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Gergely Madi-Nagy Andras Prékopa

Abstract. The paper shows how the bounding technique provided by the Multi-
variate Discrete Problem can be used for bounding the expectations of functions of
random variables with known univariate marginals and some of the mixed moments.
Four examples are presented. In the first example the function is a Monge or related
array, in the second one it is a pseudo Boolean function. In the further examples
bounds are presented for the values of multivariate generating functions and for the
expectation of special utility functions of random variables. Numerical results are
presented.
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1 Introduction

Recently a number of papers have been published about the univariate and multivariate
discrete moment problem (DMP, MDMP), where we create bounding formulas as well
as algorithmic bounds for function of random variables under moment information (see
Prékopa 1990, Prékopa 1998, MAdi-Nagy and Prékopa 2004). In the univariate case the
moments of order up to m of a random variable are supposed to be known, and, based on
this, lower and upper bounds for functions of the random variable have been proposed in
Prékopa (1990). This includes the construction of bounds for probabilities, in terms of the
moments of the random variable, since this latter problem is a special case of the former
one. Similarly, the paper Prékopa (1998) deals with bounds for functions of random vectors,
where the mixed moments of the components of total order up to m are known. The re-
sults have been generalized in Madi-Nagy and Prékopa (2004), assuming that, in addition to
the knowledge of moments of total order up to m, some further moments of the univariate
marginals are also known.

Sometimes, when bounds for expectations of function of random vectors are constructed,
all univariate marginals are completely known and the stochastic dependencies are charac-
terized by some of the mixed moments, e.g., the covariances. This is the case in the paper
by Hou and Prékopa (2006), where a bounding technique, different from the one in MDMP
is used.

The purpose of the present paper is to give a number of examples for the application of
the MDMP technique, to bounding expectations of functions of random vectors, where the
univariate marginals and some of the mixed moments are known.

Let X = (Xj,...,X;) be a random vector where the support of X; is a known finite set
Zj = {zjo, -, Zjn; } with distinct elements, j = 1,..., s and introduce the notation:

pil...is = P(X1 = Zlila . .,Xs = Zsis)a 0 S Z] S nj, ] = 1,. .., S. (11)

We assume that the probability distribution of X is not known, but known are the
univariate marginals, i.e., the distributions of the components X;’s, j = 1,...,s. We use the
following notations:

P(X; = zj;) :ql(j), i=0,...,n5, j=1,...,s.
Our aim is to give lower and upper bounds for
BIf(X,,..., X)),
where f(z), z € Z is discrete function about which we will introduce some assumptions. For

simplicity let fi, . = f(21iy .-+ Zsis)-
The (a1, ..., as)-order moment of the random vector (X7,..., X,) is defined as

ni N
— Qi Qs — aq Qs oy
[os..ay = B[XT" - X0] = Z T Z Zliy " Ry Pir s

11=0 15=0
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where aq, ..., a, are nonnegative integers. The sum «; + - - - + « is called the total order of
the moment.

One important objective of the multivariate discrete moment problem (MDMP) is to give
lower and upper bounds for E[f(X7, ..., X;)], where some collection of the moments fiq, . .
is known.

The MDMP that we use in this paper is the following:

ni Ng
min(max) » - > fii iDir.i,

i1=0  is=0
subject to

Nj—1  Tj+l  ng

S ()
_

il...ij_liij+1...is — 9
D> DX g
i1=0  ij_1=014j41=01is=0 (1.2)
fori=0,---,n;, y=1,...,s; and
ni N

a1 « _

Z e Z Zlil e Zsiipil...is - ,uOél...Oés
=0 i,=0
for 0 <oy, j=1,...,s a0, # 0 for some u #v, a; + -+ a; <m;
Piy...is 2 07 all 11,0415,

where (q(()j), e q%_)), j=1,...,sare known univariate distributions, jiq,. a,, @1+ s < m
are known moments and the decision variables are p; ., 0 <i; < mn;, 7 =1,...,s. The

objective function, the first set of constraints and the nonnegativity restrictions define an
s-dimensional transportation problem (see Hou and Prékopa 2006). Problem (1.2) will be
called extended s-dimensional transportation problem.

Since the cardinality of the support of X; is n; 4 1, it follows that the moments

n;j )
BIXF =32k, k=0,...n,
=0

uniquely determine its probability distribution one of the marginal distributions of X, it
follows that problem (1.2) is equivalent to the following:

ni Ng
min(max) » -+ > fii D,

i1=0  is=0
subject to
ni

Ns
a1 Qs o R
Z e Z Rliy =" " RsigPiris = Ma..as

=0  is=0
fora; =0, 5=1,..., k=1, k+1,...,5 0<a, <n, k=1,...,5s and
for 0 <oay, j=1,...,5 aua, # 0 for some u # v, a; +--- +a, <my
DPiq..is Z 0, all il,...,is.

