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A CrLASS OF MULTIATTRIBUTE UTILITY
FuNCTIONS

Andras Prékopa Gergely Madi-Nagy

Abstract. A function u(z) is a utility function if w'(z) > 0. It is called risk averse
if we also have u”(z) < 0. Some authors, however, require that u()(z) > 0 if i is
odd and u()(z) < 0 if 7 is even. The notion of a multiattribute utility function
can be defined by requiring that it is increasing in each variable and concave as an
s-variate function. A stronger condition, similar to the one in case of a univariate
utility function, requires that, in addition, all partial derivatives of total order m
should be nonnegative if m is odd and nonpositive if m is even. In this paper
we present a class of functions in analytic form such that each of them satisfies this
stronger condition. We also give sharp lower and upper bounds for Flu(Xy,..., Xs)]
under moment information with respect to the joint probability distribution of the
random variables Xi,..., X assumed to be discrete and representing wealths.
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1 Introduction

The most general definition of a utility function u(z), z > 0 only requires that it should be
an increasing function, i.e., u'(z) > 0. It is called risk averse, if we also have u”(z) < 0 which
means that the function is also concave.
Pratt (1964) and Arrow (1970) stress the importance of utility functions with decreasing
risk aversion. If we take the Arrow-Pratt measure of absolute risk aversion:
ull(z)

—W, (1.1)

then the above requirement implies that v"(z) > 0. More generally, we may require:

u™ V(%) does not change sign (1.2)

or
()" '™ (2) >0, n=1,...,m+1 (1.3)

or
(- tu™(z) >0, n=1,2,.... (1.4)

Utility functions satisfying (1.4) are called mized by Caballe and Pomansky (1996). For
economic justification see Ingersoll (1987). Relation (1.4) means that u(—z) is a completely
monotone function. In view of this, a utility function satisfying (1.3) will be called monotone
of order m + 1.

If u(z) is a mixed utility function with «(0) = 1, then, by a well known theorem (see
Feller, 1971, p.439) it admits the representation

u(z) = /OO e “dF(s), (1.5)

0

where F'(s) is a c.d.f. on [0, 00).
Examples of mixed utility function are:

u(z) = alog (1 + %) , u(z) = ae ™,

where a > 0, b > 0. The next example is, on the other hand, a utility function that satisfies
(1.3):

u(z) = —/ / / [ — F(a))]day - - dp, (1.6)
where F'is a c.d.f. The integral in (1.6) is finite if and only if
/oo g™ dF (x) < oo.
0

The value —u(z) has a simple economic interpretation. First we remark that, as it is
easy to show, the following equation holds true:

/ZOO /,:: : /: 1 — F(x1)]day - day = /:o(x — )" dF (2). (1.7)
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If F is the c.d.f. of a random demand and the supply is equal to z, then the value in (1.7)
is the expected penalty of the unserved demand with penalty function

(z) = Difx <z
0 = (z — 2)™ifx > 2.

If m = 0 then it is the expected unserved demand.
The value (1.7) also appears in stochastic ordering theory. The random variable X
dominates the random variable Y in order m, in symbols: X >, Y, iff

/:o(x —2)"dF(x) > /Zoo(a: — 2)"dG(z), (1.8)

where F'; G are the c.d.f’s of X and Y, respectively. By equation (1.7), the inequality (1.8)
can be expressed in terms of the m-fold integrals.

Brochet, Cox and Witt (1986) apply a utility function u(z) with u(* < 0 in connection
with an insurance problem. They assume the existence of the first three moments of the
random loss L, and apply the Markov-Krein theorem concerning Chebyshev systems. The
result is that if we take

mazxE(u(L)) (or minE(u(L)))

on those set of c.d.f.’s that have the prescribed three moments, then the extremal distribution
does not depend on the special utility function. It is uniquely determined by the requirement
that u® < 0.

More generally, if (1.2) holds true, and the first m moments of a random variable X are
known, the, by the use of the methodology of the Markov moment problem (see Krein,
Nudelmann, 1977) we can obtain extremal distributions to represent maxFE(u(X)) and
minE(u(X)). Those are called upper and lower principal representations of the moments
[1y -« . Again, under the mentioned condition, these extremal distributions do not de-
pend on the utility function wu(z).

Thus, in order to create upper and lower bounds for the expectation E(u(X)) taken with
the true distribution, we only have to assess the values of the utility function u(z) at the
supports of the extremal distributions.

