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A METHOD OF DISAGGREGATION FOR
BOUNDING PROBABILITIES OF BOOLEAN
FUNCTIONS OF EVENTS

Andras Prékopa Béla Vizvari Gabor Regos

Abstract. Given a sequence of n arbitrary events, we assume that the individual
probabilities as well as the joint probabilities of up to m events are known, where
m < n. Using this information, a simple and frequently efficient method to give
lower and upper bounds for Boolean functions of the events, is the univariate discrete
moment problem. In order to obtain better bounds we subdivide the event sequence
into subsequences and use the multivariate discrete moment problem for bounding.
This way the information regarding the known probabilities is better exploited and
we may keep the problem sizes moderate. Numerical results show the efficiency of
this approach.
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1 Introduction

Let Ay, ..., A, be arbitrary events in some probability space, and introduce the no-
tations
P(A“ﬂﬂAlk) = Diy..ip> 1<4 < ...<ik§n,
Sk = Z pilmik? k = 1, sy 2L
1<i; <. <ip<n
Let Sy = 1, by definition. If v designates the number of those events (among
Ay, ..., A,) which occur, then we have the relation:

El(Z)] = Sp, k=0,...,n (1)

The equations (1) can be written in the more detailed form

Z(Z})’l)l == Sk, k:(),...,n,

where v; = P(v =1), it =0,...,n.

The values (1) are called the binomial moments of v. If we know all binomial
moments of v, then the probabilities vg,...,v,, and also the value of any linear
functional acting on the probability distribution vy, ...,v,, can be determined. If,
however, we only know S, ..., S;,, where m < n, then linear programming problems
provide us with lower and upper bounds on the true value of this functional. We
formulate two closely related types of linear programming problems (see Prékopa
(1988, 1990a,b)):

min(max) Z Cix;
7=1

subject to (2)

and

min(max) Z Cix;
7=0

subject to (3)
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These provide us with lower and upper bounds on the linear functionals -7 ; ¢;v;,
and Y1, ¢;v;, respectively. Note that the first constraint in problem (3) does not
appear in problem (2). The following objective functions are of particular interest:

c=¢ct=..=¢_1=0, ¢,=...=¢c, =1, 1<r<mn (4)

¢, =1, ¢g=0fori#r, 0<r<n. (5)

If we use the objective function coefficient (4) in the linear programs (2), (3),
then the optimum values provide us with lower and upper bounds for the probability
that at least r out of n events occur. The objective function with coeflicients (5)
provides us with bounds for the probability that exactly » events occur. Any dual
feasible basis of any of the problems (2) and (3) provides us with a bound. The best
bound corresponds to the optimal basis which is both primal and dual feasible, and
is called sharp.

Lower and upper bounds for the probability that at least one out of n events
occurs, based on the knowledge of 51, ..., S, were found by Bonferroni (1937). These
bounds are not sharp. For the case of m = 2, sharp lower bound for the probability
that at least one out of n events occurs was proposed by Dawson and Sankoff (1967).
For the case of m < 3, Kwerel (1975a,b) has obtained sharp lower and upper bounds.
He applied linear programming theory in his proofs. For the case of m = 2 other
results are due to Galambos (1977), and Sathe, Pradhan and Shah (1980). For
a general m, the linear programs with objective functions (4), and (5) have been
formulated and analyzed by Prékopa (1988, 1990a,b). He also presented simple dual
type algorithms to solve the problems. Boros and Prékopa (1989) utilized the results
and presented closed form bounds.

Problems (2), and (3) use the probabilities p;, ; in aggregated forms, i.e.,
S1, ..., Sm are used rather then the probabilities in these sums. This way we trade
information for simplicity and size reduction of the problems. We call (2) and (3)
aggregated problems.

The linear programs which make us possible to use the probabilities p;, ;,, 1 <
11 < ... < 1 < n individually, will be called disaggregated, and can be formulated
as follows. Let Dy be the n x 2™ — 1 matrix, the columns of which are formed by all
0,1-component vectors which are different from the zero vector.

