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ON STOCHASTIC INTEGER PROGRAMMING UNDER
PROBABILISTIC CONSTRAINTS

Darinka Dentcheva Andras Prékopa Andrzej Ruszczynski

Abstract. We consider stochastic programming problems with probabilistic con-
straints involving integer-valued random variables. The concept of p-efficient points
of a probability distribution is used to derive various equivalent problem formula-
tions. Next we modify the concept of r-concave discrete probability distributions
and analyse its relevance for problems under consideration. These notions are used
to derive new lower and upper bounds for the optimal value of probabilistically con-
strained stochastic programming problems with integer random variables. We also
show how limited information about the distribution can be used to construct such
bounds.
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1 Introduction

Probabilistic constraints remain one of main challenges of modern stochastic programming.
Their motivation is clear: if in the linear program

T

min ¢z
subject to Tz > ¢,
Azx > b,
x>0,

the vector ¢ is random, we require that Tz > ¢ shall hold at least with some prescribed
probability p € (0,1), rather than for all possible realizations of the right hand side. This
leads to the following problem formulation:

T

min ¢z
subject to P(Tax > &) > p, (1)
Azx > b,
x>0,

where the symbol IP denotes probability.

Programming under probabilistic constraints was initiated by Charnes, Cooper and
Symonds in [4]. They formulated probabilistic constraints individually for each stochas-
tic constraint. Joint probabilistic constraints for independent random variables were used
first by Miller and Wagner in [9]. The general case was introduced and first studied by the
second author of the present paper in [13, 16].

Much is known about problem (1) in the case where ¢ has a continuous probability dis-
tribution (see [20] and the references therein). However, only a few papers handle the case
of a discrete distribution. In [18] a dual type algorithm for solving problem (1) has been
proposed. Bounds for the optimal value of this problem, based on disjunctive program-
ming, were analyzed in [26]. The case when the matrix 7' is random, while ¢ is not, has
been considered in [29]. Recently, in [22], a cutting plane method for solving (1) has been
presented.

Even though the literature for handling probabilistic constraints with discrete random
variables is scarce, the number of potential applications is large. Singh at al.in [27] consider a
microelectronic wafer design problem that arises in semiconductor manufacturing. The prob-
lem was to maximize the probability rather than to optimize an objective function subject to
a probabilistic constraint, but other formulations are possible as well. Another application
area are communication and transportation network capacity expansion problems, where
arc and node capacities are restricted to be integers [12, 21]. Bond portfolio problems with
random integer-valued liabilities can be formalized as (1) see [5]. Many production planning
problems involving random indivisible demands fit to our general setting as well.

Although we concentrate on integer random variables, all our results easily extend to
other discrete distributions with non-uniform grids, under the condition that a uniform
lower bound on the distance of grid points can be found.
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To fix some notation we assume that in the problems above A is an m x n matrix, T is
an s X n matrix; ¢,z € IR", b € IR™ and ¢ is a random vector with values in IR*. We use Z
and Z, to denote the set of integers and nonnegative integers, respectively. The inequality
‘>’ for vectors is always understood coordinate-wise.

2 p-Efficient Points
Let us define the sets:

D={ecR": Az >b, x>0} 2)
and

Z,={ye R : P({ <y)=p} (3)

Clearly, problem (1) can be compactly rewritten as

min
subject to Tz € Z,, (4)
x € D.

While the set D 1s a convex polyhedron, the structure of Z, needs to be analysed in more
detail.

Let F' denote the probability distribution function of ¢, and F; be the marginal probability
distribution function of the ¢th component ¢;. By assumption, the set Z of all possible values
of the random vector ¢ is included in Z°.

We shall use the concept of p-efficient points, introduced in [18].

Definition 2.1 Let p € [0,1]. A point v € IR® is called a p-efficient point of the probability
distribution function F, if F(v) > p and there is no y < v, y # v such that F(y) > p.

Obviously, for a scalar random variable ¢ and for every p € (0,1) there is exactly one
p-efficient point: the smallest v such that F(v) > p. This leads to the following observation.

