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Abstract. We assume that the random variables corresponding to the subsequent
periods are all discrete with finite supports. We also assume that the problem is
written in the A-representation form. Starting from the last period, and proceeding
in the backward direction, we create first a dual feasible basis which provides us
with a lower bound. Next, a primal feasible basis is created which gives us an upper
bound. These steps are repeated several times. If the bounds are not satisfactorily,
then a few dual steps are performed. The proposed bounding technique is very
simple in the case of a multiperiod simple recourse problem. In this case, the dual
steps are executed effectively by careful selections of the incomimg and outgoing
vectors.
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1 0. Introduction

A simple Bounding Procedure to obtain fast bounds for the optimum value of the Simple
Recourse Stochastic Programming Problem, where the violation of the random constraints
are penalized by piecewise linear, convex functions, was proposed Prekopa 1990 (see [8]).
Later, Prekopa and Li used this bounding technique in a PERT optimization problem (see [9])
and then generalized it for the case, where the penalty-function is a multivariate polyhedral
convex function (see [10]). The main idea is the following: assuming that the random
variables are all discrete with finite supports and that the problem is written in the A-
representation form, one can easily construct an initial dual feasible basis and compute the
corresponding lower bound for the optimum value; then, a primal feasible basis is constructed
which gives an upper bound.

In this paper the Bounding Procedure will be generalized for Multi-Stage Stochastic Pro-
gramming Problems. If we formulate the multi-stage problem using the ideas from dynamic
programming, we can observe that the matrix of the equality constraints (written in the
A-representation form in each stage), has the same block-structure as those in [8] and [10].
Now, starting from the last stage, and proceeding in the backward direction, one can create a
dual feasible basis, combining the bases of all stages. Then, starting from the first stage and
proceeding in the forward direction, one constructs a primal feasible basis. This provides
us with fast lower and upper bounds for the optimum value. The procedure is repeated
several times. If the bounds are not satisfactorily close, then a few primal or dual steps are
performed.

Bounding procedures are very important in single as well as multi-stage stochastic program-
ming problems. In the solving algorithms for single stage problems, such as the dual type
method (DTM) of Prékopa (see [8]) and Improved DTM of Fiedler, Prékopa and Fabidn
(see [4]), one can use them to get fast information about the optimum value or to gain a
good starting position to solve the problem. Even more important are bounding procedures
in multi-stage problems.

In the last decade several authors, such as Birge, Gassman, Higle, Sen, Louveaux, Ruszczyn-
ski and Wets, developed various solution techniques for multi-stage stochastic programming
problems (see e.g. [1], [5], [6], [2], [3], [7]). These methods are capable to solve problems
at most 4-5 stages, because the size of the stochastic programming problem exponentially
increases with the number of stages. This is called the “curse of dimensionality” in dynamic
programming. Thus, bounding procedures may be the only tools to obtain information about
the optimum value in case of a large number of stages, where the solution of the problem
cannot be carried out.
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2 1. Formulation of the problem

We start from the following underlying deterministic (N+1)-period linear programming prob-
lem with staircase structure:

min { g2’ + ¢zt + g+ .+ g™}
s.t. Az’ =)
Tlxo _I_ W1:131 — 51
(11) T2:131 _I_ W2:132 — 52

TN:BN_l + WN:BN — ‘€N
22> 0, cee zny >0
here ¢ € R, Wte R x R™, t=1,...,.N, bc R™, z° ¢ R™ and the other data are
of suitable sizes, compatible with the formulation (1.1).

We assume that the RHS-vectors {* ;¢ = 1,..., N are discrete random variables, each with
a finite number of possible values ¢, and with corresponding path probabilities pi, (cf. [5]).
Furthermore, we suppose that the technology matrix in stage ¢ is equal to the recourse matrix
or its negative in the previous stage t — 1 for t =2,..., N, ,1i.e.

T =4+W"" (t=2,...,N).