More elegant is the bounding procedure if X has an unknown discrete distribution
with known support. In this case the methodology of the discrete moment problem (see
Prékopa, 1990) can be applied to obtained bounds for E(u(X))). That possibility obviously
carries over to utility functions satisfying (1.3) or (1.4).

Multiattribute utility functions have also been extensively researched, see, e.g. Keeney
and Raiffa (1976), Dyer and Sarin (1979), Dyer, Fishburn, Steuer, Wallenius and S. Zionts (1992).
In most cases relatively simple sums of products of single attribute utility functions provide
us with multiattribute ones. However, large collection of analytic formulas that can serve
for applications does not exist. In this paper our purpose is to improve on the situation and
introduce a class of multiattribute utility functions in such a way that we assume the knowl-
edge of s single attribute utility functions, each satisfying relations (1.4) and then couple
them into one s-attribute utility function.
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The risk averse multiattribute utility function may be defined in such a way that u(z1, ..., zs)
is increasing in each variable and concave as an s-variate function. In addition, we may re-
quire

al1++7«s -
82{17(-2-152“ %) does nor change sign if i; +---+i, =m + 1 (1.9)
or
. oty (L 2 . .
(- ey .(_.13% )50, 1<ty <t 1 (1.10)
1 s
or
. o Qirtetis
(—1)itetiot W m) o 1<y, (L.11)

021 - - - Dzis

These are multivariate counterparts of relations (1.2), (1.3) and (1.4), respectively.
Our class of multiattribute utility functions is given by

Definition 1.1 Let k > 1 and D an open convex set. We define the utility function u as:
w(z1,...,25) :=log {k(egl(zl) — 1) (e%®) — 1) — 1] , (1.12)

where for every (z1,...,2,) € D the following conditions hold:

5 59 j=1,.. s, (1.13)
g;(z) > 0
gj(l (z;)) > 0, ifi>1 and is odd (1.14)
](,’)(Z].) < 0, ifi is even

j=1,...,s.
The g;(2;) functions can be chosen eg. from the following type of functions:

alog(1+§), where a > 0, b > 0,
ae ", where a >0, b> 0,
anz" + -+ a1z + ag, with suitably chosen coefficients.

It is obvious that functions (1.12) are strictly increasing in each variable in their domain.
It is also true, but no longer obvious, that the functions are concave. We prove it in Section
2, together with other properties of the functions (1.12). In Section 3 we look at the max-
imization and minimization problems of E(u(Xjy,..., X;)), where Xj,..., X are discrete
random variables with known supports and with some known univariate and multivariate
moments. The extremal distributions serve for bounding the above expectation. In Section
4 we present numerical examples and, finally, in Section 5 we draw some conclusions.
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2 Properties of the multiattribute utility functions (1.12)
First we need the notion of a logconcave function.

Definition 2.1 Let E C IR’ be a convex set and f > 0 a function defined on E. The
function f is said to be logconcave if for any ¢,y € E and 0 < XA <1 we have the relation

fO@+(1=Ny) > [f@)] [fy)] (2.1)
If in (2.1) the opposite inequality holds, we call the function logconvex on E.

If f is positive valued on E, then its logconcavity is equivalent to the concavity of logf.

If f is logconcave on F, then its definition can be extended to the entire space R’ by
setting f(z) =0, z ¢ E.

The product of any number of logconcave functions is logconcave. The logconcavity
property, however, does not carry over for sums. Product and sums of logconvex functions,
defined on the same convex set, are also logconvex. However, the definition of a logconvex
function, on a convex set F, cannot be extended, in general, to the entire space IR’.

The following statement holds true:

Theorem 2.1 (Prékopa, 1995, p.324, Lemma 11.2.2). If f is logconcave on E C IR® and
p >0, then f(z) — p is logconcave on the set

{z|f(z) > p}. (2.2)

The proof is simple, we only have to use the arithmetic mean - geometric mean in-
equality. It turns out from the proof of the theorem that if f is strictly logconcave, i.e.,
fOz+1—=Ny) > [f(2)] [f(y)]" " whenever & # y and 0 < A < 1, then the same holds
for f(z) — p on the set (2.2).