Remark 2.2 Let p € (0,1) and let l; be the p-efficient point of &, ¢ =1,...,s. Then every
v € IR* such that F(v) > p must satisfy the inequality v > 1= (Iy,... ,1,).

Proof. For a p-efficient point v we have
p < F(v) = P{¢ <v} < P{& < v} = Fi(uw),

and, by the definition of I;, we must have v; > [;. 0O

Since rounding down to the nearest integer does not change the value of the distribution
function, p-efficient points of an integer random vector must be integer. We can thus the
following interesting fact (noticed earlier in [28] for non-negative integer random variables).
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Theorem 2.3 For each p € (0,1) the set of p-efficient points of an integer random variable
s nonempty and finite.

Proof. We shall at first show that p-efficient points exist. Since p < 1, there must exist y
such that F'(y) > p. By Remark 2.2, all v such that F'(v) > p must satisfy v > [. Therefore,
if y 1s not p-efficient, one of finitely many integer points v such that | < v < y must be

p-efficient.
We shall now prove the finiteteness of the set of p-efficient points. Suppose that there
exisits an infinite sequence of different p-efficient points v/, 7 = 1,2,... . Since they are

integer, and the first coordinate v] is bounded below by [;, with no loss of generality we
may select a subsequence which is non-decreasing in the first coordinate. By a similar
token, we can select further subsequences which are non-decreasing in the first & coordinates
(k = 1,...,8). Since the dimension s is finite, we obtain a subsequence of different p-
efficient points which is non-decreasing in all coordinates. This contradicts the definition of
a p-efficient point. a

Let p € (0,1) and let v?, j € J, be all p-efficient points of (. By Theorem 2.3, J is a
finite index set. Let us define the cones
K;=v+R,, jelJ.

Remark 2.4 Z, = J,.; K;.

Proof. If y € Z, then either y is p-efficient or there exists an integer v <y, v #y, v € Z,.
By Remark 2.2, one must have | < v. Since there are only finitely many integer points
[ <v <y one of them, v;, must be p-efficient, and so y € Kj. a

Thus, we obtain (for 0 < p < 1) the following disjunctive formulation of (4):

min
subject to Tx € UjeJ K;, (5)
x € D.

Its main advantage is an insight into the nature of the non-convexity of the feasible set. In
particular, we can formulate the following necessary and sufficient condition for the existence
of an optimal solution of (5).

Assumption 2.5 The set A := {(u,w) € RT** | ATw+ TTu < ¢} is nonempty.

Theorem 2.6 Assume that the feasible set of (5) is nonempty. Then (5) has an optimal
solution iof and only if Assumption 2.5 holds.

Proof. If (5) has an optimal solution, then for some j € J the linear program

min ¢«
subject to Tz > v7,
A>b (6)
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has an optimal solution. By duality in linear programming, its dual

max (vj)Tu + bTw
subject to T7u + ATw < ¢, (7)
u,w > 0,

has an optimal solution and the optimal values of both programs are equal. Thus, Assump-
tion 2.5 must hold. On the other hand, if Assumption 2.5 is satisfied, all dual programs (7)
for j € J have nonempty feasible sets, so the objective values of all primal problems (6)
are bounded from below. Since one of them has a nonempty feasible set by assumption, an
optimal solution must exist. a

3 r-Concave Discrete Distribution Functions

Since the set Z, need not be convex, it is essential to analyse its properties and to find
equivalent formulations with more convenient structures. To this end we shall recall and
adapt the notion of r-concavity of a distribution function. It uses the generalized mean

function m, : IRy x IRy x [0,1] — IR defined as follows:

a’bt—* ifr =0,
max{a, b} if r = oo,
me(a,b,\) = min{a, b} if r = —o0, (8)
0 if r € (—00,0),ab =0,

(Aa” + (1 — )\)b’“)l/’“ otherwise.

Definition 3.1 A distribution function F : IR" — [0,1] is called r-concave, where v €
[—O0,00], Zf

F(Az + (1= Ay) = m,(F(z). F(y), A)
for all z,y € IR® and all X € [0,1],

If r = —00 we call F' quasi-concave, for r = 0 1t is known as log-concave, and for r = 1
the function F' is concave in the usual sense.

