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Abstract. The paper revises and improves on a Dual Type Method (DTM) devel-
oped by A. Prékopa (1990) in two ways. The first improvement allows us, in each
iteration, to perform the largest step toward the optimum. The second inprovement
consists of exploting the structure of the working basis, which has to be inverted in
each iteration of the DTM, and updating its inverse in product form, as it is usual
in case of the standard dual method.

Acknowledgements: The first author gratefully acknowledge the support of the Kommis-
sion fir die Férderung von Nachwuchswissentschaftlerinnen der FU Berlin.

The third author gratefully acknowledges the support of the Foundation for the Devel-
opment of Higher Education in Hungary, project 111/1141.



RRR 25-95 PAaGeE 1

0. Introduction

1990 A. Prékopa developed the Dual Type Method (DTM) to solve a specially structured
linear programming problem (see [6]). This method can be applied to solve Stochastic
Programming Problems, where the underlying problem is an LP and some of the right
hand side values are discrete random variables; the violations of the random constraints are
penalized by piecewise linear and convex functions added to the original objective function.
It can also be applied to solve special linear programming problems, e.g., the constrained
minimum absolute deviation problem (see [8]).

In this paper we present an Improved Dual Type Method (IDTM) for the solution of the
same kind of programming problems as in [6]. The novelty here is that, in each iteration, the
largest possible increase is made toward the optimum value and the inverse of the working
basis is updated in the product form.

In each iteration of the standard Dual Method (DM) (see [3]) the inverse of the new basis
(obtained from the old one by a column-exchange) is updated by the use of simple transfor-
mation formulas. In the DTM the inversion of the dual feasible basis B reduces (due to its
block-structure which arises from the use of the A-representation) to the problem of inversion
of a smaller size matrix, called working basis, B which is taken from the intersection of the
0th block and B, (cf. (1.6)). The transformation formulas to find the inverse of the new
working basis B; are, however, more complicated than those in the standard DM, because
B; arises from the old working basis B not just by a simple column-exchange, but by the
application of more complicated rules. This yields the invertion of the new working basis B,
in each iteration of the DTM. In the IDTM we exploit the structure of the new working basis
in such a way that we are able to update its inverse (similarly as in the DM) in product form
(cf., e.g., (2.1.11), (2.2.9), (2.4.7)). We also give simple transformation formulas to compute
the basic solution and the dual vector corresponding to the new dual feasible basis B.
The Algorithm for the IDTM is summarized in Section 3. The implementation of the IDTM,
based on C.I. Fabidn’s general optimization routine library called LINX, is described in
Section 4. The code is underway for full implementation.
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1. Formulation of the Problem
The IDTM solves the problem

min, {cfz+ Y0, filvi)}

st. Az =09
(1.1) Tie=vy;, 1=1,...,7
z >0
where A = (aq,...,a,) is an (m xn) , T is an (r X n) matrix, T1,...,T, are the rows of T,

and the vectors z, b, y are of suitable sizes. The f;(-) are piecewise linear and convex functions
defined in the intervals [z, zig, +1] With breakpoints at z;0 < zip < ... < zZg1, ¢t =1,... 7.
For each i =1,...,r we will only need the function values f;(z;;), j =0,...,k + 1. The
convexity of f;(-) holds if and only if the second order divided differences of the sequence
filzij), 7=0,....k;+ 1, i=1,...,r are positive.

Given a discrete function f with values f; = f(z;),7 =0,...,k+1 ,its first and second order
divided differences are defined by the formulas

fiv1i—1; .
[Zjvzj-l-l;f] = M?J :07"'7k7

Zj41—%j
[]z]‘+1,z]‘+2 s F1=[z52i41 5 ]
427

(1.2)

[Zjvzj-l-lvzj-l-?;f] = ’ ]:0,,k—1
Using the A-representation for the functions f;(-), problem (1.1) can be reformulated as
follows:

ming {Tz+ 30, E?’:&l filzij)Aij}
s.t. Az =15
Tix = y;
SEE Zi iy = v
E?’:Bl Ay =1

:BZO,)\UZO,’I::L...,T, jZO,,kl—I-l

(1.3)

We assume that zo < Tiz < zg; 41 (¢ = 1,...,7) holds for any x that satisfies Az = b, > 0.
If we introduce the notation f;(z;;) = ¢;j, then (1.3) can be written in the following form:

: ki+1
Milg,x {Te+ Y0, Ejlz-l(—) cijAij}

st. Ar=1">
SEEt Ay =1

JBZO, )‘ij ZO, jZO,..., kl—I-l, ’I::l,...T.
The matrix of the equality constraints is subdivided into (r + 1) blocks:

Cl...Ch C10--.Clhy+1 Crg ++ - Crkp+1
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A
Ty —z0...— Z1ky+1
(1.5) T, —Zpg e — Zpkatl
0 1...1
0 1... 1
0** block 1%t block ... r** block

In [6] it is shown that an initial dual feasible basis for the problem (1.4) consists of those
vectors, which trace out a (so-called) working basis B = (a1, ..., a;) from A, the (corre-
sponding to B) matrix T from T in the 0th block, and the consecutive pairs of vectors in
the other blocks; the subscripts of the vectors in B are chosen in a special way (which is
explained below), whereas the subscripts of the consecutive vectors in the blocks 1,...,r are
chosen arbitrarily. Thus

B

Tip —z1j — Z1j+1

(1.6) B=| Ts —Zrjy = Zrjer1 |
0 1 1
0 1 1
where T;p , denotes the ith-row of T , ¢ = 1,...,7. The concept of “working basis” was

first introduced by R. Wets in [9]. During the later iterations the basis structure of B may
change in such a way that the working basis B may have s (0 < s < r) more columns
intersecting the matrix A, and s more rows from the matrix 7'. In this case there are exactly
(r — ) blocks with a consecutive pair in each block, and s blocks with a single vector in each

block.

Let S be the set of those row subscripts of T' corresponding to which only one —z;; is in a
basic column, and @ :={1,...,7}\S . Then, the working basis takes the following form:

(1.7) B:( 1141; (iES)) , where  Ap = (i, ..., @i, Ginyrs oo Qi) -

The dual vector corresponding to any basis B for the problem (1.4) will be partitioned as
(yg, o7, wT), where yg is an m- component vector and v, w are r-component vectors.

In the DTM the problem to update the inverse of the new dual feasible basis B in each step
reduces (due to its special block-structure) to the problem of inverting only a working basis
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By, which is of much smaller size than the initial dual feasible basis B. Unfortunately, the
transformation formulas for updating the inverse of the new working basis B; (which are
usually used in simplex type methods) cannot always be applied here in a straightforward
manner, because B; sometimes arises from the old working basis B not just by a simple
column exchange, but by the use of more complicated rules, such as:

(1) extension of B by one additional column and one additional row; this happens when a
column from one of the last r blocks (with two consecutive vectors in the basis) leaves
the basis, and a nonbasic column from the Oth-block enters the basis, (cf. Case(i),
Section 2);

(2) exchange of one row in B accompanied by a proper change in the coefficients of the
cost function; this happens when a column from a block with two vectors in it leaves
the basis, and a column from a block with just one vector in it enters the basis, (cf.
Case(ii), Section 2);

(3) deletion of one column and one row from B; this happens when a column from the
Oth-block leaves the basis and the entering column is from one of the last r blocks with
just one vector (containing —z;;) in a basis, (cf. Case(iv), Section 2).