Based on Theorem 2.1 we prove

Theorem 2.2 The functions (1.12) are concave on D.
Proof. In view of (1.14), it follows that each function
%) =15
is logconcave on D. By Theorem 2.1 this holds for the functions
e9i(zi) _q

as well. This implies that
k-(egl(zl) — 1) (egs(zs) —1)

is logconcave on D. For every z € D its value is greater than 1, hence the repeated application
of Theorem 2.1 proves the assertion. O
The next theorem presents our central result in connection with functions (1.12).
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Figure 1: Graph of the utility function (1.12), in case of s = 2, g1(21) = 321 + 1, g2(22) =
1
EZQ + 1.

Theorem 2.3 For every z = (z1,...,2s) € D we have
ail++zsu
— >0, if iy + -+ 15 is odd,
0zt -+ - 0zls f ’
and (2.3)
ai1+"'+isu

m<0, if iy 4 - - -+ 15 1S even.
1 s

First we prove the assertion for the case of g;(z;) =2, j =1,...,s.
Lemma 2.4 Property (2.3) holds for
u(z) :=up(2) :=log [k(e* —1)---(e* — 1) —1]. (2.4)
We need the following
Assertion 2.5 Consider the function
f(z) = log (k(e* —1) — 1),
where k > 1 constant and z > log2. We assert that

df k41
Yoy T
dz +kez—(k—|—1)

dif i1 ! (i) k41 .
- = (—1)* - =23, ...
dzt (-7 X a ket — (k+1)) ~ ! I

h=1

(2.5)
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where the numbers agf) are defined by

! =1, i=2,3,

af) = aéQ) =1

al’ =ad"Dh=1)+a"Vh, h=2,...i—1 (2:6)
ol = al7V (i - 1).

Proof of Assertion 2.5. The assertion is trivial for 2 = 1 and can easily be checked for
i = 2. We use induction and assume that the equation in the second line of (2.5) holds for
some i > 2. It follows that

A0 f E4+1 h—1 (k+1)ke*
dz”l - )Z (kez—(ml)) (ke — (k1 )

_ ( kH >h1(kezﬁ?klﬂ)+<kei?’fl+1>>2>
La R
- o a0 0) ()
A0l ()

Al E+1 )"
1) RO (NN N I
) hz::l h ke? — (k+1)
This proves the assertion. O

Assertion 2.5 implies that the odd order derivatives of f are positive and the even order
derivatives of f are negative. It is worth to mention that if we apply the equation in the sec-
ond line of (2.5) for the case of i = 1, then we obtain the formula in the first line without the 1.

Proof of Lemma 2.4. Let
ki =k(e? —1)---(e* —1)

and hold the values of 2y, ..., z, fixed. Then ug(z1, ..., 2s) is a function of the single variable

z; and has the form:
up(21y .-y 25) = log (k1 (e — 1) — 1). (2.7)

%—1+ k1+1
8,21 N kiesr — (k‘l + ].)

P h
6“u0 - i1 (1) kl +1 '
— = (—1 t , 1 > 2.
azll ( ) hz::I ah kl@zl . (kl + 1) 1 =

1

By Assertion 2.5 we have




PAGE 8 RRR 30-2006

Similar formulas can be written up for the derivatives of ug(z, ..., zs) with respect to any of
its variables. This implies that the assertion of the lemma holds for that special case where
we take derivatives only with respect to a single variable.

To prove the assertion for mixed derivatives we rewrite the equations in (2.8) and take
the derivatives of order i, with respect to 25 etc. Let us introduce the notation

ky = k(e®™ —1)(e® —1)---(e™ —1).

We have the equation
klezl - (kl + 1) = kl(ezl — 1) —1
=k(et —1)(e”2 —1)---(e* —1)—1
= kz(e” — 1) —1= k2622 — (kg + 1)
Using this, (2.8) can be written as:

8“0 k1+1 k2+1
il
321 ko + 1 koe?2 — (kg + 1)

ailuo . i1 (ir) ey + 1 h hy + 1 h . (29)
i = (-1)" Za’h . , 1> 2.
021 st ky+1 koekz — (ko + 1)
Now we fix the values zy, 23, ..., z; and consider the functions (2.9) as functions of the single

variable z5. If we take the first derivatives with respect to 29, then for the term corresponding

to the subscript h we obtain
Kl ka1l \"
822 kge” — (kg + ].)