Another general concept of r-concavity can be introduced for measures, by considering
probabilities of Minkowski sums of sets. In this paper, however, we shall only consider
r-concave disribution functions.

The concept of a log-concave probabiltiy measure (the case r = 0) was intruduced and
studied in [14, 15]. The notion of r-concavity and corresponding results were given in [2, 3].
For detailed description and proofs, see [20].

By monotonicity, r-concavity of a distribution function is equivalent to the inequality

F(z) =2 m,(F(z), F(y),A)
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for all z > Az + (1 — A)y.

Clearly, distribution functions of integer random variables are not continuous, and cannot
be r-concave in the sense of the above definition. Therefore, we relax Definition 3.1 in the
following way.

Definition 3.2 A distribution function F is called r-concave on the set A with r € [—o0, 00,

of
F(2) > m(P(2), Fly), )
forall z,z,y € A and X € [0,1] such that z > Az + (1 — N)y.

The concept of r-concavity on a set can be used to find an equivalent representation of
the set Z, given by (3).

Theorem 3.3 Let Z be the set of all values of an integer random vector €. If the distribution

function F' of € is r-concave on Z + 7 for some v € [—o0,00], then for every p € (0,1) one
has

Zy={yeR :y>22> Ao/, ) A=142>0z2€Z,
jeJ jeJ
where v7, j € J, are the p-efficient points of F.
Proof. By the monotonicity of F' we have F(y) > F(z) if y > z. It is, therefore, sufficient
to show that IP(¢ < z) > pfor all z € Z* such that z > ZjeJ Mol with A >0, 3. A =1.
We consider four cases with respect to r.

jeJ
Case 1: 7 = oco. It follows from the definition of r-concavity that F(z) > max{F(v’),j €
J:A #£0} >p.

Case 2: 7 = —oo. Since F(v?) > p for each index j € J such that A\; # 0, the assertion
follows as in Case 1.

Case 3: r = 0. By the definition of r-concavity,
F(a) 2 [IIF@) =[]0 = »
JjeJ jeJ
Case 4: r € (—00,0). By the definition of r-concavity,
[F(2)]" <Y NP <Y Ny =7
JjeJ jeJ
Since 7 < 0, we obtain F(z) > p.
Case 5: r € (0,00). By the definition of r-concavity,

[F()]" = Y NFE@) =Y Aph ="

JjeJ JjeJ
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a

Under the conditions of Theorem 3.3, problem (5) can be formulated in the following
equivalent way:

min Tz (9)
subject to x €D (10)
Tz > z, (11)
ze’, (12)
z > Z Ao (13)
jeJ

doa=1 (14)

jeJ
Aj>0,7€ (15)

So, the probabilistic constraint has been replaced by linear equations and inequalites, to-
gether with the integrality requirement (12). This condition cannot be dropped, in general.
However, if other conditions of the problem imply that Tz is integer (for example, we have
an additional constraint in the definition of D that @ € Z", and T has integer entries), we
may dispose of z totally, and replace constraints (11)—(13) with

Te > Z )\jvj.

jeJ

The difficulty comes from the implicitly given p-efficient points v;,5 € J. Our objective
will be to avoid their enumeration and to develop an approach that generates them only
when needed.

We end this section with sufficient conditions for the r-concavity of the joint distribution
function in the case of integer-valued independent components. Our assertion, presented in
the next proposition is the discrete version of an observation from [11].

Proposition 3.4 Assume that the components & of £, 1 = 1,... .8, are independent, and
that the marginal distribution functions F; are r;-concave on sets A; C Z.

(i) Ifr; >0,i=1,... s, then F isr-concave on A = Ay x --+ x A, withr = [Y.;_ r;7!]7L

i=1"1
(it) Ifr; =0,i=1,... s, then F is log-concave on A = Ay X -+- x A,.