(1.3)
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The compact matrix form of problem (1.3) will be written as:

min(max) f'p
subject to

P (1.4)
p > 0.

The paper is organized as follows. In Section 2 we specialize our general theorems proved
in M&di-Nagy and Prékopa (2004) for the case of problem (1.3), suitable for our current
application. In Section 3 we derive further results, by the use of problem (1.3), for the
problem studied in Hou and Prékopa (2006), where the objective function enjoys the Monge
or some related property. In Section 4 we apply the specialized MDMP technique to bounding
the expectations of pseudo Boolean functions under monotonicity conditions. The next
example is bounding the values of generating functions, is presented in Section 5. In Section
6 we show how the MDMP technique applies to bounding expected utility functions. Finally,
we summarize the conclusions of our results.

2 Bounds When the Univariate Marginal Distributions
and Moments of Total Order up to m are Known

First we state a theorem valid for a Lagrange interpolation polynomial defined in R’.
In what follows we will use the notations

Zj' = {Z]'O,...,Z]'i}
Zjll = {ng,...,Zji,Zj},

1=0,...,n5, j=1,...,s.

Consider the set of subscripts

I=1IU (U1, (2.1)
where
In=A{(i1,...,15)| 0<i; <m—1, integers, j =1,...,s, i1 +...+is <m} (2.2)
and
L={(ir,....i)| m<i;<m;, ii=01%#j}, j=1,...,s. (2.3)

Corresponding to the points

Z[Z{(Zlil,...,zsisﬂ (il,...,is)EI} (24)
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we assign the Lagrange polynomial, given by its Newton’s form:

L] (Zl, .. Zs)
= Z [Zlil;" Zszsaf] H H Z]k
i1+...+is<m j=1 k=0
0<zJ<m 1, 7=1,...,s
s i1 (2.5)
+ Z Z [Zm, ] 1)0; Z]z; Z(y+1)0; 5 Zso; f] H (Zj - ij) )
j=li=m k=0

i;—1

where, by definition, [] (z; — 2;x) = 1, for i; = 0.
k=0

In (2.5) the function f is not necessarily restricted to the set Z as its domain of definition; it
may be defined on any subset of R® that contains Z. Next, we define the residual function:

R[(Zl, Ceey Zs) = RH(Zl, Ceey Zs) + RZ[(Zla ceey Zs), (26)
where
RH(Zl, Ceey Zs)
: - 2.7
=Y [zm; © 526103 Zingi 2G4+1)03 " --;zso;f] II (25 — zjx) (27)
j=1 k=0
and
RQ](Zl, AN Zs)
s—1 ih
= > 2155 201 Zays Zontyingas 3 Zoiat ) TT (21 — 2a)
h=1 ip4tis=m 1=0

0<i;<m—1, j=h,...,s
i.f

li[ II (25 = 2¢) (2.8)

+ > [21; co 03 2015 Zhos Z(h1)0s 5 ZG-1)05 Zim—1y) Z(G41)05 " "5 Zso] (2n — 2no)
j=ht1

X H (zj — Zjk) -

The following theorem is a consequnece of Theorem 3.1 in M&di-Nagy and Prékopa (2004).

Theorem 2.1 Consider the Lagrange polynomial (2.5), corresponding to the points in Z.
For any z = (z1,. .., z) for which the function f is defined, we have the equality

Li(z1y...y25) + Rr(z1y. .., 25) = f(21,. .+, 25)- (2.9)
Remark 2.1 In the following we shall use the notion of an H-type Lagrange polinomial.
It means that the set of orders in the terms, i.e., {(ai,...,a,)} is the same as the set of

subscripts of the moments {jia, .. .} used in the constraints of the MDMP. More precise
definition and details about it and its relationship to bases in MDMP can be found in Mddi-
Nagy and Prékopa (2004).
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Now we prove

Theorem 2.2 Let zjo < zj1 < -+ < Zju;, J = 1,...,5. Suppose that the function f(z), z €
Z has nonnegative mized divided differences of total order m + 1.

Under this condition Li(z1,...,z2s), defined by (2.5), is a unique H-type Lagrange poly-
nomial on Zr and satisfies the relation

f(z1y.o025) > Li(z1, .00y 25), (21,...,25) € Z, (2.10)

i.e., the set of columns B ofﬁ in problem (1.4), with the subscript set I, is a dual feasible
basis in the minimization problem (1.4), and

E[f(Xy,...,X,)] > E[L;(Xy,..., X)) (2.11)

If B is also a primal feasible basis in problem (1.4), then the inequality (2.11) is sharp.
If all the above mentioned divided differences are nonpositive, then (2.10) and (2.11) hold
with reversed inequality signs.

