n
min E x;
7=1
n

subject to P{ Z Q(i)il?i > D} > p,
=1
x>0, zelZ".

As an illustration consider the problem with m = 4 (which makes n = 8). p = 0.9, and with
independent Poisson demands having the expected values

E{D} =

Lo NN
MO b O —
— s DO o
[ICRN CRITTN

This example problem has been solved by the cone generation method, as described in
section 5. The master problem (32)—(36) (without the integrality restriction) was solved
by the simplex method. The subproblem of Step 3 was formulated as a 0—1 programming
problem (38). This formulation turned out to be easier to solve than (39), which could
have been used, too, due to the log-concavity of the multidimensional Poisson distribution
with idependent components. The upper bounding problem (43) contained an additional
integrality restriction on .

The entire algorithm has been programmed in AMPL [12], and CPLEX was the LP/MIP
solver used.

To generate the first p-efficient point we solved the subproblem of Step 3 with u® =
(11 ...1). This gave

54 7 9
o_ |67 6 4
4 6 10 6
8 6 4 7

The values of the objective fuctions of the master problem, the subproblem and the upper
bounding problem (43) at successive iterations are illustrated in Figure 7.1.

Luckily, the algorithm terminated when the roundup of the optimal value of the subprob-
lem, [d(u*)], which is a lower bound on the optimal value of the whole problem, became
equal to the optimal value of the upper bounding problem (43) (with integrality restrictions
on z). This, of course, is not guaranteed to happen, and we might as well end at a solution
with a duality gap.

By the log-concavity of the Poisson distribution (Proposition 3.7) and by Proposition
3.8, the distribution function of ¢ is log-concave in the area above the expected values.
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Figure 2: Objective values of the master problem, the subproblem and the upper bounding
problem in the communication traffic assignment example.

Consequently, by virtue of Theorem 3.4, the optimal solution of the upper-bounding problem
(43),

#=(25062706).

1s optimal for the original probabilistically constrained problem. The p-efficient point v such
that Y., Q¥%; > equals

<>

Il
-~ -~ O O
Sy =3 Co0 Ot
Sy 0~ I
Nel, Gl erBNe o

. It has been found on the 17th iteration.



PAGE 20 RRR 9-2000

Figure 3: The graph of the vehicle routing problem.

7.2 Vehicle Routing

We have a directed graph with node set A and arc set £. A set of cyclic routes IT, understood
as sequences of nodes connected with arcs and such that the last node of the sequence is the
same as the first one, has been selected. For each arc e € € we denote by R(e) the set of
routes containing e, and by ¢(7) the unit cost on the route.

A random integer demand {(e) is associated with each arc e € £. Our objective is to find
non-negative integers z(m), 7 € II, such that

P{ > w(m)2(e), cc €} =,

TER(e)

and the cost

1s minimized.
As an illustration, let us consider the graph shown in Figure 3. Each arc in this figure

represents in fact two arcs in opposite directions.

We assume that demands {(e) associated with the arcs are independent Poisson random
variables with the expected values given in Table 1.
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The set of routes II is given by the following route—arc incidence matrix 7'

Arc

Expected Demand

AB
AC
AD
AE
BA
BC
CA
CB
CD
DA
DC
DE
EA
ED

Table 1: Expected demands

2

DN WHENEAERFEDNRFERFEDNDDND W

PAGE 21

123 456 789 10 11 12 13 14 15 16 17 18 19

AB
AC
AD
AE
BA
BC
CA
CB
CD
DA
DC
DE
EA
ED

1

For example, route 18 has the form ACDCBA.

The cost cefficients associated with the routes are given by

Finally, the probability level is p = 0.9.

¢ = (10 15 18 15 32 32 57 57 60 60 63 63 61 61 75 75 62 62 44).

1

1
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Again, we used the cone generation method, implemented exactly as described in the

previous example. To generate the first p-efficient point we solved the subproblem of Step 3
with «® = (11 ... 1). This gave

vW=(6766446496876T7).

The method terminated after 23 iterations satisfying the stopping criterion of Step 4, with
the solution of the convexified problem:

£=(2360000000000000447),

that i1s 2 on route ABA, 3 on ACA, 6 on ADA, 4 on ABCDCA, 4 on ACDCBA and 7 on
AEDEA. The symmetry of the solution is purely accidental.

X Upper Bound

Master
990 - p e R

O8O0 -~ - S

Q70 - - N NN S
%0+ g -/ NS NSNS
Subproblem
950 -+ N\ Moo

A0 - f v -

980 [ -+

920

Iteration

Figure 4: Objective values of the master problem, the subproblem and the upper bounding
problem in the vehicle routing example.

The values of the objective fuctions of the master problem, the subproblem, and the
upper bounding problem (43) in successive iterations are illustrated in Figure 7.2.

The optimal solution & of the convexified problem turned out to be integer. As in the
previous example, by the log-concavity of the Poisson distribution, &, as an optimal solution
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of the upper-bounding problem (43), is optimal for the original probabilistically constrained

problem. In fact, we have Tz > 0, where

0=(6767547486877T7).

It has been found on the 22nd iteration.
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