Therefore, in the DTM, one has to invert the new working basis B; in each step. In the IDTM
we are able to construct in each step an auxiliary matrix (with known inverse) such that the
new working basis will be obtained from this auxiliary matrix by a simple column-exchange.
This allows us for updating in product form.

Before we start with the presentation of the IDTM, which is a straightforward extension of
the DTM, for the reader’s convenience we give now a short description of an iteration of the

DTM (ct. [6], pp. 448-454):

Step 0. Construction of an initial dual feasible basis B:
i.) For i = 1,...,7 choose j; satisfying 0 < j; < k;. Include the columns with the
subscripts (4,7;), (¢,7; + 1), i =1,...,r from the last r blocks of (1.5) into the basis B.

ii.) Determine v; and w; (¢ =1,...,7) by the equations
(1.8) :jii”if“’" — G i=1,...,r.
z],'—l—lvz —I' w; = c’j,’+1

iii.) Solve the LP:

minimize {30 (¢; — vTt;)z;}
st. ayx1+...+ape, =b, ; >0, ¢ =1,....n,

(1.9)

T

where v* = (vq1,...,v,) and t1,...,t. are the columns of the matrix 7. Note that the

LP (1.9) can be solved by any method which provides us with a primal-dual feasible basis
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B = {ap, k € I}, where Ig = {i1,...,in}, e.g. by the interior point method of Lustig,
Marsten and Shanno, which is well suitable especially for problems of large sizes (see [4]).
Include B into B in such a way that B consists now of those vectors, which trace out B
from A, Ts from T in the Oth-block, and the initially selected consecutive pairs in the other
blocks.

Step 1. Calculation of the corresponding basic solution:
Determine the sets S, () ; then, determine the components of the corresponding basic solution

as follows
R -1 T . (1T .
xp := B7by, where by := (b, (2i;,,1 € 5))
 _ zij+1—Tipzp
(1.10) Aiji = Ziji+1=2ij;
) OT— Tipop——ij; 1=1 r
17;+1 — Zij; 41— 2i4; 9 = 4i,...,7.

Step 2. Test for primal feasibility:

If 25 > 0,X;5 > 0,541 > 0, ¢« = 1,...,7, then STOP. The basis is primal feasible,
hence also optimal. Otherwise, choose any basic component which is negative and let the
corresponding vector leave the basis. Go to step 3.

Step 3.

Update all those nonbasic columns from (1.5) which may enter the basis, and compute the
corresponding reduced costs ¢, ¢, (cf. step 4 in [6]).

(Note that to perform an iteration of the DTM one does not need to price all nonbasic
vectors in the last 7 blocks of the matrix of the equality constraints (1.5), but just those
which, when they enter, do not violate the special structure of the dual feasible basis: from
each of the last r blocks either one or two vectors are in the basis.)

Step 4.
Determine that vector which enters the basis by taking the minimum of the fractions of the
reduced costs and the corresponding entries of the leaving variable in the tableau (cf.step 5

in [6]). Go to Step 1.

Remark 1.1

We briefly show that B constructed in Step 0 gives us a dual feasible basis for problem
(1.4). The nonsingularity of B is trivial. To show the dual feasibility of B, let y be the dual
vector corresponding to the optimal basis B for problem (1.9), i.e. yp is any solution of the
equation

(1.11) yEB = 5 — v T,
where cp is that part of ¢ which corresponds to B. The optimality creterion reads as follows:

ygai = C; — ’UTti, 1 € IB
ygai S C; — ’UTti, 1 € IB,
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which implies:
(1.12) vty +yLa; <e, i=1,....n

Inequalities (1.12), equalities (1.8) and Lemma 2.1 in [6] imply the dual feasibility of B.

In the next section we explain in detail the construction of the auxiliary matrix (which is used
in IDTM for updating of the working basis in product form), give the respective updating
formulas and compute the increase in the value of the dual objective function during one
iteration used in our algorithm to perform the largest step toward the optimum.

2. Transformation Formulas

In this section, first we present simple transformation formulas to obtain the new data of
problem (1.3) from the old data, when passing from the old dual feasible basis B to the new
one B; by one of the following column exchanges:

(i) deleting the column of —z,;, (—%g,+1), ¢ € @, and including a column from the Oth
block;

(ii) deleting the column of —zg;, (—245,+1), ¢ € @, and including a column of —z;;,_1 (—2ij;41).
1 €5
(iii) deleting a column of —z,;, (—%g,+1) and including a column of —zg; 12 (—245,-1),

q¢cQ;

(iv) deleting a column from the 0th block and including a column of —z;;, 41 (—ziji-1) »
1 €5

(v) deleting a column from the 0th block and including a nonbasic column from the same

block.

In what follows we frequently use the following
Lemma 1:
Let A be the following (m x m) matrix:
Ay 0 Ay

A= | an. aij-1 aij @ijr1 .. Qi |,

A21 0 A22
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where a;; # 0, 1 < 4,5 < m, and A, A1o, As1, A are (i —1)(j — 1), (¢ — 1)(m — ),
(m—14)(j — 1), (m —1¢)(m — j) matrices, respectively. Let B be the matrix obtained from
the matrix A by deleting the 7th row and the jth column. Then, the inverse B~! is obtained
from the inverse A™! by deleting the jth row and the ith column.

Now, we consider all five cases separately.

2.1. Case (i): deleting the column of —zg;, (—2gj,41), ¢ € @, and
including a nonbasic column from the Oth block.

The (old) working basis B has the following form (cf. (1.7)):

Ap
2.1.1 B =
211) (7).
where Tsg = {Tip, i € S)}. Let

IB — {’1:17 e ,’I:m,’l:m_|_1, e ,’I:m_|_3}
(2.1.2) S = fh,. . bt 0<s<r

If in the (old) dual feasible basis B we exchange the column containing — 245, ( —Zgj,+1)s 4 €
@, for that column from the Oth block whose subscript is p (that is the column intersecting
A at a,), then we pass to the (new) working basis By. It has the form:

(2.1.3) By = ( A5, )

where

(2.1.4) Is, = Is| {p}, S1=5U{a}-

The new working basis B; arises from the old one in such a way that we extend it by an
additional column and row, where the subscripts of the columns {(aijT, tglij)T| i; € Ig, } and
those of the rows {T},p| h; € S1} admit increasing orders. For example, if the the additional
row and column are the last ones, the new working basis B; has the structure:

AB Ap
(2.1.5) Bi=| Tsp tsp
TqB tqp

To perform one iteration of our algorithm we need to compute the inverse B; ', given B~
This is easily done, provided that we are able to construct an auziliory matrix B (with a
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known inverse) such that the new working basis B; will be obtained from this auxiliary
matrix by a column-exchange. Then, the inverse of the new working basis is obtained from
the inverse of the specially constructed auxiliary matrix in product form. We distinguish the
following two cases:

case (a): the leaving vector is the column of —z;,
case (b): the leaving vector is the column of —zg; 41,
and introduce the notations

. Zgj,+1, 10 case (a)

Zqj,» 10 case (b)

(2.1.6) Z, = Zqjqtl T Faig ‘in case (a)
Zgj, — Zqj,+1, 10 case (b)

5o Agj,» 10 case (a)
4 Agj+1, 1n case (b).