Let us call the collection of those columns of Dy, which have exactly & compo-
nents equal to 1, the k" block, 1 < k < n. Assume that the columns in D, are
arranged in such a way that first come all vectors in the first block, then all those in
the second block, etc. Within each block the vectors are assumed to be arranged in
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a lexicographic order, where the 1’s precede the 0’s. Let dy, ..., d,, designate the rows
of Dy, and define the matrix Dy, 2 < k < m, as the collection of all rows of the form:
d;, ... where the product of the rows d;,,...,d;,

that the rows in Dy, are arranged in such a way that the row subscripts (i1, ..., %)
admit a lexicographic ordering, where smaller numbers precede larger ones. Let

i is taken componentwise. Assume

D,
A =
Dy,
In addition, we define the matrix A by
1 17
0 Dy
A = :
0 D,

where 1 is the 2" — 1-component vector, all components of which are 1, and the
zeros in the first column mean zero vectors of the same sizes as the numbers of rows
in the corresponding D; matrices.

Let pT = (pi, 5,, 1 <ip < ... < i < m, k= 1,...,m), where the order of the
components follow the order of the rows in 4, and p7 = (1, pT). The disaggregated
problems are:

min(max) fz
subject to (6)

Ax = p

x>0,

and

min(max)fT:E
subject to (7)

Az = p

z > 0,

where fT = (fo, f7), &7 = (z0,27).

8
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The duals of the above problems are:

max(min)pTy
subject to (8)
ATy <(2) f,
and
max(min)p’ g
subject to (9)

ATy < (2) f,
where §7 = (yo,y7T). Since the dual vector y multiplies the vector p in problem (8),

it is appropriate to designate the components of y by y;, 4., 1 <41 < .. <45 <
n, k=1,...,m.

If we construct bounds on P(A; U...U A,), then we should take ff=(,..1),
and fT = (0, fT) in the above problems. In this case the more detailed form of
problems (8) is the following:

max(min) Z Z Diy.inYiy . i

k=11<41 <. <5 <n
subject to (10)

i > Yiriy = (=) 1.

=1 1<y <. <y <n
The more detailed form of problem (9) is the following:

max(min) {yo + > > pil...ikyil...ik}

k=11<31<... < <n
subject to (11)

Yo + > Yi,a, < () 1.

=1 1< <. << n
(12)

The above probability approximation scheme was first proposed by George Boole
(1854). A detailed account on it was presented by Hailperin (1956). Kounias and
Marin (1976) made use of problem (11) to generate bounds for the case of m = 2.

Concerning problems (6), (7), (8) and (9) the following objective functions are
of particular interest:

(13)

£ = 1 ifi corresponds to a column in D; which has at least r 1’s
* 1 0 otherwise,
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(14)

fi = 1 if i corresponds to a column in D; which has exactly r 1’s
' 0 otherwise.

If we take the objective function given by (12), then the optimum value of the
minimization (maximization) problem (7) gives lower(upper) bound for the proba-
bility that at least r out of the n events occur. If we take the objective function
given by (13), then the optimum value of the minimization(maximization) problem
(7) gives lower(upper) bound for the probability that exactly r out of the n events
occur. Any dual feasible basis of any of the above problems provides us with a
bound. The sharp (best) bounds correspond to optimal bases.

In case of the objective function (12), r = 1, the optimum values of the minimiza-
tion problems (6) and (7) are the same. The optimum values of the maximization
problems (6) and (7) are the same provided that the optimum value corresponding
to (6) is smaller than or equal to 1. Otherwise, they are different but in that case
we should take 1 as the sharp upper bound.

2 Connection Between the Aggregated and
Disaggregated Problems

Any feasible solution of problem (6) gives rise, in a natural way to a feasible solution
of problem (2). Similarly, any feasible solution of problem (7) gives rise to a feasible
solution of problem (3).

Conversely, any feasible solution of the aggregated problem (2) or (3) gives rise to
a feasible solutions of the corresponding disaggregated problem. In fact, we obtain
problem (6) or (7) from problem (2) or (3) in such a way that we split rows and
columns. Splitting a column in the aggregated problem means its representation as
a sum of columns taken from the corresponding disaggregated problem.

Another question is that which bases in the aggregated problem produce bases
in the disaggregated problem. Consider problem (2) for the case m = 2. Then,

in the corresponding disaggregated problem we have n + ") rows. The ** and

2

7" columns in problem (2) split into ( 7; ) and ( 7; ) columns, respectively. A
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necessary condition that these columns form a basis in problem (6) is that ( 7; ) +

(7;) =n+ ( g ), where ¢+ < j. This condition holds if ¢ = 1 and j = 2, or

i=n—2and j =n — 1. On the other hand these are in fact bases in problem (6),
as 1t 1s easy to see.