One formulates the multi-period stochastic programming problem, based on problem (1.1),
in the form of a single large scale linear programming problem as follows:

Ml M2 MN
min { ¢f2° + > prglzl + > piaaTi ...+ phayer b
k=1 k=1 k=1
s.t. Az =0
(1.2) Tirz® + Wiep = &, k=1,....M;,
Wi tan + Wizl =&, k=1... M, t=2,...,N

N
@ >0,2,>0, k=1,....03 M,, t=1,...,N,
t=1

where W} is the recourse matrix for node k at stage t, «(k) is the immediate ancestor of
node k at stage ¢, M, is the number of possible values at stage t, ¢ =1,... N.

3 2. The basic 1dea

We reformulate the problem by the use of the A-representation and the construct dual and
primal feasible bases. First a dual feasible basis (DFB) is constructed which provides us
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with a lower bound. Then, we construct a primal feasible basis (PFB) and obtain an upper
bound. To create the DFB for (1.2) we adopt the idea for the construction of the initial
DFB in the DTM, developed by Prékopa (see [8]) for the simple recourse problems, and
then extended by Prékopa and Lee (see [10]) for linearly constrained optimization problems
with convex polyhedral objective functions. The A-representation gives rise to a specially
block-constrained LP for which the DFB can easily be constructed based on the fundamental
property of DFBs for such problems (see Th. 2.1 in [8]).

We start with the application of A-linearization method. For each decision variable zf,

N
k=1,..., Z M,, t=1,..., N, weintroduce the following functions:
t=1

(2.1)

Since the optimum value of a linear program, that depends on its RHS parameters zf € R,
is a convex polyhedral function, there exists a subdivision of the space R™ into the convex
polyhedra (simplices) Sf,, with pairwise disjoint interiors, such that f{ is linear on each
St and continuous and convex on their union UhS}ih. For fixed k and t let 2}, .. .,z,’iHi
designate the set of all vertices of all St,. Then, the A-representation of the function fi(-) is
the following:

Hy
fli(zltc) = miny Z fli(zltch))‘;ch
(22) h=1
.6 Xn 2k = %
Eh )‘Zh =1, )‘Zh > 0,

where the summation over h in the last two rows is the same as in the first one. Let us
specialize 2} from (1.2) as follows:

(%)

N
2= EWonenyy, k=1,...,02 My, t=1,...,N,
t=1

where a(k) is the immediate ancestor of node k at stage ¢ and Wg(k) := T}, If we substitute
the functions ff(zf) by their A-representations from (2.2), we can reformulate the multi-stage
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stochastic programming problem (1.2) in the following manner:

(2.3)
M,y Hy M- H My Hljev
) NN
mn {@e"+ DD fuda + DD fondin + e +° D finen
5 k=1 h=1 k=1 h=1 k=1 h=1
Az =b
k
Tk}xo—l_ Z zl%:h)‘llch (k: 17"'7M1) :élz:
_H;
Z )‘Ilch =1
k
Z Zg h)‘l h T > zinAin (k=1,..., M) =&
h=1
H2
Eh:kl =1
HN 1

Z ZN 1)‘N 1 n T Eh Lz, =&Y

Z)\ =1

(k=T My)

The matrix of problem (2.3) has a special block-structure which is illustrated in Table 1 in
case of three stages, i.e., N = 2, and the number of scenarios at the 3rd stage is equal to the
number of descendants at the 2nd stage, i.e., My = My = M.

It is easy to see that in our special situation, where 7% = +W* ! all scenarios {f, k =
1,...,M;} at staget (t = 2,..., N) belong to at most M, different spaces R™,5 =1,..., My,
where M; is the number of all possible values of the random RHS-vector ¢'. Let B'(k,t)
denotes the 2nd-stage ancestor of node (k,t). Then, if f,él(k,t) =& EeRY, je{l,..., My},
then ¢ € R™, too.

Let us introduce the following notations:

Kt::{l,...,Mt}
I''={k|ke K, & ecRY}, 5=1,....M
(2.4) d {M1| 5’“ bod ' t=1,...,N.