Now, we construct the auxiliary matrix B. For that, we replace the new column (ag, tglp)T
in By (given by (2.1.3)) by a column in which all elements are 0, except for Z,, the latter
being placed in the position of t,,. In the example (2.1.5) the auxiliary matrix has the form:

) Ap 0
(2.1.7) B=| Tsg 0
T.5 %,

Let us subdivide the set of subscripts I into two parts L, and U, as follows:

Ig = L,UU,,  where

2.1.8 . .
(2.18) L, :={Ipli; <p}, Up:={Is|i;>p}.

Then, we have

I, = L, U{p} U Up.

Let E?irst,Eﬁm be the matrices consisting of the (m+s+1)-component unit vectors with
subscripts in L, and U, respectively, and let us introduce the matrix
(2]‘9) F = (E?irsﬂ d1(01)7 Eﬁlst)7

where the (m+s+1)-component vector dl(ol) 1s placed in the position of the entering column.
It is computed as follows:

(2.1.10) d<1>:1§>—1( “r ) .

We have that

(2.1.11) B, = BF.
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Thus, the auxiliary matrix we have been looking for is constructed. It follows that
(2.1.12) B,"'=F'Bt

It remains to compute F~' and B~ Using Lemma 1, we obtain that B! is obtained
from B~! if we extend it by one additional row and column: the additional row enters in
the position of p € Ip,, and the additional column enters in the position of ¢ € Sy ; the

additional row consists of the elements in (—TqB,B_l) and X | the latter being placed in the
#q #q

position of the additional column in B~!; the additional column has elements all equal to 0,
with the exception of the new element X . In our example (2.1.7), B~! has the form:
#q

- B! 0
(2.1.13) B = _TqBB_l 1 .
Zq Zq
Now, using (2.1.10), we can compute dl(ol); the resulting vector consists of the components of
the vector d,, and one additional element %93—%, the latter being placed in the position of
p of the new row in B 1:
[dp];first a
(2.1.14) dl(ol) = | fe—fad « pth component, where d, = B™" ( tp ) .
Zq Sp
[dp]?ast

The vectors [dy]%;. ;. [dp]],,, are obtained from the (m+s)-component vector d,, if we subdivide
it into two parts: the first part contains those components of d, which have subscripts in L,
and the last part contains those elements which have subscripts in U,. Having computed the

(m + s + 1)-component vector dl(ol), we can compute FL

__ dpZg
(2]‘]‘5) F_l = (E?irst tquq andy Eﬁlst) :
tep—Tyndp
Finally, using (2.1.12), we compute the matrix By which consists of the matrix B~! given

below, extended by an additional row and column in the same manner as it was done to the
matrix B~!. The additonal row (placed in the position of p in By') consists of the elements

in the row —éqf:i—;; and of the element m, the latter being placed in the position

of the additional column. The additional column (placed in the position of ¢in By') consists

of the elements in —;——=—, except for the element ﬁ. The matrix B~! is computed
e~ +¢B%p e+ qB%
as follows:
Bl=p1l4 L@B—l
top — ToBdyp
In case of example (2.1.5) the inverse of the new working basis B; has the form:
S
(2.1.16) Bi'=| g8 fr Tady |
tep—Tyndp tap—Tyndp
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Let g and xp, designate the solutions of the following systems of equations:

(2.1.17) Bip = by,

b
(2.1.18) Bizp, = b1, where b := ( zij (1 € 81) ) '

It is easy to see that the vector Zp in (2.1.17) consists of the components of the old basic

solution zp and one additonal component A, which is placed in the position of p € Ip, :
[wBJ?irst

(2.1.19) Ip = A

‘ «— pth component ,

[wB]last

where [zp]%;,,, and [2B]7,,, are obtained from the vector zp , if we subdivide it into two parts
corresponding to the subdivision of the subscript set Ig = L, JU,. Then, using ( 2.1.18)
and (2.1.12), we obtain that

(2.1.20) ¢, = B{'by = F7'B7 b = F'ip.

If we substitute (2.1.15) into (2.1.20), then we obtain

[:BB - w‘(ll)dp]iirst . z
1. rp, = T , where =z, 1= A, —FT7.
2.1.21 1 W h M= A
_ 1) g 7P tep — TyBdyp
[:BB qu p]last

Here 5\q, z, and d,, are defined in (2.1.6), and ( 2.1.14), respectively; g is the old basic solution
which is defined in (1.10), and the subdivision of zp — :B((ll)dp 1s again performed according
to the subdivision of the set Ig into L, and U,. As regards the new basic A—components,
we easily find that

v T,

RO (i€ Q)
1 1 ?
AV 1Al

13;

where

(2.1.23) Q1:=Q\q .

To define the new dual vector yp, := { yp,i | ¢ € {1,...,m}US1 } we have to solve the
equation

2.1.24
(2.1.24) (37 = b, — (o) T, o0 = [V i € Qu}.
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and cp,, g, are those parts of ¢ and T', respectively, which correspond to the basic subscripts
of B;. Now, we have that

[éB + Yq TqTB]iirst

(2.1.25) ¢p, = ép + Vgt gp — pth component,
[éB —I_ vqTqTB]fast

where

(2126) éB = CB — Z 'UhthBa ép = Cp — Z ’l)hthp.

heQ he@
Here vy, h € (), are the components of the old dual vector v and ¢p —I—vqTq% is subdivided into
two parts corresponding to the subdivision of Ig = L, [JU,. Let us introduce the following
notations:

— ~

&p 1= Cpdy — &,
(2.1.27) Ko ¢/ (tgp — Typdy), in case (a),
w ¢/ (Typd, — tgp), in case (b).
Then, using the previously obtained inverse B;', we obtain from (2.1.24):
_1\T14
[?/B + qu(TqBB 1) ]first
(2.1.28) YB, = v, — Ky «— ¢th component,
lys + qu(TqBB_l)T .

]last

where the subdivision of the (m+s)-component vector yp + qu(TqBB_l)T into two parts is
performed corresponding to the subdivision of the set of the subscripts S :={1,...,m}US;
into L, and U, with respect to the position of the subscript ¢:

S=1L,U Uy, )

Ly:={jeSli<q}, Ug={jeSlj>q}

The other dual variables {vl(l), wl(l),i € (1} remain unchanged.

Finally, given the old value V = blyp +Yicq wi) we compute the new dual objective function
value Vi:

(2.1.29) Vi =bTyg, + 3w,

1€Q
where b; are given in (2.1.18). Using (2.1.28), we obtain
(2130) AV = Vi -V = qu(TqB:BB — 2q),

where Z, and K, are defined in (2.1.6) and (2.1.27), respectively.