The structures of the dual feasible bases of problems (2) and (3) have been
discovered by Prékopa (1988, 1990a,b) for the cases of the objective functions (4),
(5) and some others, too. We recall one theorem of this kind.

Theorem 2.1 Let aq,...,a, designate the columns of the matriz of problem (2),

I c{l,...n}, | I |= m, and assume that the objective function coefficients are:
¢1 = ...=c¢, =1. Then, {a;, ¢ € I} is a dual feasible basis if and only if I has the
structure:

m even m odd

min problem o+ 1,....7,7+1 i+ 1,...7,7+1,n
max problem 1,¢,¢+1,...,73,7+1,n 1,e,¢+1,..775+1

n
2
(6), i.e. the columns in the first two blocks, form a dual feasible basis. Similarly, the

In view of this theorem, the first n + columns of the matrix of problem

n+ g columuns in the second to the last, and third to the last blocks of problem

(6) form a dual feasible basis. The corresponding dual vectors can be computed
from the equations produced by the aggregated problems:

(y17y2)(a17a2) = (171)7
and
(y1,92)(@n-2,an-1) = (1,1),

respectively. The detailed forms of these equations are:

Y1 =1
20 + y2 = 1

and
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respectively. The first system of equations gives y; = 1, y» = —1, and the second
one gives: ¥ = 2/(n—1), y2 = —2/(n —1)(n — 2). If we assign y; = 1 to all vectors
in the first block and y5 = —1 to all vectors in the second block of problem (6),

then we obtain the dual vector corresponding to the first dual feasible disaggregated
basis. Similarly, if we assign y; = 2/(n — 1) to all vectors in block n — 2 and
y2 = —2/(n — 2)(n — 1) to all vectors in block n — 1 of problem (6), then we obtain
the dual vector to the other dual feasible disaggregated basis. The first dual vector
gives the Bonferroni lower bound:

Z pi; = S1— 5s.

1<ei<g<n

P(AiU..UA) > Y p —
=1
The second dual vector gives the lower bound
2 2
P(AU...UA,) > ——8; —
(U4 = 39~ e D

n—1

Ss.

The optimal lower, produced by the aggregate problem (2), bound corresponds
to that dual feasible basis (a;, a;+1) which is also primal feasible. This gives ¢ =

1+ [25,/51], and the bound is:

2 2
T i(i+ 1)
This formula was first derived by Dawson and Sankoff (1967).

P(ALU...UA,) >

2.

If we want to find the sharp lower bound for P(A;U...UA,,), by the use of problem
(6) for m = 2, then we may start from any of the above mentioned two dual feasible
bases and use the dual method of linear programming, to solve the problem. Since
we want lower bound, we have a minimization problem. This suggests that the
second dual feasible basis 1s a better one to serve as an initial dual feasible basis.
The reason is that in blocks n — 2, and n — 1 the coefficients of the variables are
larger, and since it is a minimization problem we may expect that we are closer to
the optimal basis than in case of the first dual feasible basis.

Numerical Example. Let n = 6, and assume that

pr =030 p, =035 ps =055 py =040 ps =030 ps =0.35
P12 = 0.15 p13 =0.25 p1a =0.05 p5 =0.15 pig=0.15

P23 = 0.25 pasa = 0.15 pas = 0.15 pyg = 0.05

p3a = 0.25 p35s = 0.25 pgg = 0.25

pas = 0.15 pge = 0.15

pse = 0.15

We used the dual method to solve the minimization problem (6). As initial dual
feasible basis we chose the collection of vectors in blocks n —2 =4 and n — 1 = 5.
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These vectors have indices 42, ...,62. After twenty iterations an optimal basis was
found, the indices of which are:

12, 13, 16, 20, 22, 25, 28, 29, 36, 38, 39, 43, 44, 45, 48, 50, 51, 52, 54, 55, 56.

The basic components of the primal optimal solution are:

z12 = 0.01, 15 = 0.02, 216 = 0.10, zo9 = 0.03, z95 = 0.08, @25 = 0.01, x5 = 0.03,
Tag = 0.03, 36 = 0.05, z3s = 0.02, x39 = 0.05, x43 = 0.02, z44 = 0.03, z45 = 0.01,
x4 = 0.01, x50 = 0.08, z51 = 0.00, z52 = 0.06, 54 = 0.05, z55 = 0.01, z55 = 0.01.