U
7=1

Table 1

Matrix of equality constraints in case of 3-stage problem:
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‘ o ‘]‘111...]‘11[1,11 ‘ﬁ/_,lfj/_,H%”H ‘

i T | P T

A b
T 1 1 i
7 11+ F1p1 1
0 1...1 1
1 1 1 1
T ZMc - P, o
0 1...1 1
1 1 2 2 2
TR 2y 2 I
0...0 1...1 1
1 1 2 2 2

Zipr - % Zypr - %
M1 MH}, M1 MH3, €M
0...0 1...1 1

The dual vector corresponding to any basis B for problem (2.3) will be partitioned as

1 k:]_,...,Ml
(2.5)

N
B k=1, My,

where y € R™, (v;,w;) € R™ x R', k€ K', (vi,w}) € R% x R, ke K* and v} € R"
for k € I , i.e. if the 2nd-stage ancestor of the scenario k at stage ¢ é,él(k,t) belongs to the
space R%, j€ K', t=2....,N.

4 3. An Algorithm

Step 0:

Set it:=1. Forallt=1,...,N, 5 =1,..., M; and for each block k € K* at stage ¢
such that k& € I choose any (n;+1) vectors of z{,, with subscripts {(k, k1), ..., (k, hn;41)}
so that the selected vectors constitute the set of the vertices of one of the (subdividing)
R" —dimensional simplices S},.

Step 1:
Set t:=N and f := fN forall h=1,...,HY k=1,..., My.
Go to Step 3.
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Step 2:

Compute the modified costs-coefficients at stage t (corresponding to the vectors selected

in Step 1 as follows:

(2.6) Fine = Fin =i 2h, i=1 . n;+1, k=1,..., M,

Step 3:
Solve the system of linear equations:
(zlt:h,')T vi:+wi::f£:hi7 iE{l,...,nj+1},

(2.7) , e et
v, e R, wheR, kel (JII=K").
7=1

Step 4:
Ift =1, then go to Step 5. Otherwise, set t =t — 1, and go to Step 2.

Step 5:

Solve the following linear programming problem by any method which produces a pair
of primal and dual solutions but not necessarily an optimal basis:

M,
’e win, {(af~  Yo(0})TT))
( . ) 7=1
s.t. Az’ =0, z° > 0.

Step 6:
Compute a lower bound V for the optimum value V' of problem (2.3):

N M,

(2.9) Vi=bTy + 303 [(0f) & +1Twl] < V.,

t=1k=1

where y is the optimal dual vector for the problem (2.8), v}, wi (k€ K*, t=1,...,N)
are the solutions of (2.7) and the symbol 1 denotes a vector with all components equal

to 1.

Step T:
If t > N, then go to Step 8.
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Otherwise, for allt =1,..., N, j = 1,..., M; and for each block k € K" at stage ¢, such
that k € I, choose any (n;4 1) vectors of 2}, with the subscripts (k, h1),..., (k, hp;11)
so that the equations

nj+1 -
(2.10) S AN, =G EWT
. n;+1
Yili Mgo=1 A >0, k=1, M,
are satisfied. Note, that the selected vectors z;.,¢ =1,...,n; +1, constitute the set

of the vertices of one of the subdividing R™ simplices S}, ; this simplex can differ from
the simplex identified in Step 1 for the corresponding stage t.

Set t :=t + 1, and go to Step 7.

Step 8:
Compute an upper bound V for the optimum value V of the problem (2.3):

N
(2.11) Vi=ag 2+ 0 0 20 Faw M -

H

where wgpt is the primal optimal solution of problem (2.8) and )\Zili are defined in
Step 7.

Remark 2.1

If we combine now the vectors selected in Step 0 with the vectors in the working basis B we
obtain a dual feasible basis for the problem (2.3). The dual feasibility of B can easily be
shown using similar considerations as those in Lemma 2.1 in [8] and Remark 1.1 in [4]. On
the other hand, if we combine the vectors selected in Step 7 with the vectors in the working
basis B, we obtain a primal feasible basis for the problem (2.3).

Remark 2.2
The described bounding procedure can be iterated as follows:

Step 9: Compute

AV =V -V.

If AV is sufficiently small, then STOP.
Otherwise, set it :=it +1, replace the subscripts selected in Step 0 for the subscripts
defined in Step 7, i.e. set (k, h;) = (k, h;), and go to Step 2.
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However, there is no garantee that the new bounds will be better than the previous ones.
Therefore, recommend to repeat the Bounding Procedure subsequently several times and
accept those bounds for which the duality gap AV is the smallest. If AV is unsatifactorily
large, perform a few dual steps.
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