Proof. The proof is similar to that of Theorem 4.1 in Madi-Nagy and Prékopa (2004).
The only difference is that here we explicit the fact

j

H(Zj — ij) =0 for zj € Zj, (212)

k=0
which is a trivial consequence of the definition of Z;. O
In the next theorem we prove both lower and upper bounds for the function f(z, ..., zs),

(21,...,25) € Z and the expectation E[f(X,...,X;)].

Theorem 2.3 Let zjo > zj1 >+ > Zjn;, j = 1,...,5. Suppose that the function f(z), z €
Z has nonnegative mixzed divided differences of total order m + 1. Under this condition we
have the following assertions:

(a) If m+1 is even, then the Lagrange polynomial L;(z1,. .., zs), defined by (2.5), satisfies
f(z1y.o02) > Li(z1, .00y 25), (21,...,25) € Z, (2.13)

i.e., the set of columns B in A, corresponding to the subscripts I, is a dual feasible
basis in the minimization problem (1.4). We also have the inequality

Elf(X1,...,X,)] > E[Li(X,,..., X))l (2.14)

If B is also a primal feasible basis in the LP (1.4), then the lower bound (2.14) for
E[f(Xy,...,Xy)] is sharp.
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10 10

HoM w0 o 9 o 9

(a) (b)

Figure 1: Dual feasible bases corresponding to Theorems 2.2 (on (a)) and 2.3 (on (b)) in
case of ny = ny =10, m = 3, Z; = Zy = {0,1,...,10}. Elements of I, are colored by gray
while elements of I;’s are black.

(b) If m + 1 is odd, then the Lagrange polynomial, defined by (2.5), satisfies
f(z1y.o2s) < Lp(z1, .. 25), (21,...,25) € Z, (2.15)

i.e., the basis B is dual feasible in the mazimization problem (1.4). We also have the
inequality

E[f(Xy1,...,X,)] < E[L/(Xy,..., X)) (2.16)

If B is also a primal feasible basis in the LP (1.4), then the upper bound (2.16) for
E[f(Xy,...,Xy)] is sharp.

If all the above mentioned divided differences are nonpositive, then (2.13),(2.14),(2.15)
and (2.16) hold with reversed inequality signs.

Proof. The proof is similar to that of Theorem 4.2 in Madi-Nagy and Prékopa (2004).
Here, however, we explicit the equation (2.12). O
The dual feasible structures given by the theorems above are illustrated in Figure 1.

In the two-dimensional case we can create a larger variety of dual feasible bases for
problem (1.4), and produce better bounds than what we can obtain by the use of the dual
feasible basis structures presented in the previous theorems.

All coefficients in the expression of Ry;(z1, z3) are divided differences of order m+1. These
divided differences are mixed. Assume all of them are nonnegative. Our aim is to arrange
the elements of Z; and Z5 in orders such that the products in R (21, 29) are nonnegative.

These arrangements can be produced by slight modifications of the Min and Max Algo-
rithms of Madi-Nagy and Prékopa (2004). In this way we can get a variety of dual feasible
bases that give tight bounds on E[f(X;, X3)]. Below we summarize them for the bivariate
case of problem (1.3).

zl
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Consider first the case, where we construct lower bound by suitable choices of
2105+ -+ Zl(m—1)} 2205 - - - » Z2(m—1)- We present an algorithm to find these sequences. We
may assume, without loss of generality, that the ordered sets Z; and Z, are the follow-
ing: 73 ={0,1,...,m}, Zo={0,1,...,no}.

Min Algorithm

Algorithm to find 2105+ -+ 5 Zl(m—l); 2905+ -+ -y ZZ(m—l)-

Step 0. Initializet =0, -1 < ¢ <m -1, L=(0,1,...,¢1), U = (ny,n1 — 1,...,ny —
(m — q —2)), V° = {arbitrary merger of the sequences L, U} = (v°,v!,..., 0™ ). If |U] is
even, then h° =0, [ = 1, u® = ny, and if |U] is odd, then h® = ny, I =0, u’ = ny — 1. Go
to Step 1.

Step 1. If t = m, then go to Step 3. Otherwise go to Step 2.

Step 2. Let V! = (W%0", ... 0™ =0, HY = (KO, b, ... hY). If v™ =t € L, then let
RFL =181 =P 1wt = ot and if v™ Ut € U, then let Attt = uf, w!tt =t — 1,
[t*1 ='. Set t <t + 1 and go to Step 1.

Step 3. Stop. Let

(210, R Z1(m71)) = VO,
(2205 - - - Z2(m—1)) = H™

Let 0,1,...,¢2,n9,...,n2—(m—gy—2) be the numbers used to construct 2y, 221, - . ., 22(m—1)-
Then let {zjm, Zjmt1),---> 2jn; } = {@j +1,¢; +2,...,n; — (m—q; — 1)}, j = 1,2. They can
follow the each other in any order, because they don’t play role in the value of R;, and on
the other hand their order does not change the dual feasible basis structure that we finally
get.