The components of the dual optimal dual solution are:

y1 = 0.4, y2 = 0.6, ys = 0.6, ya = 0.8, ys = —0.2, ys = 0.0,
yi2 = —0.2, y13=-0.2, y14=-04, y5=0.2, y6=-0.2,

Yos = —0.2, you = —0.4, ys =0.0, 926 =—-0.2,

Ysa — _047 Yss = 007 Yse = —027

Yas — 027 Yae = —047

yse = 0.0.

The optimum value equals 0.71. The optimum value corresponding to the aggregated
problem 1s 0.70.

We generated the right-hand side vector p in problem (6) in such a way that we
defined z° = (5, j =1,..., 63)T, where x{ is different from zero only if j = 4k, k =
1,...,15, and for these j values we made the assignments w? = 0.05; then we set
p = Az®. In this case E?il w? = 0.75 and z§ = 0.25.

The optimum value of the maximization problem (6) is 1.

3 A Method of Partial Disaggregation to Gener-
ate Bounds

Let Eq, ..., E, be pairwise disjoint nonempty subsets of the set {1,...,n} exhausting
the set {1,...,n}, and introduce the notation n; =| E; |, 7 =1,...,s.

Out of the events Ay, ..., A, we create s event sequences, where the i** one is
{4;,1 € E;, 1 <j < s}. Any of the events Ay, ..., A, is contained in one and only
one event sequence. For these event sequences we will use the alternative notations:

A117 ey Alnl
(15)
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Agty ey Ay,
Let ¢; designate the number of those events in the 5" sequence, which occur, and
sl()(2)
g (&
(16)
0<a;<mn;, 3=1,..,s.
We formulate the multivariate binomial moment problem (see Prékopa (1992, 1993)):
min (max) Z Z fiyia®iy i,
21=0 2s=0
subject to (17)
Z Z ( “ )( b )xil...is = SoumOés
11=0 1,=0 ! Qs

a; >0,3=1,....,8, s +...+a, <m
\V/’I:l, ...,’1:3 . xil...is Z 0

The Sa; .., (@1+...+ @, < m) multivariate binomial moments can be computed from
the probabilities p;, ;, (1 <1 < ... < ip < m). In order to simplify the rule how to
do this, assume that By = {1,....n1}, ... E,={n1+ ...+ ne_1 + 1, ong + ..+ ng )
Then, we have the equality

SOél...Oés - Z pill ...ilal ...isl...isas )
where the summation is extended over those indices which satisfy the relations

]_ Sill < ... <’I:1041 §n1

Ny F o+ 01+ 1 <ty <o < g, <N+ s+ N
For example, if n = 6 and E; = {1,2,3}, E» = {4,5,6}, then

Sio=p1+p2+ps, So1 =ps+05+ps, Sa0 = P12+ i3+ D23, Soz = pas + Pac + Pse.

S11 = p1a + p1s + P16 + P2a + Pas + P26 + Psa + P35 + Pss,
So1 = P12a + P125 + D126 + P134 + P13s + Pise + Pasa + Pass + Pase,
So2 = Pr2as + P1246 + P25 + P1sas + P13ac + Pi3se + Pasas + Dasas + Passe

PAGE 9
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ete.

We have yet to formulate suitable objective functions for problems (16). These
depend on the type of bounds we want to create. Suppose that we want to create
bounds for two types of logical functions of events:

(1) at least » out of Ay,..., 4, occur, where r > 1;
(ii) exactly r out of Ay, ..., A, occur, where 0 < r < n.

Then, we formulate the objective functions as follows. In case of (i):
foao=1if iy 4+ ... +i,>r
(18)
fidn=0,if iy + ... 414, <7
and in case of (ii):
fil...is = ]., i+ ...+, =7
(19)
firii =0, if iy + ... i, £

Problems (16) reduce to problems (2), if s = 1, and to problems (7), if s =
n. Problems (16) are disaggregated counterparts of problems (2), and aggregated
counterparts of problems (7). The objective functions (17), and (18) are counterparts
of the objective functions (4), (5), and (12), (13), respectively.

Let us introduce the notations:
P,y = probability that at least r out of Ay, ..., A, occur;
Py) = probability that exactly r out of Ay, ..., A, occur.
Further notations are presented in the following tableau:

optimum value Type, and problem Objective function

Ly min, (7) (12)
Utr) max, (7) (12)
Ly min, (7) (13)
U max, (7) (13)
Iy min, (16) (17)
U(r) max, (16) (17)
U min, (16) (18)
Uy max, (16) (18)

By construction, we have the following inequalities:

loy < Ly < Py < Uy < ugry (20)
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lp) = Ly = By = Upyp = uge)- (21)

In fact, the problems with optimum values (), and w) (I}, and up,]) are aggrega-
tions of problems with optimum values L), and Uy (Lp), and Up), respectively.