Proof. Assertion (i) is a simple consequence of Hélder’s inequality. Assertion (ii) is obvious.
O
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4 Lagrangian Relaxation

Let us split variables in problem (4):

min ¢’z

Te = z, (16)
x €D,
z € Z,.

Associating Lagrange multipliers v € IR’ with constraints (16) we obtain the Lagrangian
function:

L(z,z,u) = Tx + uf (2 — Tz).

Owing to the structure of Z, (Remark 2.2), we could have replaced equality Tz = z in (16)
by an inequality Tz > z, and use v > 0 in the Lagrangian. However, formal splitting (16)
leads to the same conclusion. The dual functional has the form

U(w)= inf L(z,z,u)=h(u)+d(u),

(z,2)EDxZ,
where
h(v) = inf{(c—TTu)Tz |z c D}, (17)
du) = inf{u’z|zc Z,}. (18)

Lemma 4.1 dom¥ = {u € R}, : there ezists w € IR such that ATw + TTu < c}.
Proof. Clearly, dom¥ = domh N domd. Let us calculate dom h. The recession cone of D,
C={ycR": Ay >0, y > 0},
has the dual cone
C*={veR":vTy>0forally € C} ={v € R™: v > ATw, w >0},
as follows from Farkas lemma. Thus
domh={ucR :c—TTuc C}={uc R : TTu+ ATw < ¢, w > 0}.
On the other hand, by Lemma 3, dom d = IRY , and the result follows. a
It follows that Assumption 2.5, which is necessary and sufficient for the existence of solutions,
is also necessary and sufficient for the nonemptiness of the domain of the dual functional.

For any u € IR, the value of ¥(u) is a lower bound on the optimal value F* of the original
problem. Consequently, the best lower bound will be given by

D™ = sup ¥(u). (19)
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If an optimal solution of (4) exists, then Assumption 2.5 holds, so, by Lemma 4.1,
—oo < DY < F*.

We shall show that the supremum D* is attained. Indeed, h(u) = —85(—c + T7u), where
65(+) is the support function of D. Thus h(-) is concave and polyhedral (see [23], Corollary
19.2.1). By Remark 2.4, for v > 0 the minimization in (18) may be restricted to finitely
many p-efficient points v/, j € J. For u # 0 one has d(u) = —oo. Therefore, d(-) is concave
and polyhedral as well. Consequently, ¥(-) is concave and polyhedral. Since it is bounded
from above by F™, it must attain its maximum.

Another lower bound may be obtained from the continuous relaxation of problem (4)

Fr =min{cTz | Tz =2, 2 €D, 2z € coZ}. (20)
It is known (see [10]) that
F. =D <F~
We now analyse in more detail the structure of the dual functional ¥. Let us start from
Fact 4.2 Let Condition 2.5 be fulfilled. Then for each u € IR?
h(u) = sup{bTw | TTu + ATw < ¢, w > 0}.
Proof. The result follows form the duality theory in linear programming. a

This allows us to reformulate the dual problem (19) in a more explicit way:

max  d(u) + bl w (21)
TTu 4+ ATw < c, (22)
u>0, w>0. (23)

Let us observe that we may write ‘max’ instead of ‘sup’ because we already know that the
supremum is attained. We may also add the constraint ‘w > 0’ explicitly, since it defines the
domain of d.

Properties of d(-) can also be analysed in a more explicit way.

Lemma 4.3 For every uw > 0 the solution set of the subproblem

min 1’ z (24)
2EZ,

1s nonempty and has the following form:
Z(u) = | {v'} +Clw),
jeJ(u)
where j(u) is the set of p-efficient solutions of (24), and
Cluy={deR] :d; =0 ifu; >0, i =1,...,s}. (25)
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Proof. The result follows from Remark 2.4. Let us at first consider the case u > 0. Suppose
that a solution z to (24) is not a p-efficient point. Then there is a p-efficient v € Z, such that

Ty < uTz, a contradiction. Thus, for all w > 0 all solutions to (24) are p-efficient.
T

v < 2,80 U

In the general case v > 0, if a solution z is not p-efficient, we must have uTv = uTz for all

p-efficient v < z. This is equivalent to z € {v} + C(u), as required. O

The last result allows us to calculate the subdifferential of d in a closed form.