Summary of Case (i):

Suppose a column of —zg;, (—2gj,41),q € @, leaves the basis and a nonbasic column from
the Oth block, the column of a,, enters the basis. Then,
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1.) the components of the new primal solution, corresponding to By, and the A—components
are given by (2.1.21) and (2.1.22), respectively;

2.) the components of the new dual vector corresponding to B; are given by (2.1.28),
whereas all other components of the new dual vector remain unchanged;

3.) the increase AV in the value of the dual objective function (which is used in Section 3
to determine the largest step toward the optimum) is given by (2.1.30).

Remark 2.1.1:

In case of a minimization problem the dual method produces a nondecreasing sequence of
objective function values. Thus, (2.1.27) and (2.1.30) imply

Cp

2.1.31 _
( ) tqp - Tqup

(TqB:BB — 2(1) Z 0

This has the following consequence:
in case (a) Ay, <0, and therefore (using (1.10))

(2132) TqB:BB — Zgj,+1 > 0.

Furthermore, if the column of a, enters the basis and ¢, < 0, then we have to restrict
ourselves to the negative denominator in the expression (2.1.31), i.e., the entering column of
a, should be chosen in such a way that

(2.1.33) ty — Tynd, < 0;
in case (b) Agj,+1 < 0, and therefore (using (1.10))
(2134) TqB:BB — Zgj, < 0.

Then, using similar considerations as in case (a) we obtain that the entering column of a,
has to be chosen in such a way that

(2.1.35) top — Typdy > 0.

Remark 2.1.2:

To perform the largest step toward the optimum we proceed in the following manner:
1.) For each q € @ such that Ay, < 0 (or Agj,+1 < 0) determine a nonbasic subscript
p(q) € {1,2,...,n}\Ip at which the following minimum is attained

CpZq Zq

tqp - TqB dp

m(q) :=  min

<0
tar=Tyndp<0 "ty — Typd, h
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where Z, is as in (2.1.6) and d,, ¢, are as in (2.1.14), (2.1.27).

2.) Then, that pair of leaving and entering vectors which produces the largest increase in
the dual objective function value is given by the column of —z; and the pth column of the
0th block, where p := p(§). The subscript § is determined as follows

q:= arg maneQ{(TqB$B~_ 5q)qu(q)} -
argmaneQ{%%f_zq m(q) | Bt > ) 2

Zq

(2.1.36)
where Z, is given in (2.1.6).

Note: The considerations of Remarks 2.1.1 and 2.1.2 are used in Section 3 for the description
of Step 3 of our algorithm. According to Remark 2.1.1, the pair (q,p) has to satisfy the
inequalities (2.1.32), (2.1.33), if the column of z,;, is the leaving one, and (2.1.34), (2.1.35),
if the column of z,;, 41 is the leaving one. Hence, in Steps 3.1 and 3.2 in Section 3, the pair of
subscripts (¢, 7,) (or (¢,7,+1) ) varies in Q™) (or Q¥), Q). Q™ C Q), and the nonbasic
subscript p varies in Pq(l) (or Pq(2)) (cf. (3.1), (3.7) and (3.3), (3.8), respectively).

a

2.2. Case (ii): delete a column of —zg;, (—245,41), ¢ € @, and
include a column of —z;;,_1 (—zij+1), ¢ € S.

In this case the new working basis B; is obtained from the old working basis B by deleting
the row T;p and including the row T,5. The new sets ()1 and S; are obtained as follows:

Q1 = (Q\{q}) U{s}
221 5= (S Ufa)
The new working basis By has the form:
Ap
(2.2.2) B, = ( Te 5 ) :

First we compute the new primal and dual vectors corresponding to the working basis Bj.
We solve equations (2.1.18) and (2.1.24) with the new sets (@1 and S;. We distinguish the
following two cases:

case (a): the entering vector is the column of —z;;_1
case (b): the entering vector is the column of —z;;, 41,
and introduce the notations

Zij; — Ziji—1, 10 case (a)

N

1 .
Zij; — Ziji+1, 10 case (b)

(2.2.3) s _ [ A5 in case (a)
' )\l(;i)+17 in case (b)
< Ciji—1 — Cij;, 10 case (a)

C; = .
Ciji+1 — Cij;, 10 case (b).
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To compute the new basic solution we proceed similarly as we did in the previous section
and construct an auziliary matrix B. For that first we introduce an intermediate matrix By,
supplementing B; by one additional column and row as follows:

Ap 0 ;
N [TS B]i ) 0 [Bl]first C
(224) Bl = Tl first z = Tl ] Z;
; ' [Bl];ast 0

[TslB];.ast 0

’ }irst and [TslB];ast ([Bl]}irst and
[Bi];.,,, respectively) corresponds to the subdivision of the set of subscripts S; into the

last’

disjoint sets L; and U; with respect to the position ¢ in Sy (J{¢}. Thus

Here the subdivision of T, p ( Bi, respectively) into [T's, 5]

S1=L;UU;,
2.2.5 . . . S
( ) Li={j€S5j<i} U:={j€851|j>1i},
and
i Ap i i
Bl = (g, )+ B = sl
Now, let Zp,,9p, be the solutions of the equations
(2.2.6) B1iiBl = by, ??Blél = ¢By;
where
b .
i,
N . (1 Lz first N ) N
(2.2.7) by = Z;t (1 € L) — Zij; , ég, = (¢ +v,Tym, &) .
Z [bl];ast

Zujy (u - Ul)

The vectors by, ég and ¢; are given in (2.1.18), (2.1.26) and (2.2.3), respectively. The vector
b1 is subdivided in accordance with the subdivision of B;. Now, we easily see that

[yBl]i‘irst
~ x 1 ~
(228) rp, = ( S\ﬁ) ) y YB, — vgl) ’

7 7

[yBl]last

where the subdivision of the vector yp, follows the subdivision rule of b; and B;. Thus,
to obtain the new primal and dual vectors corresponding to B;, we need to compute Bl_l.
Similarly as in Section 2.1, we obtain Bfl in product form, provided that we are able to
construct an auziliary matrix B (with a known inverse) which is obtained from B; by a
simple column exchange. We observe that

(2.2.9) B, = BF |
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where B is obtained from the old working basis B, if we supplement it by one additional
row and column as follows:

Ap 0 q
_ [TSB]iirst 0 [B]first (2
(2.2.10) B = T , = Tqu Z, ,
[TSB]? , 0 [B]last 0
and
~ Em 8 d@
(2.2.11) F= ( (0+ ) _ Typdi ) ,  where d;=B7'%.

The value of z, is defined in (2.1.6), and the (m + s)-component vector Z; is obtained from
the (m+s+1)-component last column of By, if we delete that component which corresponds
to the row T,p; this component is equal to 0. The subdivision of Tsg (B) into [TSB];{th
and [Tsgl},,, ([Bl}i, and [B],,,) is performed corresponding to the subdivision of S with

respect to the position of ¢ (¢ ¢ S). Thus

S=L,UU, ., where

2.2.12 : . . .
( ) Ly={jeS|j<q}, Uy:={j€8S|j>q}.