The duals of problems (16) are the following:

max(min) Z yal...asSal...as
a; >0,j=1,...,8
1<a1+...+a,<m

subject to (22)

> Yoy ( I ) ( - ) < (2) fori

a; >0, 3=1,...,8

1< +...+a,<m
0 <3 < my,3=1,..,8
1+ ... +12, > 1.

In the left-hand sides of the constraints of problems (21) there are values
of a polynomial of the variables iy, ...,%,, defined on the lattice points of the set
x%_1[0,n;]. Replacing z; for i;, the m-degree polynomial takes the form

Pz, 2y) = 3 Yorycrs ( 211 ) ( ; ) . (23)

a; >0, 9=1,...;8
a1+ ...t a, <m

Problems (16) provide us with a method to construct polynomials

P(z,...,2s) for one sided approximation of the function f, ., which we will also
designate by f(z1,...,2s). Any polynomial can be used to create bound, provided
that it runs entirely below or above the function f(z1, ..., z,).

If this latter condition holds, then the bound can be obtained in such a way
that we write up the polynomial in the form of (22), subdivide the set {1,...,n} into
pairwise disjoint, nonempty subsets Ey, ..., E,, define the S,, o, accordingly, and
then make the following assignment: the constant term, if different from zero, 1s
assigned to So o = 1 in problem (16), yq,. o, is assigned to S,, o, in problem (16)
for every ay, ..., o, for which a; > 0, 7 =1,...,8, g + ... + @, < m. Then, we form
the products of the assigned quantities and the S,,  ,,; the sum of the products is
the bound.
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4 Construction of Polynomials for One-Sided
Approximations

In this section we describe a general method to construct polynomials of the type

(22) which satisfy (21).

The method consists of construction of dual feasible bases to problem (16).
Each dual feasible basis of problem (16) determines a dual vector satisfying the
inequalities (21), hence it determines a polynomial (22), which approximates the
function f in a one-sided manner.

First we make a general remark. Suppose that the matrix A of the linear
programming problem: min ¢z, subject to Az = b, = > 0, has rank equal to its
number of rows m. Let T be an m X m non-singular matrix and formulate the
problem: min ¢z, subject to (TA)z = Th, = > 0. Then a basis is primal (dual)
feasible in one of these two problems if and only if it is primal (dual) feasible in the
other one. In fact, if A = (ay,...,ay), then we have the relations

(TB)™Tb = B~

Crp — cg(TB)_lTak = ¢p — ch_lak,

which imply the assertion.

Let us associate with problem (16) a multivariate power moment problem in

such a way that we replace 7", ..., 7 for ( " ) and the power moment

ey 04
(a4] Mg

fay .., for the binomial moment S,, ., on the right-hand side. A single linear

transformation takes the column vector in (16):

(( “ )( b ) to; >0, 9=1,...s; al—l—...—l—asgm)
(a4] Mg

, into the vector

((7r.as a; 20, j=1,..,8 a1+ ... + a; <m)
The same transformation applies to the right-hand sides. The matrix of this trans-
formation is non-singular (it is also triangular). Thus, the above remark applies,
and therefore a basis in the multivariate binomial moment problem is primal (dual)
feasible if and only if the corresponding basis in the multivariate power moment
problem is primal (dual) feasible.
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In case of the univariate discrete moment problems we have full characteri-
zation for the dual feasible bases (see Prékopa (1990b)). In the multivariate case full
characterization theorems have not been obtained so far. Some results are presented
in Prékopa (1993). We recall a few facts from that paper.

Let us associate the lattice point (i1, ...,4,) € R* with the vector

((Zl )( b ) ca; >0, 5=1,...,s; al—l—...—l—asgm)
(a4] Mg

of the matrix of the equality constraints of problem (16). Let Ba and B” designate
the sets of vectors corresponding to the sets of lattice points

{(P1,cests) | 2520, j=1,.0008 41 + ... + 1, < m}, (24)
and
{(n1 —i1,.cc,ms —15) | 4, >0, 5 =1,...,8; 41+ ... + 15 < m}, (25)

respectively. In (23), and (24) we assume that m < mn;, j =1,...,s. Then both Ba
and B2 are bases in problem (16). The following theorem summarises the results

in Theorems 5.1 and 5.2 of Prékopa (1993).