We have completed the construction of the dual feasible basis related to the subscript set
I.

If we want to construct an upper bound, then only slight modification is needed in the
above algorithm to find 210, ..., 21(m-1); 220, - - - » 22(m—1). We only have to rewrite Step 0 and
keep the other steps unchanged.

Max Algorithm

Step 0 of algorithm to find 2o, ..., zim-1); 220, - - -, 22(m—1)-

Step 0. Initializet =0, -1 < ¢ <m—1, L= (0,1,...,¢1), U = (nq,ny — 1,...,ny —
(m — q. — 2)), V9 = {arbitrary merger of the sets L, U} = (v°,v',... 0™ ). If |U| is odd,
then h° =0, I° = 1, u® = ny, and if |U] is even, then h® = ny, I = 0, u® = ny — 1. Go to
Step 1, etc.

In the general case, where Z; is not necessarily {0,1,...,n;} and Z, is not necessar-
ily {0,1,...,n5}, we do the following. First we order the elements in both Z; and Z, in
increasing order. Then, establish one-to-one correspondences between the elements of Z;
and the elements of the set {0,1,...,n;} that we assume to be ordered now. We do the
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z2 z2

10 10

5
1 1
z1

(a) (b)

Figure 2: (a): Dual feasible basis of the min problem, where m = 4 and (210, ..., 2igm-1)) =
(10,9,0,1), (220, ---,22(m-1)) = (0,1,2,10). (b): Dual feasible basis of the max problem,
where m = 4 and (210, ..., 21m-1)) = (10,9,0,1), (220, - -, 22(m—1)) = (10,0, 1,9). Elements
of Iy are colored by gray while elements of I;’s are black.

same to Zy and {0, 1,...,n9}. After that, we carry out the Min or Max Algorithm to find a
dual feasible basis, using the sets {0,1,...,n:}, {0,1,...,ny}, as described in this section.
Finally, we create the ordered sets Z; and Z, by the use of the above mentioned one-to-one
correspondences.

Examples of dual feasible bases found by the Min and Max Algorithms are illustrated by
Figure 2.

3 Monge Property and Bounding Multivariate Proba-
bility Distribution Functions with Given Marginals
and Covariances

In this chapter we assume that the function f has the so-called Monge or inverse Monge or
some discrete discrete higher order convexity property. First, we need the following

Definition 3.1 An ny X --- X ng s-dimensional array f = {f(i1,...,is)} has the Monge
property or is a Monge array, if for all entries f(iy,...,is) and f(j1,...,Js), 1 < ik, jrx < g,
1<k <s, we have

f(lla"'als)+f(u17"'7us) Sf(ila"'ais)+f(j17"'7js)7 (31)

where l;, = min{ix, jr}, ux = max{ix, jr}, 1 < k < s. If the inequality (3.1) holds in reverse
order, then it is called the inverse Monge property and f is called an inverse Monge array.

Remark 3.1 If f(z1,...,25),2 € Z = Zy1 X+ X Zs is a (inverse) Monge array on Z, then its
second order mized divided differences are nonpositive (nonnegative). In the two-dimensional

zl
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case, f(z1,20),2 € Z = Z1 X Zy is a (inverse) Monge array on Z if and only if its (1,1)
order divided differences are nonpositive (nonnegative).

If we consider problem (1.2) in case of m = 1, i.e., if only the marginal distributions are
known, then it can be considered as an s-dimensional transportation problem. In connection
with that we have

Theorem 3.1 (Theorem 2.4 in Hou and Prékopa (2006)) In the s-dimensional trans-
portation problem any ordered sequence forms a dual feasible basis if and only if f is Monge.

In case of m = 2, where the second order moments (covariances) are also known, all the
dual feasible bases shown in the mentioned paper can be given by our theorems and the Min
and Max Algorithms in a relatively simple way. In the two dimensional case our method can
give additional dual feasible bases as it is shown in the following example.

Example 3.1 Consider the minimum problem (1.2), and the equuivalent MDMP (1.3) in
case of s = 2 and m = 2. Suppose that the function f(z), z € Z has nonnegative mized
divided differences of total order 3, i.e., the (1,2)-order and (2,1)-order divided differences
are nonnegative. Apply the Min Algorithm to the problem. Below the possible dual feasible
bases are listed, according to the order of the elements.

(a) (210,211) = VO = (0,1) = (20, 201) = H™' = (0,1)

(b) (210, 211) = VO = (0,1m1) = (290, 221) = H™ ' = (ng, mp — 1)
(¢) (210, 211) = VO = (11, 0) = (290, 221) = H™ " = (s, 0)

(d) (210, 211) = VO i= (ny,m1 — 1) = (200, 201) = H™ ' = (0, ny)

The bases are illustrated in Figure 3. Basis (b) is the same as basis By in Figure 4.1 in Hou
and Prékopa (2006) (regarding that the order of z;’s there are decreasing) which was the only
dual feasible basis of this problem given there.