—_p kQ +1 h=t (kg + 1)/{?2622
N kQ@ZQ — (kg + 1) (kzeZQ — (kg + 1))2

_ ks + 1 " hatl ki + 1 2
N koe? — (kg + 1) koe? — (kg + 1) koe? — (kg + 1)

ko + 1 " . ko + 1 bt
koe?z — (kQ + 1) koe?z — (kQ + 1) ’

If we take the further derivative until of order i, we can see that

ai1+i2u o o
o ig = (1)1 x (positive value).
021" 0725
Proceeding this way along the derivatives with respect to z3,..., 2z, the lemma follows. O

Regarding the general case, we use the following
Assertion 2.6 If the univariate function g(z) has the property

g'(z) > 0
gD(z) > 0, ifi>1 and is odd (2.10)
g (z) < 0, ifiis even
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on the set D and the function f(z) has the property
fO(2) > 0, ifiis odd

f(i)(z) < 0, ifi is even (2.11)
on the set {g(z)|z € D}, then (2.11) is also true for their composition, i.e.
(i) g
[f(g(2))] > 0, if i is odd (2.12)

FlgD)? < 0, if i ds even
on the set D.
Proof of Assertion 2.6. It is easy to see (by induction) that

FOEN? =S S OB (z)- - gD (2). (2.13)

=1 14+k1+-+ki=:

The condition in the second sum is equvivalent with
(-1 +k++k=i-1. (2.14)

If i is odd (even) = i — 1 is even (odd) = the number of odd terms in the sum (2.14) is
always even (odd) = by (2.10) and (2.11) the number of nonpositive terms is even (odd)
in each product of (2.13) = each product of (2.13) is nonnegative (nonpositive). Since

lf(i)(g(z))g'(z) .+-¢'(z) > 0(< 0) is always in the sum (2.13) then [f(g(2))]® > 0(< 0) fol-
OWS. O

Proof of Theorem 2.3. Introduce the following functions

w21, 2s) = wo(g1(21)s -+ gr(2k)s 2kt -+ -5 25), K =0,1,...,s. (2.15)

We assert that the above functions have property (2.3) and since u(zy, ..., zs) = us(21, ..., 25)
this proves the theorem. We prove it by induction. For k = 0 relations (2.3) hold, by Lemma
2.4. Assume that (2.3) holds for £, i.e.,

Girtetisy,
i1 s
aZl e azg

Then for k + 1 < k, if we consider the univariate function

= (1)t (positive value). (2.16)

Gtttk tirgatetisg,

f(zrgr) i= (—1) ittt (Z15- -+, 25) (2.17)

AR ELets Er- R £
for fixed 21, ..., 2k, 2k42, . . . , 25 values, then f(zx,1) satisfies property (2.11) because of (2.16).
Also, gr11(2k41) satisfies (2.10), and by Assertion 2.6 f(gx+1(2k+1)) has property (2.12). From
this we derive
i1 et
O T _(qyiebivtieateti ) (g, (24)) =
02" -+ - 0zls

(1) Fa=l 5 (positive value).

(2.18)

This proves the theorem. O
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3 Discrete moment problems

Let Z = {zo,...,2,} be the support of a discrete random variable X. Suppose that the
probability distribution of X is unknown, but known are the moments u, = E[X*], k =
0,...,m, where m < n and also known is the support set Z. Let f(z), z € Z be a known
discrete function. Our aim is to find minimum and maximum of E[f(X)].

The univariate discrete moment problem is defined as the LP:

n
min(max) »_ fip;
i=0
subject to

n

«Q — —
Zzipi_/'baa a_oa"'am
1=0

pzzoa i:(),...,n,

where f; = f(2),1=0,...,n.

Prékopa (1990) has given a simple characterization of the dual feasible bases if the func-
tion f(z), z € Z has a higher order convexity property. This is formulated in terms of higher
order divided differences.

The first order divided difference of f, corresponding to the points z;,, 2;,, is designated
and defined as:

f(zi,) — f(zi)

[Zila ) f] =
ZZ'2 — Zz'l
The k' order divided difference, corresponding to the points z;, ..., 2;, 41> 18 defined recur-
sively as
[Zi27 v -aZik_H;f] - [Zila N 7zzk’f]

[Zila---azik._;,_l;f]: o —
Te+1 11

A function f(2), z € Z issaid to be convex of order k if all of its k™ order divided differences
are nonnegative. If all k** order divided differences are positive, then the function is said to
be strictly convex of order k.