Lemma 4.4 For every u > 0 one has dd(u) = co{v?, j € J(u)} + C(u).
Proof. From (18) it follows that

d(u) = —b3,(—u),

where 5§P(-) is the support function of Z,, and, thus, of co Z,. This fact follows from the
structure of Z, (Remark 2.4) by virtue of Corolarry 16.5.1 in [23]. By [23, Thm 23.5],

g € 65§P(—u) if and only if 5§P(—u) + bcoz,(9) = —gTu, where bco2,(+) 1s the indicator
function of co Z,. It follows that ¢ € coZ, and 5§P(—u) = —gTu. Thus, g is a convex
combination of solutions to (24) and the result follows from Lemma 4.3. O

Therefore the following necessary and sufficient optimality conditions for problem (21)-
(23) can be formulated.

Theorem 4.5 A pair (u,w) € A is an optimal solution of (21)—(23) if and only if there
exists a point x € IR such that:

Az > b, w'(Az —b) =0, (26)
and
Te € cofv’ - j € J(u)} + C(u), (27)

where j(u) is the set of p-efficient solutions of (24), and C(u) is given by (25).
Proof. The vector z plays the role of the Lagrange multiplier associated with the constraint
(22). Let us decipher the relation

6<bTw +d(u) 4+ 27 (c — T u — ATw)> N K(u,w) # 0,

where K (u,w) is the normal cone to IRT'** at (u,w). Using the closed-form expression for
the subdifferential of d from Lemma 4.4, we obtain:

co{v’:j e J(u)} + C(u) — T )

6<bTw + d(u) + :BT(C —TTy — ATw)> = ( b Ax

On the other hand:

K(uvw) = {(u*vw*) rut < 07“’* <0, <U*7u> =0, <’w*,’w> = 0} - ( _C(U) ) :
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Consequently, the condition co {v? : j € j(u)}—l—C(u) —TazN—C(u) # 0 implies the existence
of elements v € co{v? : j € j(u)} and ¢1, ¢y € C(u) such that: v + ¢; — T = —¢,, which
is equivalent to the condition (27). Furthermore, we obtain that b — Az N —C(w) # 0. The
definition of C'(w) implies condition (26). O

It follows that the optimal Lagrangian bound is associated with a certain primal solution
z which is feasible with respect to the deterministic constraints and such that T'z € co Z,,.
Moreover, since (u,w) € A, the point « is optimal for the convex hull problem:

min ¢l (28)
Az > b, (29)
Te > Aol (30)
JjeJ
doN=1, (31)
JjeJ
x>0, A>0. (32)

Indeed, associating with (29) multipliers w, with (30) multipliers «, and with (31) a
multiplier p = d(u), we can show that (z,)) is optimal for (28)-(32) provided that ); are
the coefficients at v’ in the convex combination in (27).

Since the set of p-efficient points is not known, we need a numerical method for solving

(21)—(23) or its dual (28)—(32).

5 Cone generation methods

The idea of a numerical method for calculating Lagrangian bounds is embedded in the convex
hull formulation (28)—(32). We can easily adapt to it the classical column generation scheme
known from large scale linear and integer programming [6, 1].

Cone Generation Method
Step 0: Select a p-efficient point v°. Set Jo = {0}, k = 0.

Step 1: Solve the master problem

min ¢l (33)
Az > b, (34)
Te> Y Aol (35)

JEJg
doa=1, (36)
JEJg
x>0, A>0. (37)

Let u* be the vector of simplex multipliers associated with the constraint (35).
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Step 2: Calculate an upper bound for the dual functional:

d(u*) = mi KT i
(u”) = min(u®)

Step 3: Find a p-efficient solution v**! of the subproblem:

: ENT
min(u?)"2

and calculate

Step 4: If d(u*) = d(u*) then stop; otherwise set Jyyq = Ji, U {k + 1}, increase k by one
and go to Step 1.