Theorem 4.1 The bases Ba and B2 are dual feasible bases in the following types
of problems (16):

Case 1: all divided differences of f of total order m + 1 are nonnegative

m+1 even m-+1 odd
Ba min min
BA min maz.

Case 2: all divided differences of f of total order m + 1 are nonpositive

m+1 even m-+1 odd
Ba max max
BA mazx min.

Any dual feasible basis produces a one-sided approximation for f, hence also
a bound. A dual feasible basis in a maximization (minimization) problem produces
an upper (lower) bound. If a bound of this type is not satisfactory (e.g. a lower
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bound may be negative, an upper bound may be greater than 1, or a lower (upper)
bound is not close enough to a known upper (lower) bound), then we regard the
basis as an initial dual feasible basis, and carry out the solution of the problem by
the dual method. This way we obtain the best possible bound, at least for a given
subdivision Fj, ..., E, of the set {1,....,n}.

Note that problem (7) has 1 +n + ( g ) + ..+ ( :z ) equality con-

s+ m

straints and 2" variables, whereas problem (16) has constraints and

(n1 + 1)...(ns + 1) variables. Thus, problem (16) has a much smaller size than prob-
lem (7). For example, if n = 20, s = 2, n; = ny = 10, m = 3, then problem (7) has
sizes 1351 and 1,048,576, whereas problem (16) has sizes 10 and 121.

To obtain the best possible bound which can be given by our method, one
has to maximize (minimize) the lower (upper) bound with respect to all subdivisions
E,, ..., E, of the set {1,....,n}. In practice we use only a few trial subdivisions, and
choose that one which provides us with the best bound.

Next, we consider the objective function (17) for the cases of r = 1 and
r =n. If r = n, then the function (17) is the same as the function (18). Thus, if
r = 1, then we look at

0 if (i1,...,%5) = (0,...,0)
1 otherwise,
and if r = n, then we look at

1 if (’1:1,...,’1:3) = (nl,...,ns)

0 otherwise.

It is easy to check that all divided differences of any order of the function
(26) are nonnegative, and if m + 1 is even (odd), then all divided differences of the
function (25) of total order m + 1 are nonpositive (nonnegative). Combining this
with Theorem 4.1, we obtain

Theorem 4.2 The bases Ba and B2 are dual feasible bases in the following types
of problems (16):

the objective function is given by (25)
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m+1 even m-+1 odd
Ba max min
BA mazx mazx

the objective function is given by (26)

m+1 even m-+1 odd
Ba min min
BA min maz.

Note that the problems with objective functions (25), and (26) can be trans-
formed into each other. The optimum value of the problem with objective function
(25) is equal to 1-(optimum value of the problem with objective function (26), and
Se, .., replaced by S'al...as)- The binomial moments S'al...as correspond to the com-

plementary events Ay, ..., A, in the same way as S,,. o, correspond to Ay, ..., A,.

The polynomials determined by the bases Ba, and B2 can be taken from
Prékopa (1993). They are multivariate Lagrange interpolation polynomials with
base points (23) and (24), respectively. We designate them by La(z,...,2,), and

LA(z1, ..., 2,), tespectively, and present them here in Newton’s form:
La(z1, . 25) =
(28)
s tj—1
> 0. i £1 T I (51— 1)
Wt .. t+i, <m =1 h=0
OS’I,‘7 §nj,j: 1,...,3
and
LA(z1, ., 25) =
(29)
s n;—1
> (1 — i1, esmgseims — i eng f1 [T TI (25— R).
21+ ...+, <m 3=1 h=nj—i;+1
OS’I,‘7 §nj,j: 1,...,3
In case of function (25) we have L2 (zy, ..., z,) = 1, and

La(rronz) = Y (c1)nteti ( 4 ) ( 2 ) | (30)

1Si1 -|—-|—1,3Sm
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In case of function (26) we have La(z1,...,2:) =0, and
LA(21, .0 2,) =

1 _I_ Z (_1)i1+...+is ( Ty Z_ Z1 ) ( U III_ Zs ) ) (31)
1<ij+..+i,<m ' ’
0 S’I,] §nj, j: 1,...,3

Theorem 4.2 tells us the following. If f is the function (25) and La(z1, ..., z5)
is the polynomial (29), then
La(z1,.i25) > () f(z1, .0, 24), (32)
if m + 1 is even (odd); if L?(21, ..., 2,) is the polynomial (30), then
LA(21, .0y 2) > (21,00 24), (33)

no matter if m + 1 is even, or odd. If f is the function (26), then we have the

inequalities

La(z1y .o 25) < f(2z1y .00y 25), (34)

no matter if m 4 1 is even, or odd, and

LA(z1, .0y 25) < () f(z1, s %), (35)

if m+ 1 is even (odd).