If the dual feasible bases are known we can find the solutions of the LP (3.1) much simpler
by the use of the dual algorithm.

The exact method solving (3.1) can be found in Appendix A.

The discrete moment problem can be extended for the expected value of multivariate
functions, acting on random vectors. Assume that the support of the random variable X is
the set Z;. Then the support of the random vector X = (Xj,..., X,)” is a subset of the set
L =7 X -+ X Ly Let

Piris = P(Xh =215, .., Xs = 241,), 0<4; <mj, j=1,...,5,

ni N
— Qi Qs — Qi Qs oy
fos..ay = B[XT" - X(0] = Z T Z Zliy " iy Pin s

11=0 15=0
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where «, ..., «, are nonnegative integers. The number j,, . o, Will be called the (s, ..., ay)-
order moment of the random vector X. The sum «; + - -- + ay is called the total order of
the moments.

Suppose now that the probability distribution of X is unknown but known are all moment
of total order at most m and further univariate moments of the marginal distributions. More
precisely, we assume that the following moments are known:

EX{M - X, ag+---as<m
and (3.2)
EX2*, m<ap<my, k=1,...,s.

This means, in terms of the symbols, i4, ..o, the known moments are:
Mal...asa a + - jer S m
and (3.3)
Hay.agy @5 =0, 7=1,... k=L k+1,...,8, m<op <my, k=1,...,s.

Let f(z), z € Z be a discrete function and introduce the notation f;, .. = f(zi,...,2.)-
Our multivariate discrete moment problem (MDMP) is the following LP:

ni Ns
min(max) > - > fi iDi.is

11=0 1s=0

subject to
ni ns
Z e Z Z(llel e Zsaisspil...is = HUa;...as (34)
i1=0  is=0
fora; >0, y=1,...,8; ag ++-- gy <m and

fora; =0, 7=1,..., k=1 k+1,...,8, m< o, <my, k=1,...,s;
Diq..is 20, all ’il,...,’is.

Here the p;, ;. are the decision variables, everything else in the LP is given.

The optimum value of the minimization (maximization) problem (3.4) is a lower (upper)
bound for E[f(X1,...,X,)]. The bounds are also sharp in the sense that no better bounds
can be given based on the moments (3.3).

Madi-Nagy and Prékopa (2004) gave an efficient method for bounding the expectation of
a multivariate function of discrete random variables under moment information. The central
results in this respect are the theorems which characterize the structures of the dual feasible
bases under some assumptions that concern the divided differences of the function. This
structures are written precisely in Appendix B.

If we consider a multivariate discrete function f(z), z € Z = Z; X --- X Z, where
Zj ={%jo,---+%jn; }, 7 = 1,...,s, and take the subset

le...ls - {Zlia (S Il} X - X {Zsia 1€ [s}

= Ly XX Zgp,, (3'5)



PAGE 12 RRR 30-2006

where |I;| =k;+1, j =1,...,s, then we can define the (k, ..., k;)-order divided difference
of f on the set (3.5) in an iterative way. For the sake of simplicity we assume that z;o <
Zjp < o < Zjn;, J = 1,...,s. First we take the k" divided difference with respect to the
first variable, then the k¥ divided difference with respect to the second variable etc. This
operations can be executed in any order even in a mixed manner, the result is always the
same. Let

(215, @ € I1;+ -5 25, 0 € L5 f] (3.6)

designate the (ki,...,k)-order divided difference. The sum k; + - - - + k is called the total
order of the divided difference.

A multivariate discrete function is said to be (strictly) convex of order m if all of its
divided differences of total order m are nonnegative (positive).

It is known and easy to see, that if a certain order partial derivative of a function defined
on an open convex set of R® is a continuous and nonnegative (positive) function, then the
same order divided differences corresponding to some (distinct) points of the domain are also
nonnegative (positive).

By Theorem 2.3 functions (1.12) are strictly convex of order m if m is odd and their
negatives are strictly convex of order m if m is even.

Given the dual feasible bases above, we may look at it as an initial basis and carry out
the dual algorithm of linear programming to obtain the sharp bounds. The knowledge of an
initial dual feasible basis has two main advantages. First it saves roughly half of the running
time of the entire dual algorithm. Second, it improves on the numerical accuracy of the
computation that we carry out in connection with our LP’s. In Section 4 we follow this way
for bounding the expected value of utility functions (1.12).