Now, proceeding in a similar way as we did in Section 2.1 and using (2.1.21), we obtain

3 (1)
. rp — )\l dl Y(1 3 Zq
(2.2.13) rp, = ( 0 ) ) )‘z(' )= Ag —T,pd; °

where ;\q and d; are given in (2.1.6) and (2.2.11), respectively. Furthermore, from (2.1.28)
we obtain that

[?/B + in(TqBB_l)T]j‘irst
(2.2.14) YB, = vy — Ky o ,
[?/B + in(TqBB_l)

]last

where the subdivision of the vector yg + in(TqBB_l)T follows the rule given in (2.2.12).
The number K,; 1s computed as follows:
if the column of —zg;, 41 (—2,5,) leaves the basis, then

(2.2.15) in case (a): Kq:Bzzq;u _szq;u)
in case (b): - Kqi = 700 (ZSn50 )

Here w; := d;/z; and ¢g, & are defined in (2.1.26), (2.2.3), respectively. Finally, the new
value of the dual objective function is:

(2.2.17) Vi = KTy — %) ,
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where 2, is given in (2.1.6). Now, using the (intermediate) solutions given in (2.2.13), (2.2.14),
we obtain the new primal basic solution and dual vector as follows:

Tp,r = Bk, kEIp

Agio (2gi — 244 . .
(2.2.18) . Raiy (Pajq 1 —2ai) if — z,: leaves the basis
)\(1) _ —T,5d; ) aiq
i - quq-l-l(ijq{-l_ijq) : .
T,nd; , if — zg; 41 leaves the basis

yBll:gBll 716{17"'7m}US1 (l7£’1,)
(1) (1) (1)

v =6G[E, wp = cij — Zigvy -

(2.2.19)

The other components of the new primal and dual vectors remain the same as in the previous
step.

Summary of Case (ii):

Suppose a column of —z,; (—2gj,41),¢ € @, leaves the basis and either (a) a column of
—Ziji+1, or (b) a column of —z;;,_1, ¢ € S, enters the basis.
1.) The new primal basic solution is computed as follows:

— AW,
ma={ Pt e )
(2.2.20) Bk — Ajjiy1 ik,

)\(1) = Ma Ag;l)+1 =1- )‘5.711)7 le Ql\{z}7

lj1 2154121

where d;j, are the components of the vector d; given in (2.2.11),

A { :\El), in case (a)

(2.2.21) i 1— A" in case (b)
1 1
)\l(ji)+1 =1- )‘l('ji)7

and 5\51) is given in (2.2.18).

2.) The new dual vector corresponding to the working basis Bj is computed as follows
ygll:ygl—l_inTqBB_l? lE{l,...,m}US’l,

where K,; is given by (2.2.15). The components oV w0l are defined in (2.2.19) and the

k3 b k3
other components of vV, w® remain the same as in the previous step.

3.) The increase AV in the value of the dual objective function is:

(2.2.22) AV = Kyi(Typzs — %) ,
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where Z, is given in (2.1.6); (2.2.22) is used in Section 3 for the determination of the largest
increase in the objective function value.

Remark 2.2.1:
To perform the largest step toward the optimal value we proceed as follows:

1.) For each ¢ such that Ag;, < 0 or Agj,+1 < 0 let
[0, )](q) € {(é.9) i€ S, j=jit1, 0 <yji <k}
denotes that nonbasic subscript at which the following minimum is attained:

m(q) := min{m*, m~} , where

+ _ s Eiji+12q Zq

m’ = IMilies { 2, Typui | %, Typu; <0 }’
- P Cij; —1%q Zq

mo = Milics { ZiTuni | ZiTun,’ S 0 }

Here u; :=d;/Z;, Cij+1 := ¢pd; — & and d;, Z; are defined in (2.2.11), (2.2.3), respectively.

2.) The pair of leaving and entering vectors which produces the largest increase in the dual
objective function is given by the columns of —z,;, and —z;, where (4, 7) := [(2,7)](¢), and
the subscript ¢ is determined by the equation:

T; -z T _ 3
(2.2.23) g = arg max {wm(t) | ZtBYB T At

2t 2t

=0},

where z; and 2, t € @), are defined in (2.1.6).

The considerations of Remark 2.2.1 are used in Section 3 for the description of Step 3 of our
Algorithm, where the the expression for AV in (2.2.22) is used to determine the “optimal”
pair of the leaving and entering vectors (cf. the last two lines in (3.1) and (3.7), or the last
two lines in (3.3) and (3.8)).

2.3. Case (iii): delete the column of —zg; (—zgj,+1) and
include the column of —zg; 42(—2%g,-1), ¢ € Q.

The column exchange in the gth block of the dual feasible basis B changes only those
components of the primal basic solution, which correspond to the gth block. To obtain
the new primal basic solution we need only to compute the new values of {/\((1;()1,)\((1;()#1},
the other basic components of {/\E;)}, as well as the basic components in zp,, remain the
same. To obtain the new dual vector yp,, we need to compute only those components of
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{vgl),wm,i € (1}, which correspond to the gth block, while the other components of ()

(1) remain unchanged. Note that @y = Q. Let us introduce the notations

and w

(231) DT = [ijqv 2qjgt1ly Zqig+2; Cq~](ijq+2 - ijq)
Dy = [Zg5,-1 24> Zajoer1s Ca) (Zgigr1 — Zgig—1)5

where ¢ € Q and [2g,, 245,11 Zajg+2; Ca)> [Zaja—1s Zajy> Zaje+1i Cq.) denote the second order di-
vided differences of the sequence ¢y, 7 = 0,...,k, + 1, (cf. (1.2)). We distinguish the
following two cases:

case (a): a column of —z,;, leaves the basis and a column of —z,;, 12 enters the basis
case (b): a column of —Z%gj,+1 leaves a basis and the column of —z,; _1 enters the basis.

(1)

Using (1.10) we can compute the new basic components {/\(1~) Agj,+1) as follows:

ajg>
—(z . +1—T B?tB) )
)\(1,)+1 _ W, 1n case (a)
b ¢BTB—#qjq—1 .
(2.3.2) m, in case (b)
M 0
)\qu =1- )‘qjq-|—1-

1 : .
All the other components of {)\Ej)} remain unchanged. From (1.8) we derive
Cqjq+1—Cqjq
2qjq+1"2qjq
1) _ —[Zgj 415 Zgjr 425 ¢q ], 1n case (a)
_[quq—17 Zqjqs Cq~]7 m case (b)

Vg = — = _[Zqu7 2gjq+15 Cq.]

2

Using the notations (2.3.1) we obtain

1y _ | vg—D,, in case (a)
(2.3.3) Y = { vy + Dy, in case (b).

Again, using the equations (1.8), we have:

Wq = Cgj,+1 T Zgj,+1Vq

1) 1
w((1 ) = Cajg+1 + ijq-l-lv(g )

If we subtract the second equation from the first one we obtain

(2.3.4) wll) = {

wg — D, 245,41, 1n case (a)
wq + Dyzgj,, in case (b).