4 Bounding the Expectations of Pseudo Boolean Func-
tions of Binary Random Variables
Let Aq,..., A; be arbitrary events in some probability space, and inroduce the notations
PA N NA) =Dy iy 1 <iip <+ < <s. (4.1)

We want to give bounds for P(A; U--- U Ay) assuming, that some of the probabilities of
(4.1) are known. The so called disaggregated problem is formulated as follows. Define

_Jritrc
MW=V 0if I ¢ J,



RRR 11-2007 PAGE 11

no e O O -0 O O no
no—1 ® O O =-++ 0 O O na—1
na—2 @ o o no—2 o . o
2 e O o o o 2 e O O o o
1 ¥ % 0 o o 1 e O O o o
0 x x e o o e o o© o o
0 1 2 © (n1 (n1 m 0 1 2 (n1 (m1 n1

—
&
~
—

o
~

na * ° no o o o
np—1 O o o na—1 o o o
ne—2 O o o na—2 o o o
2 o o o o o 2 o o o o o
1 o o o o o 1 o o o o o
0 ¥ o0 o o o e o o o x
0 1 2 (n1 (1 n1 0 1 2 (n1 (m1 n1

(c) (d)

Figure 3: Bases of Example 3.1. Elements of I, are denoted by *’s while elements of I;’s are
denoted by e’s.
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w=r((na)o(nT)).

(o)

for any I,J C {1,...,s}. Then we have the equation

> apvy=p, TC{l,... s}
JCA{1,...s}

We formulate the following LP:

min(max) ooy
0#£JC{1,...,s}
subject to
> apwy=p, IC{l,...,s} (4.2)
JCA{1,...s}
for [I| < m,

r; >0,J C{L,...,s}.

Problem (4.2) can be reformulated as an MDMP. Consider the event sequence Ay, ..., A
and define the random vector X = (X7,..., X;) such that Xj is the characteristic random
variable of event A;, j =1,...,s, ie.

X; =

1 if A; occurs,
0 otherwise.

Let us define f(z1,...,2s), (z1,...,25) € Z ={0,1} x --- x {0,1} in the following way:

f(zl,...,zs):{ 0if (21,...,2) = (0,...,0), (4.3)

1 otherwise.

It is easy to check that all divided differences of any order of the function (4.3) are nonneg-
ative.
The equvivalent MDMP is the following:

1 1
min(max) > - > fi iPir.is
=0 iy=0
subject to
! ! (4.4)
Do D AR 2 Dini, = Hay.a,
=0 is=0
foro; =0,1; j=1,...,5 oy +---+a, <m
Diq..is Z 0, all il, Cey is.
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We can see that the objective function is indeed the probability of the union of the events
while the constraints are the same as in (4.2)

Now, let us consider problem (4.4) with an arbitrary function f(z1,...,2s), defined on
(21,...,25) €{0,1} x {0,1}. Problem (4.2) can be rewritten in a more compact form:

min(max) f'p

subject to
o v 4.5
Ap = b (45)
p > 0.
Let us define the subscript set
I'={(i1,...,i5)] 0<i; <1, integers, j=1,...,s, i1 +...+1is < m}. (4.6)

Corresponding to the points Z; we assign the Lagrange polynomial, given by its Newton’s
form

L] (Zl, .. Zs)
= Z [Zli1§" ZSlsaf]H H —Z]k
i1+ 4is <m j=1 k=0 (4,7)
0<4; <1, j=1,...,8

ij—1

where, by definition, [] (z; — z;) = 1, for i; = 0.
k=0

The residual function is defined as:
R](Zl, Ceey Zs)
=> > [21; 3 20213 Znot Zihtyina s Lsie f] (2h — 2no)

h=1 0+ih+1---+is:m
0<i; <1, j=(h-+1),...,s

1;[ H ~ %K) (4.8)

+ > [21, 3 Zhe 13 Apts L ha Vingns " Dsis f] I G — z)
Ltip1dotis<m =0
0<i; <1, j=(h+1),....s

X ﬁzhl ij>‘

h+1 k=0

Theorem 4.1 Consider the Lagrange polynomial (4.7), corresponding to the points Zy. For
any z = (z1,...,2s) for which the function f is defined, we have the equality

L](Zl, ceey Zs) + R](Zl, ey Zs) == f(Zl, .. .,Zs). (49)

Proof. The assertion can be proved similarly as the proof of Theorem 4.1 in Prékopa (1998).
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Theorem 4.2 Let 0 = zjp < zjy =1, j =1,...,s. Suppose that the function f(z), z € Z
has nonnegative mized divided differences of total order m + 1.