5 Numerical Examples

Example 1. Let n = 20, n;y = ny = 10, m = 3, and assume that we have obtained
the following numbers:

501 - SlO - 45, Soz - Szo - 12, 511 - 2025, So3 - S30 - 21, 512 - S21 - 54

The polynomial (29) takes the form

LA(Zl,Zz) = Z1 — ( 221 ) + ( 21 ) + 29 — Z129 (36)

() (3)+(3): ()
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hence the dual vector corresponding to the basis Ba equals:
y =01 —-111 11 —111)7. (37)
The polynomial (30) takes the form
L%z, 2,) = 1, (38)

hence the dual vector corresponding to the basis B2 equals:

y = (1000000000)7, (39)
Note that Ba, and B? correspond to the lattice points {(0,0), (0, 1), (0,2), (0,3),
(1,0), (1,1), (1,2), (2,0), (2,1), (3,0)}, and {(10,7), (10,8), (10,9), (10,10), (9, 8),

(9,9), (9,10), (8,9), (8,10), (7,10)}, respectively.

By (32) we have that L2(21,25) > f(21, 22), which is a trivial inequality in
view of (37). Since m + 1 = 4 is even, by (31) we have that La(z1,22) > f(z1,22)
for all (z;,22). Thus, both B4, and Ba are dual feasible bases in the maximization

problem (16).

The dual vector (36) produces the trivial upper bound y©.S = 114.75, where

S = (SOO7 SlO7 S207 5307 SOl7 Sll7 S217 5027 5127 503)T-

The dual vector (38) produces the upper bound y¥§ = 1, which is at the same time
the optimum value of the maximization problem (16), and the sharp upper bound
for P(U2, A;).

The sharp lower bound is obtained by the solution of the minimization
problem (16). We have used the dual method with initial dual feasible basis Ba and
obtained the following optimal solution:

2oo = 0.11, g = 0.055556, w7s = 0.160714, =75 =0, zs5 = 0.33,

L3 — 0208333, Log — 0, Log = 0075397, L10,9 = 0, L10,10 = 0.06.

This provides us with the lower bound:
P(U2,4;) > 1—=zg = 0.89.
The dual vector corresponding to the optimal basis is:

y = (0,0.28,—0.0577,0.0066,0.2, —0.04, 0.0044, —0.0222,0.0022, 0).
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This determines the polynomial

La(z,2) = 0.282 — 0.0577 ( 221 ) +0.0066 ( 231 ) +0.225 — 0042125 +

0.0044( z21 ) 25 — 0.0222 ( Z; ) +0.00222, ( Z; ) :

which satisfies L(z1,22) < f(z1, 22) for all (z1, 22).

Example 2. In this example we consider 40 events for which all binomial
moments of order up to 11 have been computed. The 40 events have been subdivided
into two 20-element groups and all bivariate binomial moments of total order at most
6 have been computed.

Lower and upper bounds for the probability that at least one out of the 40
events occurs have been computed based on the two sets of data. The bounds are
displayed for all lower order binomial moments, too. Thus, we have two sequences
of bounds. The bounds in the first sequence are optimum values of problems (2),
where the objective function is (4) and » = 1. The bounds in the second sequence
are optimum values of problems (16), where the objective function is (17) and r = 1.
The latter problem is a partially disaggregated problem, as compared to problem

(2).

The results show that much better bounds can be obtained in the latter
case. The bounds obtained from the partially disaggregated problem for m = 6 are
better than those obtained from the aggregated problem for m = 11. The data and
the bounds are presented below.