All the other components of v, w®) remain unchanged. Now, using (1.11) and (2.3.3), the
new dual vector can be computed as follows:

yT = { yE + D, T,gB™*, in case (a)
B, —

(2.3.5) yg — Di/T,g B, in case (b).
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Finally, for the new value of the dual objective function we obtain

o V — Dy (24j,+1 — TyrB), in case (a)
(2.3.6) Vii= { V — Di(TypxrB — 245,), in case (b),

where

V = bTyB —|— Zwl
1€Q

If we use the expressions for the reduced costs (cf. [6]):
Equ—l = _Dl(ijq - quq_l)
Cojgrr = —Dn(Zgj,12 — 2gjyt1),
then the new value of the dual objective function can be computed as follows:

Zgig+1~TqBTB

G — a (1) .
Vi Cajgra Zgjgt2—Fgigtl V= Cajradgj 41, 10 case (a)
(2.3.7) Vi =
— —(2gj—TyprB) _ 1 .
V + &g, aig—tgiat V —Cgj,—1Ayj, - In case (b).

Summary of Case (iii):

1.) The components of the primal basic solution {zp,; )\E;i),i(e) S, ();;;l),l € @} remain the
1 1
JoA

tje Aajy» Which correspond to

same in the next step, with the exception of the components A
the gth block and are given by (2.3.2).

2.) Those components of the dual vector yp, which correspond to the new working basis
By are given by (2.3.5), and those ones which correspond to qth block are given by (2.3.3),
(2.3.4). All the other components remain the same.

3.) The new value of the dual objective function V] is presented in (2.3.7).

Remark 2.3.1:
In case (a): the gth-component of v decreases during the iteration; furthermore,

if 245,41 > 0, then w, decreases too, but if z,; 41 < 0, then w, increases.
In case (b): the gth-components of v increases during the iteration; furthermore,

if 245, > 0, , then w, increases too; if z,;, < 0, then w, decreases.

In fact, by the convexity of the discrete function ¢;. we have that D,, D;, given in (2.3.1), are
positive, and this implies:

M) < v, in case (a)

vzl) > vy, in case (b).
The assertion concerning w, can be proved similarly.

Note: this above mentioned property of the components of the dual vector is helpful to
select the “optimal” initial pairs of the basic vectors in the last » blocks of the matrix (1.5).
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Remark 2.3.2:

To perform the largest step toward the optimal value we proceed similarly as in Remarks
2.1.1 and 2.1.2. The expression (2.3.7) is used for the description of the Algorithm in Section
3 to determine the “optimal” pair of the leaving and entering vectors: compare (2.3.7) with

m1(q), Ma in (3.1), (3.7), and ms5(q), Mp in (3.3), (3.8).

2.4. Case (iV): delete a column from the 0th block and

include a column of —z;;,11(—zij;-1) , ¢ € S.

In this case we delete that column which intersect A at a,, and include
case (a): the column of —z;;,41, 1 € S
case (b): the column of —z;;,_1, ¢ € S.

The new working basis B; has one column and one row less than the old working basis B,
and we have an additional block in B; containing a consecutive pair of vectors, 1.e.:

(2.4.1) Is, = Is\{p}. Si=S\{i}, Q1= QUM

Similarly as we have done in Section 2.1, we construct an auziliary matrix B (the inverse of
which can be computed in product form), so that the inverse of B; can be derived from the
inverse of B by simple operations. Let us introduce the following notations:

_ { Zij; — Ziji+1, 10 case (a)

AT Zij; — Ziji—1, 10 case (D)
m+(1—1) (s—17)
2.4.2 . — _
( ) 7 = (0,...,0,%,0,...,0
_ Ciji+1 — Cij;, 10 case (a)
c; = .
Ciji—1 — Cij;, 10 case (b).

We construct the auxiliary matrix B by replacing the column Z; (given in (2.4.2)) for the
column (ag, tlj; (1 € S))T in the old working basis B. The only non-zero element of Z; is
placed in the position of the element ¢;,,7 € S. The corresponding row T;p will leave B, since
the corresponding block ¢ will contain a consecutive pair of vectors and, consequently, it does
not anymore belong to the Oth block in the new dual feasible basis B,. For example, if the
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column of a, and the row T;p are the last ones, our auxiliary matrix B has the following
form:

- ( B 0
(2.4.3) B= ( oz ) .

It is easy to see that we obtain the new working basis B; from our auxiliary matrix B by
simply deleting the ith row and the new column z;. Then, using Lemma 1, we obtain the
inverse of the new working basis B; by excluding the pth row and ith column from B~'.
Now, let us compute B~!. For that we subdivide the set of the basic subscripts I, given in
(2.1.2), as follows:

(2.4.4) Ip = L, {p}UU,, Ly:={iy€Ip|ij<p}. Up:={i; €Ip|i; > p}.

Let E%,,.,, Ei,,, be the matrices consisting of the (m+s)-component unit vectors with sub-
scripts in L,, U, respectively, and introduce the following matrix:

(245) F= (E?irsw d? Eﬁzst)‘

The (m+s)-component vector d is placed in the position p of the outgoing column in B. If
u; designates the ith column of B!, then we have the equation

(246) d= B_léi == uiZi.

It follows that ) )
B=BF B '=F1'B

where
— 1 [Wip
— s [Uip
2.4.7 Ft=|E2,, o EP.
( ) first 1/(Uipzi) last
_uim—l—s/uip

and w;, (k € Ip) denotes the kth component of the vector w;.
Let @5 be the solution of Big = by, where by is defined in (1.10). Then we have that

(248) :iB == F_lB_lbo = F_libB,
where zp is the old basic solution. Now, using (2.4.7), we obtain

Zpr = Bk, — (Wi /wip)zBy , for k € Ip,

~ 1
TBp = iz UBp

(2.4.9)
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where zp; ,#p;(j € Ig) denote the jth component of the corresponding vectors.

Now, we observe that the components of the primal basic solution corresponding to B; (the
solution of the equation (2.1.18)), as well as those components of the primal basic solution
which correspond to the last 7 blocks and are going to be changed during the present iteration,
can immediately be determined through the components of our auxiliary solution as follows:

Bk = :in, for all k& € IBl
(2.4.10) M) =dm,, A =1-20)

(here 4+ or — is chosen depending on the incoming vector ).
The other components of the primal basic solution remain the same.

To obtain the new dual vector, we have to solve equation (2.1.24) with the new working basis
B and corresponding Ip,,S1 and Q1. First we compute the (auxiliary) solution gp, of the
following equation:

~ [éB]?irst
(2.4.11) gLB =¢L,  where ¢ = G
[éB]?ast)
We obtain
(2.4.12) gL =EB = LFiBT
Now, using the expression for F~! given in (2.4.7), we derive
A T
[CB]?irsé
~ ~ ¢c;—énd —
(2.4.13) g5 =| & + ages | BT
[CB]?ast

where the vector d is defined in (2.4.6) and d,, is the pth component of the vector d. Since

we have .