Under these conditions Li(zy,...,zs), defined by (4.7), is a unique suitable H-type La-
grange polynomial on Z; and satisfies the relations

f(z1,.. oy 28) > Li(z1,...,25), (21,...,25) € Z, (4.10)

i.e., the set of columns B offi in problem (4.5), with the subscript set I, is a dual feasible
basis in the minimization problem (4.5), and

Elf(X1,...,X,)] > E[Li(X,...,X))l. (4.11)

If B is also a primal feasible basis in problem (4.5), then the inequality (4.11) is sharp.
If all the above mentioned divided differences are nonpositive, then (4.10) and (4.11) hold
with reversed inequality signs.

Proof. Similar to the proof of Theorem 2.2. O

Theorem 4.3 Let 1 = zjp > 21 =0, j =1,...,s. Suppose that the function f(z), z € Z
has nonnegative mized divided differences of total order m + 1. Under these conditions we
have the following assertions:

(a) If m+1 is even, then the Lagrange polynomial L;(z1,. .., zs), defined by (4.7), satisfies
f(z1y.o0y2) > Li(z1, .00y 25), (21,...,25) € Z, (4.12)

i.e., the set of columns B in ful, corresponding to the subscripts I, is a dual feasible
basis in the minimization problem (4.5). We also have the inequality

Elf(X1,...,X,)] > E[Li(X,,..., X))l (4.13)

If B is also a primal feasible basis in the LP (4.5), then the lower bound (4.13) for
E[f(Xy,...,Xy)] is sharp.

(b) If m + 1 is odd, then the Lagrange polynomial, defined by (4.7), satisfies
f(z1,.o2s) < Lp(z1, .., 25), (21,...,25) € Z, (4.14)

i.e., the basis B is dual feasible in the mazimization problem (4.5). We also have the
inequality

E[f(Xy1,...,X,)] < E[L/(Xy,..., X)) (4.15)

If B is also a primal feasible basis in the LP (4.5), then the upper bound (4.15) for
E[f(Xy,...,Xy)] is sharp.

If all the above mentioned divided differences are nonpositive, then (4.12),(4.13),(4.14)
and (4.15) hold with reversed inequality signs.
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Figure 4: Dual feasible bases of Theorems 4.2 (figure (a)) and 4.3 (figure (b)), where m = 2,
s=3

Proof. Similar to the proof of Theorem 2.3. O

The dual feasible bases that appear in Theorems 4.2 and 4.3 are illustrated in Figure 4,
for the three-dimensional case.

Function (4.3) has all nonnegative divided differences. It follows from this, that the bases
in Theorems 4.2 and 4.3 are dual feasible in problem (4.4), with that objective function. This
also means that we found dual feasible bases to the disaggregated problem (4.2), which can
serve for bounding the probability of the union of events.

If we want to create bounds for the probability of the intersection, i.e., for P(A;N---NA,),
then we work with the same constraints in the MDMP (4.4) but in this case the objective
function is defined as:

C Lif (&, 2) = (1,00, 1),
Faoz) = { 0 otherwise. (4.16)
If m+ 1 is even (odd) then all divided differences of the function (4.16) of total order m + 1

are nonpositive (nonnegative). Using this we can construct dual feasible bases for the new
MDMP (4.4), where the objective function is given by (4.16).

Example 4.1 The following example is taken from Kuai, Alajaji and Takahara (2000) and
Prékopa and Gao (2005). There are 6 events: Ay, ..., Ag, 15 possible outcomes with proba-
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bilities given in the table below.

Outcomes x  p(x) Ay Ay Az Ay As Ag

Ty 0.012 x X X
T 0.022 X X

To 0.023 x X X
T3 0.033 X

T4 0.034 x X X
Tx 0.044 X X X
Te 0.045 X X X
T7 0.055 X X X
Ty 0.056 x X

Tg 0.066 X X
T 0.067 X X X
T11 0.077 X

T12 0.078 x X X
T13 0.088 X

T4 0.089 x X X X

We give sharp lower and upper bounds for the probablitity of the union of the events,
using the information of probabilities of certain intersections of A;’s. ILe., we solve problem
(4.4) with the function (4.3). We use the bases of Theorems 4.2 and 4.3 as an initial bases
of the dual method of CPLEX. The results depending on the parameter m of (4.4) are:

m  Minimum Iteration Mazimum Iteration
2 0.789 13 0.955 27
3 0.789 11 0.789 20
4 0.789 0 0.789 12
5 0.789 0 0.789 1

Kuai, Alajaji and Takahara (2000) gives 0.7222 as a lower bound, using probabilities of
the single events and intersections of pairs events. Prékopa and Gao (2005) gives 0.73145
as a lower bound and 0.8038333 as an upper bound. They use intersections up to three
events. Bounds given by formulas of these probabilities also can be found in Bukszdr and
Prékopa (2001).

The aim of the example is to show that the known dual feasible bases of the connected
MDMP can give an initial basis of the dual method of linear programming. That usually
means less numerical difficulty and running time.
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5 Bounding Multivariate Moment Generating Func-
tions

Let X be a random variable taking values in a subset of IR. The moment generating function
of X is the function M defined by

M(t) = E["¥], t € R.