Few comments are in order. The first p-efficient point v° can be found by solving (24)
for an arbitrary w > 0. All master problems will be solvable, if the first one is solvable, i.e.,
if the set {z € IR} : Az > b, Tz > v"} is nonempty. If not, adding a penalty term M1%¢ to
the objective, and replacing (35) by

T4t > Z)\jvj,

JEJIL

with ¢+ > 0 and a very large M, is the usual remedy (17 = [1 1 ... 1]). The calculation of
the upper bound at Step 2 is easy, because one can simply select 75, € Ji, with A;, > 0 and
set d(u®) = (u*)Tv?*. At Step 3 one may search for p-efficient solutions only, due to Lemma
4.3.

Convergence of the algorithm follows from a standard argument. The set Ji cannot
grow indefinitely, because there are finitely many p-efficient points (Theorem 2.3). If the
stopping test of Step 4 is satisfied, optimality conditions for (28)-(32) are satisfied. Moreover
Jo =15 € Jp: (v/,u") = d(u*)} C J(u).

Our cone generation method shares its drawbacks with other column generation schemes.
Initial iterations are inefficient. The number of p-efficient points grows and there is no reliable
way for deleting them. For these reasons, especially when the dimension of « is large and the
number of rows of T small, an attractive alternative is provided by bundle methods applied
directly to the dual problem

h(u) + d(u)]
max [ (u) +d(u) |,
because at any w > 0 subgradients of h and d are readily available. For a comprehensive
description of bundle methods the reader is refereed to [7, 8]. It may be interesting to note
that in our case they correspond to a version of the augmented Lagrangian method (see
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24, 25]).

Let us now focus our attention on solving the auxiliary problem (24), which is explicitly
written as:

min{u”z | F(z) = p}, (38)
where F'(-) denotes the distribution function of .
Assume that the components ¢, ¢ = 1,... ,s, are independent. Then we can write the

probability constraint in the following form:
In(F(2)) =Y In(Fi(z)) > Inp.
i=1

Since we know that one of the solutions is a p-efficient point, with no loss of generality we
may restrict the search to integer vectors z. Furthermore, by Remark 2.2, we have z; > [;,
where [; are p-efficient points of ¢;. We obtain the problem:

E
min E Wi 2%
7=1

Zln(Fi(Zi)) > Inp,

ZiZlia ZiEZ, ’I::l,...,s.

This is a knapsack problem that can be solved by efficient methods, like dynamic program-
ming (for an appropriately discretized approximation) or branch-and-bound schemes [10].

For log-concave marginals, a 0-1 formulation may be convenient. Let I; + b; be an upper
bound on z;. Setting

b
Z; = lz + g 23,
Jj=1

where z;; € {0,1} we can reformulate the problem as follows:

8 b;
ming E Ui %

=1 j=1

8 b;
Z Z WijZij 2 T,
=1 j=1
where a;; = W(Fi(l; + 7)) — Wn(F(l; + 5 — 1)), and » = Inp — In F(I). Indeed, by the
log-concavity, we have a; ;41 < a;;, so there is always a solution with nonincreasing z;;,
j=1,....b;.
Clearly, these simplifications are due to the independence of the components of ¢. If they
are dependent, bounding techniques from the next section may be employed.
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6 Bounds via binomial moments

If the components of ¢ are dependent, subproblem (18) may be difficult to solve exactly.
Still, some bounds on its optimal solution may prove useful. We shall develop a number of
bounds using only partial information on the distribution function of ¢ in the form of the
marginal distributions:

Fil...ik(zilv' .. ,Zik) = ]P{le < Ziyy e élk < Zik}7 1< 7:1 < ... << ’I,k < s.

Since for each marginal distribution one has Fj, ; (zi,,...,2,) > F(z) the following relax-

ation of Z, (defined by (3)) can be obtained.

Fact 6.1 For each z € Z, and for every 1 <1y < ... <1 < s the following inequality must
hold:

Fil...ik(’zi17 A 7zik) Z p
We shall base further developments on the following result of [17].