T [éB]A?irst 4

yB = cp B 9
[CB]?ast

it follows that

. ¢ — ¢Ld
(2.4.14) V=Yt O

p

where g, denotes the pth row of B~'. Now we can easily compute our new dual vector by the
use of yp. Taking into account the shape of the matrix B~', and using (2.4.12), we obtain
that

YBk = YBk — Cigpk , Tor all ke {1,....m}US: (k#1)
(2.4.15) vl = §g;

‘) (1)

w; = G+ ZiGv
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where g, is the kth element of the pth row of B‘l,fmd ¢; is given in (2.4.2). Using (2.4.6),
we can compute the components of the pth row of B~ :

(2.4.16) Gok = G/ (wipz;), forall ke {l,....m}{JS1 (k+#1).
The increase of the value of the dual objective function value is:

AV =Vi =V = (tys, + z50") — bys =
ei—éLd ei—éLd

(2.4.17) ;
=bo(yB — yB) = TgpbO = =3, "Bp

where by, by, ¢§ and d are given in (1.10), (2.1.18), (2.1.26) and (2.4.6), respectively. Now,
using the following expression for the reduced costs

(2.4.18) Cijit1 = égd — & (+ or — is chosen depending on the incoming vector),

and substituting (2.4.6) for d, we can write:

(2.4.19) AV = Gt o

ZiUip

Summary of Case(iv):

Suppose the column of a, from the 0th block leaves the basis, and we include
case (a): a column of —z;;,41, 1 € S
case (b): a column of —z;;,_1, ¢ € S.

Then we have the following results:

1.) The components of the new primal solution, corresponding to the new working basis
B and to the ith block of the new basis Bj, are given by (2.4.10). The rest of the basic
compounents of {A;;} are:

Zhir4+1 — TkBl$Bl )
)\21]1 _ Phirt 7 )‘gcljl-l-l =1- )\gjl (k€ Q:1\{i}).

Zkjr+1 — ki

2.) The components of the dual vector, corresponding to By and to the ith block, are given
by (2.4.15). The rest of the components of the new dual vector remain the same.

3.) The increase in the value of the dual objective function, which is used to determine the
largest step toward the optimum, is given by (2.4.19).

Remark 2.4.1:

To perform the largest step toward the optimal value we proceed similarly as it is described
in Remarks 2.1.1 and 2.1.2. The expression (2.4.19) is used in the description of Step 3 of the
Algorithm in Section 3 to determine the “optimal” pair of the leaving and entering vectors:

compare (2.4.19) with mqo(k), mi1(k) and M in (3.5) and (3.9).
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2.5. Case (V): delete a column from the 0th block and

include a nonbasic column from the same block.
The considerations are similar to those in the previous case, hence it is enough to summarize
the results.
Summary of Case (v):

Suppose the column of a, from the 0th block leaves the basis and a nonbasic column of a,
from the 0th block enters the basis. Then we have the following results:

1.) The new basic components out of x4, ..., =z, are:
LBk = TBL — Z’j’;wm , for k€ Ip, (k # p)
LBip = %
where
251 I = UM, 6= ([ )
P

2.) The new basic A-components are:

Tip,*B, — Zij;

(2.5.2) A = Al =120 i e Q,

.. —_1.. 1Ji 1)
Ziji+1 — Liz;

where () := (@ .

3.) The new dual vector yp, is:

{ YB1k = YBk 7k S IBl? k 7£ p

2.5.3 e
( ) YByp = YBe — ﬁglv

where ¢, denotes the reduced cost (cf. (2.1.27)) and g, denotes the £th row of the inverse
B~!; the other components of the dual solution remain the same.

4.) The increase in the value of the dual objective function is:

C

(254) AV == —d—p:l?Bg.

L

Remark 2.5.1.:

To perform the largest step toward the optimum we proceed similarly as mentioned in Re-
marks 2.1.1 and 2.1.2. The expression (2.5.4) is used in Section 3 in the description of Step
3 of the Algorithm to determine the “optimal” pair of the leaving and entering vectors:
compare (2.5.4) with the second line in (3.5) and (3.9).
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3. An Algorithm

First we introduce the following notations:
IB = {1, .. ,n}\IB
jB = {k € lp | rpr < 0}
and forge @, 0 <5, <k, :
Q(l) = {(Q7jq) | )‘qjq < 0}
Q® = {(g,4q + 1) | Agj11 < 0}
P! {pel
{

p€lp |ty —Typdy <0}

P® .= {p e I | Typd, —t, < 0}
5'31) ={i € S| Tpu; >0}
5(52) ={i € S| Tpu; < 0}.
Here d, = B™* tap , and u; is the ¢th column of B~!. The subscripts of the nonbasic
Sp

columns of the matrix (1.5) are:

Ip , {(0:5) |7 # Jodat 1, 0 € Q}, {(4,5) |7 #5i s i € S}

In the Algorithm we distinguish three cases: the leaving vector has the subscript
case (a): (q.) € QU
case (b): (q,5,+1) € Q¥
case (c): k € I5.
(a) we introduce the notations:

In case (a

ma(q) = min{mi (). ma(g). ma(g). ma(q)} . where

. _ “Caiq+2
m(q) = 24ig+2 ~Zaig+1
¢
ms(q) := min ——>——
(3 1) pePél)tqp - qup
ms(g) :== min - Ciji =1 }
ieSfll),jDO (Ziji - Ziji—l)Tuni

my4(q) := min { Cigit1 } :
iest? i<k (Zijiar — 2i5) TyBug

Moreover, we denote by a(q) that element of the set of nonbasic subscripts for which

a(q) = argmin{mi(q), ma2(q), ms(q),ma(q)}, ie.,

(Q7jq + 2) if ma(Q) = ml(Q)

(3'2) a( ) _ {p | pc Pq(l)} ) if ma(Q) = mz((l)
! {(iji—1) |1 € SO}, if ma(q) = ms(q)

{(i, i+ 1) | i € S}, if ma(q) = ma(q)
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(a(q) gives the subscript of the entering vector which is determined according to the DM).

In case (b) we define:

mp(q) = min{ms(q), me(q), m(q), ms(q)}
m5(q) = _Equ—l/(ijq - quq_l)
mG(Q) = mig){_ép/(tqp - Tqup)}
(3.3) pePy ~
mz(q) = . oin >O{Ciji—1/[(ziji — ziji-1) ToBui] }
ms(q) == min  {—Cyjir1/[(2ij41 — i) Typui] } -

iestM, ji<k;

Moreover, we denote by 3(q) that element of the set of nonbasic subscripts for which

Blq) = argmin{ms(q), me(g),m7(q), ms(q)} , i,

(.7, — 1), if  my(q) = ms(q)

(3.4) 8(q) {p|pe PP}, if  mp(q) = me(q)
V=) -1 i€8®)  if mp(q) = malg)

{igi+1) | ieSMY if mplg) = ms(q)

(B(q) gives the subscript of the entering vector which is determined according to the DM).

Finally, in case (c) we define:

me(k) = min{mog(q), m10(q), m11(g)}
k):= _min {6/ dpr}

p€lp , dp <0

(
3.5 . _
(3:5) mao(k) = o min {@-1/[(zig; — zij-1 Jual}
mu(k) = jg}cl'fb(k)>o{—5iji+1/[(Zij,»+1 — Zij; win] }-

Here gy, dpr, uir, denote the kth components of the corresponding vectors.