The moment generating function shares many of the important properties. E.g., if the
M(t) is finite for ¢ in an open interval J about 0, then M completely determines the dis-
tribution of X. On the other hand, M has derivatives of all orders in .J and M™(t) =
E[X"etY], t € J. That means that M™(0) = E[X"]|,n =1,2,....

The joint moment generating function is defined as

M(ty,. .., t;) = B[t HtaXs]

If the joint moment generating function is finite in an open neighborhood of the origin then
this function completely determines the distribution of X = (Xi,..., X;). Other interesting
properties are, e.g., M(0,...,0,¢;,0,...,0) = M;(t;),

oXrtas N f
01,1 - O, o (0,...,0) = fay...as-
More details about (joint) generating function can be found e.g., in S. M. Ross (2002).

If we assume that the random vector X has a finite support, then we can use MDMP to
bounding the value of the joint moment generating function for certain values of (t1, ..., %)
in terms of the (mixed) power moments of X. Recently, e.g., Ibrahim and Mugdadi (2005)
gave bounds of (univariate) moment generating functions by the aid of the moments.

For any fixed (¢1,...,ts) > 0 all divided differences of the function e"#**% are non-
negative . It is also true that the m + 1st divided differences are nonnegative (nonpositive)
for (t1,...,t;) <0 if m+ 1 is even (odd). In these cases the methods of Section 2 can be
applied as it shown in the following

Example 5.1 We shall give lower and upper bounds for the joint generating function M (ty,ts),
where t1 = 0.04 and ty = 0.05, by the use of the Min and Max Algorithms of Section 2. We
use programs written in Wolfram’s Mathematica. Let the random variables X1, Xo has uni-
form distribution on the supports Zy = Zy = {0, ...,14}. Regarding the mized moments will
be taken into account, we are generating them by the multivariate unique discrete distribution
on 4.

We are computing different problems according to the mazimum order of the mixed mo-
ments taken into account.
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Considering the given marginal distributions and mized moments up to the order m, we
obtained the following results:

m  Lower CPU Upper CPU
2 191194 0.28 1.98564 0.28
3 1.94560 0.58 1.95640 0.56
4
5
6

1.95009 1.18 1.95108 1.19
1.95051 2.59 1.95060 2.59
1.95053 6.11 1.95056 6.13

In the example above we were enable to carry out the dual method by the use of CPLEX.
In most cases it reported infeasibility of the primal problem, even though the moments that
have used in the problem allow for feasibility, by construction. This stresses the importance
of the Min and Max Algorithms of Section 2.

6 Bounding Expected Utilities

The most general definition of a von Neumann-Morgenstern type utility function u(z), z > 0
only requires that it should be an increasing function, i.e., u/(z) > 0. It is called risk averse,
if we also have u"(z) < 0 which means that the function is also concave.

More generally, we may require:

()" () >0, n=1,2,.... (6.1)

Utility functions satisfying (6.1) are called mized by Caballe and Pomansky (1996). For
economic justification see Ingersoll (1987). Relation (6.1) means that u(—z) is a completely
monotone function. Examples of mixed utility functions are:

u(z) = alog (1 + %) , u(z) = —ae ",
where a > 0, b > 0.

In multiattribute utility theory (MAU) the well-known multiplicative form of Keeney and
Raiffa (1976) is the following:

S
Ku(z,...,2) + 1= [[(Kkiu;(z) + 1) (6.2)
i=1
with K # 0. (The case K = 0 leads to a weighted addititive from.)
The risk averse multiattribute utility function may be defined in such a way that u(z1, ..., 25)
is increasing in each variable and concave as an s-variate function.
In addition, we may require

Ot Flay (2, ..., 2)

(_1)i1+"'+i371 i
021" - - - 02l

>0, 1 <44+ + . (6.3)
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This is a multivariate counterpart of relations (6.1).
These properties are usually not true for functions (6.2). However, it is easy to see that
the following is valid for (6.2) in case of s = 2:

O 22y, )

(_ 1 ) 11412 _ i
021 025

> 0, 1< and 1< ig, (64)

assuming that u; and uy are mixed utility functions with property (6.1).
A class of multiattribute utility functions which fulfills the concavity as well as property
(6.3) is given in Prékopa and Madi-Nagy (2006) by

Definition 6.1 Let k > 1 and D an open convex set. We define the utility function u as:
w2, .. 20) = log k(e 1) = 1)+ (900 — 1) — 1], (6.5)

where for every (z1,...,2,) € D the following conditions hold:

BACHIES 2, j=1,...,s, (6.6)
9;(z) > 0
g](‘zg(zj) > 0, ifi>1 and is odd (6.7
d(z) < 0, ifiis even :

j=1,...,s.