4 Numerical examples for bounding F [u(X7, X5, X3)]

In this section we consider utility functions (1.12) for the case where s = 3 and g;(2;) is
linear j =1,2,3, i.e.

u(z1, 22, 23) = log [(eo‘m“1 —1)(e®? 102 — 1)(e*# 1% — 1) — 1]

(21, 22, 23) € Z, (4.1)
where Z is specialized as follows:
Z=1(0,1,2,3,4,5,6,7,8,9) x (0,1,2,3,4,5,6,7,8,9) x (0,1,2,3,4,5,6,7,8,9).
Assume that
€%t > 2 5 =1,2,3, for (21, 29,23) € Z. (4.2)

We know from Theorem 2.3 that the odd order partial derivatives of (4.1) are positive,
while the even order derivatives of it are negative at any point that satisfies (4.2). This
means that the odd (even) order divided differences of (4.1) on Z are positive (negative).
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Figure 2: The initial bases of (4.3) and (4.4) on figures (a) and (b) respectively

In the following numerical examples we consider the MDMP (3.4) with the objective
function (4.1), where m, m;, j = 1,2,3 are even numbers. We give sharp lower and upper
bounds for the expected value of the utility function (4.1) by the use of the dual algorithm.

Considering the results of Madi-Nagy and Prékopa (2004) (the related theorems are in
Appendix B), the collection of vectors corresponding to the subscripts in

{ (i1, 40, 43) i1 + 42 +i3 <mor iy = 0,k # j,m <i; <my,j =1,2,3}, (4.3)
is a dual feasible basis in problem (3.4) (by Theorem B.1 of Appendix B). Similarly, the
collection of vectors corresponding to the subscripts in

{(il,ig,i3)|(9—i1) + (9 —22) + (9— 23) S m or ’Lk, = 9,]17 ;é],m S 9 —’ij S mj,
j=1,2,3},

is dual feasible basis in problem (3.4) (by Theorem B.2 of Appendix B). Both bases provide

us with bounds, the first are a lower while the second are an upper bound. The bases, on

the other hand, can serve as initial bases in the dual algorithms that we carry out to obtain
the best bounds.

(4.4)

Example 4.1 Consider the function (4.1) with parameters a; = ag = a3 = a1 = ag =
az = 1. Assume that X1, X5, X3 are independent and each one has uniform distribution on
{0,1,2,3,4,5,6,7,8,9}. If po designates the o moment of this distribution then we have
the following numerical values:

[ = 4.5, [ = 285, pz = 202.5, puy = 1533.3, uz = 12082.5, pg = 97840.5,
17 = 808043, g = 6773133.3
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In view of the independence assumption, we have the equation

Hajasas = Hay Has Mo

that can be used to compute the mized moments, by the use of the individual ones. We
consider two subcases.

(a) Out of the mized moments we take into account pi1o, fio1, Ho11- As regards the indi-
vidual moments, we look at four instances: (i) p1, p2, (1) p1, p2, ps, pa, (i) p1, po,
113, [a; fhs, fie, (1) puo, fio, 3, fa, fs, He, Hr, p- The results are summarized in Table

1.
Table 1:
m ‘ my ‘ ma ‘ mg H Minimum ‘ [teration H Maximum ‘ [teration
21 2 2 2 || 16.083862403 16.439400518 69
2| 4 4 4 || 16.236742070 124 16.337970820 128
216 6 6 || 16.265375750 211 16.297838921 123
2| 8 8 8 || 16.272378408 16.294804990 294

(b) We take into account the mized moments fin,aqas, @1 + 2 + g < 4 and the following
instances out of the individual moments: (i) p, pa, ps, tha, (10) f1, p2, 3, Ha, s, e,
(1) py1, po, ps, fa, ts, te, fr, ps- We present the results in Table 2.

Table 2:

3 H Minimum ‘ Iteration H Maximum ‘ Iteration
16.256237098 331 16.337929898 364
16.284878189 466 16.297815868 686
16.288316597 802 16.294784936 669

[y
N

o e S
RN
RN
0 o | S

It is interesting to note that if we compute the bounds obtained for m = 2, my = mqy =
mg = 6 and m = 4, m; = my = mg = 4, then both the lower and upper bounds are better
in the first case, where in addition to the mized moments, individual moments of higher
order are also taken into account. On the other hand, the better bounds are obtained in a
considerably smaller number of iterations.