Now, we denote by y(k) that element of the set of nonbasic subscripts for which

v(k) = arg min{mg(q), m10(q), mu(q)}, ie.,

(3.6) {plpels, du <0}, it me(k) = mo(k)
: y(k)={ {(G5i—1)] i€S, up <0}, if me(k)=mo(k)

(7(k) gives the subscript of the entering vector which is determined according to the DM).

The considerations of the previous section suggest the following

Algorithm IDTM.:
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Step 1. Determine an initial dual feasible basis By and the corresponding basic solution:
carry out the algorithm described in Section 1.

Step 2. Test for primal feasibility:
Ifxp >0,X5 >0, 541 >0,¢=1,...,r, then STOP. Otherwise, go to Step 3.

Step 3. Simultaneous selection of the leaving and entering vectors:

3.1. For all {¢|qg € Q,q € QMY compute
(3.7) Ma = max{(TypzB — Zgj,+1)ma(q)},

where ma(q) is computed according to (3.1).

3.2. For all {¢|lqg € Q,q € Q®} compute
(3.8) My = max{(zy, — Typz)mn(q)},

where mp(q) is computed according to (3.3).
3.3. For all {k|k € Iz} compute

(3.9) Me = max{—zpi me(k)},

where me(k) is computed according to (3.5).

3.4. Compute
M = max{M,, My, M.}

3.5. Finally, select the leaving and the entering vectors as described below.

3.5.(a) If M is equal to My and the minimum in (3.1) is attained at g, then the pair of
leaving and entering vectors which produces the largest step toward the optimal value
is either given by the vectors of —zg;,, —za(q), or by the vector of —z,;, and the column
from the Oth block with the subscript a(q); a(q) is determined in (3.2). The new basic
solution 1s defined

—if ma(q) = m1(q) : as described in the Summary of Case (iii);
—if ma(q) = ma(q) : as described in the Summary of Case (i);
—if ma(q) = ms(q) or m(,)(q) = ma(q) : as described in the Summary of Case (ii).

3.5.(b) If M is equal to My, and the minimum in (3.2) is attained at g, then the pair of
leaving and entering vectors which produces the largest step towards the optimal value
is given by the vectors of —zg;, 11, —2g(y), or by the vector of —z,; 11, and the column
from the Oth block with subscript £(q); B(¢) is determined in (3.4). The new basic

solution 1s defined

—if mp(q) = ms(q) : as described in the Summary of Case (iii);

—if mp(q) = me(q) : as described in the Summary of Case(i);

—if mp(q) = mz(q) or mp(q) = ms(q) : as described in the Summary of Case (ii).
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3.5.(c) If M is equal to M, and the minimum in (3.3) is attained at &, then the pair of
leaving and entering vectors which produces the largest step toward the optimal value
is given either by the columns of a; and a, ) from the Oth block, or by the column of
ay from the Oth block and the column of —z,;) out of the last r blocks; the subscript
v(k) is given in (3.6). The new basic solution is defined

—if me(k) = mo(k) : as described in the Summary of Case (v);
—if me(k) = mao(q) or m.(k) =mq1(q) : as described in the Summary of Case (iv).

Go to Step 2.

4. Implementation

The implementation of IDTM is based on C.I.Fabian’s general purpose optimization routine
library called LINX. It is a tool for interactive solution of linear programming problems.
Interactivity here means that this routine collection supports the solution of a series of
LP problems, where problems can be generated successively using the experience from the
solutions of the former ones.

LINX was written in C, so it is portable: it can be compiled without modification under
MS-DOS, 0S/2, and different UNIX operating systems, including ULTRIX for DEC and
SOLARIS for SUN workstations. LINX consists of an LP solver “engine” and a memory
handling “hull”. The solver is an implementation of the two-phase revised simplex method
with the product form of the inverse. Both the primal and the dual methods are implemented.
The data can be scaled before optimization to decrease differences between magnitudes. Tol-
erances for comparing floating-point numbers are used adaptively, following the suggestions

of Maros (see [5]).

Unstable transformations are avoided. Small pivots are rejected even at the price of creating
small new infeasibilities. This pivot-selection rule is due to Harris (see [1]). Multiple pricing is
used, so candidate vectors can also be rejected at little cost. Precision is checked from time to
time. If round-off errors exceed a certain limit (or if the array describing the transformations
performed that far is too long), then a reinversion process is started. It is a stabilized version
of Hellerman and Rarick’s Preassigned Pivot Procedure (see [2]). The original method is
unstable. The version used here proved effective over 4 years of experience.

The speed of computation was the next objective after reliability. A CRASH procedure is
available to break initial degeneracy and speed up optimization. A practical implementation
of the steepest-edge method can also be used optionally. Special sort and search methods
accelerate vector and pivot selection. The memory handling hull ensures that computations
of former problems are available when required. If a problem is derived from a former one

by



RRR 25-95 PAGE 29

— addition or deletion of variables

— addition or deletion of constraints

— modification of the rim’ (the right-hand-side, the objective function, or the lower-upper

bounds of the variables),

then not only a starting solution is available for the new problem, but the connected basis-
inverse as well. Similar ideas can be found in Zoutendijk [10]. Basis-inverses are stored in
a wrap-around buffer, the size of which depends on the size of all available memory. If we
have more memory, we can remember more basis-inverses, and the solution of the problem
sequence will be faster. The buffer is also a stack (LIFO structure). This strategy supports
the solution of a tree-structured problem set. In the simplest case, the inverses in the stack
are connected to problems each of which i1s derived from the one preceding it. LINX was
built into several optimization packages, and solved real-life problems with up to 9 000
contstraints.

The above routine collection could easily be extended to implement IDTM. In IDTM, we
solve two connected problems: (1.9) and the main problem (1.4). The memory handling
part helps in moving from one problem to the other. We had to modify the subroutine that
inverts the basis, and carries out FTRAN and BTRAN: it is made capable to handle the
varying size working basis throughout the procedure. Pricing is also modified, because in
Step 3 of the DTM or IDTM we only have to price one or two vectors from each of the blocks
1,...,r. This is because a dual feasible basis may only contain at least one but at most two
consecutive vectors from each of those blocks.

There are two input files and two output files, for the deterministic (A, b, ¢) and the stochastic
(T, z, corresponding probabilities and penalties) data. They are assembled in such a way
that sensitivity analysis can easily be done. The code is currently tested and reports about
the performance of the IDTM will soon be available.

5. Conclusions and Future Directions

In this paper we have presented an Improved Dual Type Method (IDTM) for a linearly
constrained optimization problem with a separable objective function, where the terms are
continuous, convex and piecewise linear functions.

We began with a short description of the Dual Type Method (developed by A. Prékopa
(1990)) and then improved on it in different ways. In Section 2 we gave the transformation
formulas for updating the data (in each special case of the column exchange in the block-
structured dual feasible basis). The updating formulas are summarized at the end of each
case. Then, the results are used in Section 3 to create an efficient solution procedure. The
implementations issues are presented in Section 4.

Problems of further interest include: 1.) how to select the initial consecutive pairs in the last
7 blocks in order to reduce the number of the required dual steps in the solving algorithm;
2.) how to apply the improved DTM to multistage stochastic programming problems.
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