Univariate binomial moments, 40 events

So 1.000
Sy 8.164
Ss 94.025
S3 290.574
S 1435.025
Sy 7115.369

Se 34884.230
S7 158338.877
Ss 637735.541
So  2249527.156
S0 6955762.090
S11 18955303.836
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Bivariate binomial moments when the 40 events are subdivided into two

first
group

SO W N

20-element groups

second group
0 1 2 3 4 5 6
1.00 1.93 4.70 12.19 41.05  127.37 317.72
6.23 3.28 31.15 186.89  794.26 2541.64
46.04 31.15 295.90 1775.41 7545.49
216.09 186.89 1775.41 10652.46
724.30 794.26 7545.49
1848.66 2541.64
3739.79

Bounds based on univariate binomial moments

m  lower bound upper bound

1 0.20410 1.00000
2 0.57400 1.00000
3 0.63452 1.00000
4 0.67613 1.00000
9 0.77875 1.00000
6 0.78559 0.97028
7 0.79960 0.92088
8 0.80000 0.81438
9 0.80156 0.81185
10 0.80191 0.80671
11 0.80299 0.80638

Bounds based on bivariate binomial moments

m  lower bound upper bound
1 0.31137 1.00000
2 0.66045 1.00000
3 0.79552 0.91272
4 0.80255 0.83071
5 0.80275 0.80583
6 0.80325 0.80410

Example 3. In this example we consider 40 events (different from those of
Example 2) which we subdivide into two 20-element groups. We have computed the
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univariate binomial moments of order up to 16 and the bivariate binomial moments
of total order up to 9. Based on these, two sequences of bounds have been computed.
The bounds in the first sequence are optimum values of problems (2) with objective
function(4), where r = 3. The bounds in the second sequence are optimum values
of problem (16) with objective function (17), where » = 3. The results show the
usefulness of using problem (16) rather than problem (2) to create bounds. The
data and the bounds are presented below.

Univariate binomial moments, 40 events

So 1.000
Sy 13.714
Ss 110.413
S3 603.262
S 2658.333
Sy 10803.206
Se 43678.754

S7 174426.944
Ss 656045.333
Sy 2238906.635
S10 6817994.468
S11 - 18451870.302
S1o 44444753.675
Sis 95592963.786
S1a 184250604.611
S5 319293071.452
S5 498850545.349

Bivariate binomial moments when the 40 events are subdivided into two
20-element groups

first second group
group 0 1 2 3 4 5 6 7 8
0 1.0 4.4 13.1 36.3 107.1 291.6 671.8 1285.6 2040.5

9.3 48.7 142.7 385.8 1106.6  2965.7 6776.8 12911.5
48.5 263.6 865.8 2769.6 9029.3 25931.6 61585.5
160.7 916.2  3546.9 13607.5  49160.0
384.1  2360.4 11254.7 50856.2 197398.0
728.1  4966.1 29560.7 151037.0
1183.6  9113.2 65687.4
1742.9 14978.8
2355.9

GO =~ O O = W N =
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Bounds based on univariate binomial moments

m
1
2
3
4
9
6
7
8

9
10
11
12
13

Bounds based on bivariate binomial moments

m
1
2
3
4
9
6
7
8

lower bound upper bound

0.09360
0.13693
0.43143
0.63421
0.66969
0.75414
0.76038
0.77968
0.78129
0.78748
0.78845
0.78885
0.78899

lower bound upper bound

0.09360
0.13693
0.49703
0.67984
0.70577
0.77074
0.81049
0.2896

1.00000
0.99709
0.86736
0.84467
0.84276
0.84128
0.84127
0.84126
0.84120
0.83873
0.83831
0.83824
0.83042

1.00000
0.96005
0.85782
0.84248
0.84164
0.84118
0.83394

PAGE 21
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6 Conclusions

In order to create lower and upper bounds for Boolean functions of events, arranged
in a finite sequence, a simple and frequently efficient method is the one provided by
the discrete binomial moment problems. These are LP’s, where the right-hand side
numbers are some of the binomial moments 57, Ss, ... . Since S 1s the sum of joint
probabilities of k-tuples of events, these LP’s are called aggregated problems. Better
bounds can be obtained if we use the individual probabilities in the sums of all Sy,
binomial moments that turn up in the aggregated problem. However, the LP’s based
on these, called the disaggregated problems, have huge sizes, in general, and we may
not be able to solve them. In the present paper we have shown that a third type of
problem, which can be placed in between the aggregated and disaggregated problem,
can combine solvability and very good bounding performance, at least in many cases.
This third problem arises in such a way that we subdivide our event sequence into
subsequences and then formulate multivariate discrete moment problems to obtain
bounds. Numerical examples show that this new approach is efficient.
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