Theorem 6.2 For any distributon function F : IR® — [0,1] and any 1 < k < s, at every
z € IR? the optimal value of the following linear programmaing problem

max v,
vo + v1 + v2 + V3 + o4+ v, =1
vy + 203 +  Jvs + -+ TV, = Z Fi(z)
1<i<s
v2 + (3)’03 + ot (;)’l)s = Z Fi1i2(zilvzi2) (39)
1Si1<i2§8
v + (k;:l)vk-l—l + -+ (Z)vs = Z Fy i (zis oo s 2i)
1§1,1<<1,k§8
vo=>0, v1 20, ..., v,20
provides an upper bound for F(zi,...  zs)

We can use this result to bound our auxiliary problem (18).

Proposition 6.3 Let { = (&1,...,&) be an integer random vector and let Fy, . ;. denote
its marginal distribution functions. Then for every p € (0,1) and for every 1 < k < s the
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optimal value of the problem

min u'z
vo + v1 + v2 + Vg + -0+ v, =1
v+ 20+ 3vs A+ ot oo, = ) Fi(z)
1<i<s
vy + (3)’03 + ot (;)’l)s = Z Fi1i2(zilvzi2)
1<41 <2< (40)
v+ (k;lc_l)vk"'l + o F (lj)vs = Z Fi1~~~ik(zi17"- 7zik)
1§1,1<<1,k§8
vo >0, v120,, ..., 0,120, v,2>p, 21>l 29215, ..., 2z, >,
ze X’

provides a lower bound on the optimal value d(u) given by (18).

Proof. If z € Z,, that is, F(z) > p, then the optimal value of (39) satisfies v, > p. Thus
z and the solution v of (39) are feasible for (40). Since the objective functions of (18) and
(40) are the same, the result follows. O

Problem (40) is a nonlinear mixed-integer problem. Its advantage over the original formu-
lation is that it uses marginal functions in an explicit way which allows for the development
of specialized solution methods.

7 Primal feasible solution and upper bounds

Let us consider the optimal solution z'°% of the convex hull problem (28)-(32) and the
corresponding multipliers ;. Define J°¥ = {j € J: \; > 0}.

If J*" contains only one element the point z!°"

is feasible, and therefore optimal, for the
disjunctive formulation (5). If, however, there are more positive A’s, we need to generate a

feasible point. A natural possibility is to consider the restricted disjunctive formulation:

T

min c =z
SubjeCt tO T:B E U]EJIOW K] (41)
x eD.

It can be solved by simple enumeration of all cases for j € J°":

min ¢’z
subject to Tz > v, (42)
z € D.

In general, it is not guaranteed that any of these problems has a nonempty feasible set, as the
following example shows. Let n = 3, T' = I, and let there will be only three p-efficient points:
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o' = (1,0,0), v* = (0,1,0), v®* = (0,0,1), and two additional deterministic constraints:
1 <1/2, 25 <1/2, and ¢ = (0,0,1). The convex hull problem has Ay = Ay = 1/2, A3 =0,
but both problems (42) for j = 1,2 have empty feasible sets.

To ensure that problem (41) has a solution it is sufficient that the following stronger
version of Assumption 2.5 holds.

Assumption 7.1 The set A := {(uv,w) € R} | ATw + TTu < ¢} is nonempty and
bounded.

Indeed, each od the dual problems (7) has an optimal solution, so by duality in linear
programming each of the subproblems (42) has an optimal solution. We can, therefore, solve
all of them and choose the best solution. An alternative strategy would be to solve the
corresponding upper bounding problem (42) every time a new p-eflicient point is generated.
This may be computationally efficient, especially if we solve the dual problem (7), in which
only the objective function changes from iteration to iteration.

If the distribution function of ¢ is r-concave on the set of possible values of ¢, Theorem
3.3 provides an alternative formulation of the upper bound problem (41):

min T

subject to x €D

Tx > z,

z € X’

z > Z )\jvj,
jeJlow

2 N=1

jeJlow

A >0, 5 €T

It may be easier to deal with if the number of p-efficient points in LV is large.
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