Let X = (Xj,...,X;) be a random vector where the support of X; is a known finite set
Zj = {%jo,.-., %jn; }. Assume that the marginal distributions and the collection of mixed
moments flg,. a,, @1 + -5 < m are known, and we would like to bounding the expected
utility
Elu(Xy,..., X))

This means exactly the problem (1.2) (and the equivalent MDMP form). If additionaly
property (6.3) or (6.4) holds, then we are able to apply the methods of Section 2 as we show
in the following examples.

Example 6.1 Let the random wvariables X1, Xo has uniform distribution on the supports
7y = Zy =1{0,0.1,0.2,...,1}. Regarding the mized moments will be taken into account, we
are generating them by the multivariate unique discrete distribution on Z.

Consider the following univariate mized utility functions:

log(1 + z)
A e
1 —e™
UZ(ZZ) =

1141

e
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The multiattribute utility function composed by the multiplicative form is the following:
u(z1, 20) = kyui(z1) + koua(z2) + Kkikou (21)us(22). (6.8)
We are bounding the expected utilitity
Elu(X1, Xs)]

in case of k; = 0.3 and ky = 0.2 (K =1 — ky — ko), where the marginal distributions and
the mized moments up to mth order are known. The function u(zy, z2) fulfills (6.4), hence
lower and upper bounds can be given by the use of the Min and Maz Algorithms of Section
2. We use programs written in Wolfram’s Mathematica. The results are:

m  Lower CPU  Upper CPU
2 0.405218 0.08 0.467877 0.08
3 0.432214 0.16 0.445082 0.16
4
5
6

0.437435 0.36 0.439693 0.36
0.438281 0.86 0.438624 0.86
0.438418 2.30 0.438473 2.28

Example 6.2 Let 7, = Zy = {0,...,19}. Consider the X,Y1,Ys random variables having
Poisson distributions with \ parameters 3,4,5, respectively. We generate the moments of
the random vector

(X1, Xo) = (min(X + Y1,19), min(X + Y5, 19))

Note that X1, Xo, X3 are stochastically dependent.
Considering the bivariate utility function

u(z1, 22) = log[(e® T — 1)(eP270 — 1) — 1], (6.9)

defined for
ettt 5 9 Pt 5 9

The function (6.9) is a special case of (6.5), hence satisfies (6.3). This means that we can
apply the Min and Maz Algorithms of Section 2 in order to bound the expected utility. Let
a=0.75, =125 a=2, b=3. We get the following results:

m Lower CPU Upper CPU
2 20.2456980 0.88 20.2458790 0.81
3 20.2456982 1.75 20.2458790 1.70
4
5
6

20.2456989 3.45 20.2458790 3.45
20.2457012 2.63 20.2458790 7.20
20.2457066 15.44 20.2458790 15.47
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Example 6.3 We calculate the expected value of the following utility function

u(z1, 22, 23) = log [(eo‘m“1 —1)(e™*%2 — 1)(e™*1% — 1) — 1]

6.10
(21722733) € Za ( )

where
Z=1(0,1,2,3,4,5,6,7,8,9) x (0,1,2,3,4,5,6,7,8,9) x (0,1,2,3,4,5,6,7,8,9)

with parameters ay = g = ag = a1 = ay = az = 1. It is easy to see that the function is a
special case of (6.5).

Assume that X1, Xo, X3 are independent and each one has uniform distribution on
{0,1,2,3,4,5,6,7,8,9}. The moments and marginal distributions presented in the following
are those of the random variables X1, Xo, X3.

We use the dual method of CPLEX with the initial dual feasible bases of Section 2.
Carrying out the dual method for the problems below without these initial bases CPLEX
reports infeasility. This means that the use of these bases as initial bases in the dual method
can give not only shorter running time, but it can reduce the numerical difficulties, as well.

The results are summarized below.

m Minimum  Iteration — Mazimum  Iteration
2 16.272644221 375 16.294708615 65

3 16.279932313 428 16.294702240 515
4
5
6

16.288384112 779 16.294688894 391
16.290690088 1121 16.294643748 1326
16.292421158 1605  16.294587574 1198

7 Conclusions

We have shown how the MDMP technique for bounding functions of random variables can
efficiently be used to some special bounding problems. In these problems the univariate
marginals and moments of total order up to m are assumed to be known. We have obtained
results not mentioned in Hou and Prékopa (2006), for bounding expectations of Monge ar-
rays (as functions) of random variables. We have presented an efficient method for bounding
pseudo Boolean functions of binary random variables, where function has a special mono-
tonicity property and known are the joint distributions of up to m random variables. In two
further examples bounds for multivariate generating functions and for the expectation of a
special utility function. Sometimes the bounds are given in terms of formulas, sometimes in
terms of algorithms. In the latter case the dual algorithm of linear programming is adapted
for the problems at hand.
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