Example 4.2 Consider the function (4.1) with parameters oy = 1.75, ay = 1.25, a3 =
0.75, a1 = 3, ay =2, a3 = 1. In this case we consider the random variables

X, =min (X +Y1,9)

Xy = min (X +Y2,9)
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The univariate moments:

tioo = 2.998513417
f300 = 56.566152813
[100 = 303.24629588
ts00 = 1793.9994786
Lig00 = 11479.787496
L1700 = 78231.253035
L1800 = 560760.43405

The mixed moments:

110 = 11.467123056
lo1p = 48.683197524
H310 = 241.9635138
J120 = 54.713725033
aop = 243.00350342
M1z0 = 300.53883351
111 = 52.95734708
Mo11 = 237.4121764

Table 3:

Moo = 3.4952766952
Mo20 = 15.656400887
Mozo = 81.725154019
Jogo = 477.8221998
Moso = 3047.9142598
Moo = 20808.527145
Moo = 149838.80505
togo = 1125170.3103

t101 = 12.932392935
Joo1 = 54.487215932
301 = 269.16222018
M102 = 67.768956274
Mooz = 297.13805008
fh103 = 402.86511308

[i121 = 265.14890738

Joo1 = 3.9877364472
Mooz = 19.755120076
Mooz = 112.30540309
Moos = 706.03779766
Moo = 4788.6277304
Joos = 34417.875979
Joor = 258672.80968
Hoos = 2012508.6375

Mo11 = 14.907585494
Mo21 = 70.047590573
toz1 = 380.16979536
Motz = 77.525335998
Joze = 377.36866108
Mo1z = 458.16671305

fi12 = 291.35952474

PAGE 15
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X3 =min (X +Y3,9)

where X, Y1, Y5, Y3 have Poisson distributions with parameters 1,2,2.5,3, respectively. Note
that X1, Xo, X3 are stochastically dependent. The moments that we take into account are
presented in Table 3.

The results are contained in Tables 4 and 5.

Table 4:
m ‘ my ‘ ma ‘ ms H Minimum ‘ [teration H Maximum ‘ [teration
2| 2 2 2 || 18.466954935 18.572924791 46
2| 4 4 4 || 18.532630264 111 18.550298509 126
2| 6 6 6 || 18.541879509 178 18.544391959 148
2| 8 8 8 || 18.543136443 263 18.543344110 191
Table 5:
m ‘ my ‘ Mo ‘ ms H Minimum ‘ Iteration H Maximum Iteration
4| 4 4 4 || 18.532852070 254 18.550297658 325
4| 6 6 6 || 18.541926465 742 18.544391052 658
4| 8 8 8 || 18.543148260 542 18.543343503 736

Looking at the tables we may say that if the lower and upper bounds are not close to
the each other in one instance, i.e., we do not have satisfactory approzimation to the value
E[u(X)], then first it is advisable to increase the number of individual moments rather then
the number of mized moments. This way we may obtain better results in a shorter time.

5 Conclusions

We have presented, in analytic form, a class of multiattribute functions u(z,..., zs) that
have the property that all their odd order derivatives are positive and all their even order
derivatives are negative. We also gave theoretical and numerical methods to obtain best
bounds for the expectation of E[u(X1,..., X,)], where X,..., X, are discrete random vari-
ables with finite supports, under moment information. The latter means that we take into
account multivariate moments of order up to a given number of the entire distribution and
additional moments of the univariate marginal distributions.

Numerical examples are presented. They show that very good bounds can be obtained
if we take into account relatively low order (e.g. 2) multivariate moments but higher order
(e.g. 6, 8) moments of the marginal distributions.
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A Univariate discrete moment problem

In what follows the reader is supposed to be familiar with the basic concepts and methods
of linear programming. A brief introduction to it is presented in Prékopa (1996).
If we introduce the notations

fo Po Ho
f=1:|.p=| |, n= S
In Dn m
z z e .. ZTL
A _ 0 1 ‘ :
zp' 27" Zn

then problem (3.1) can be written in the concise form

min(max) f'p

subject to
Al
Ap = p (A1)
p=0.
If ag,ay,...,a, designate the columns of A, the another form of the LP in (3.1) is
min(max) Zfzpl
i=0
subject to i (A.2)
Z a;p;, = K
i=0

piZO, ZZO,,TL

Since A is a Vandermonde matrix, it has rank m + 1 and all m + 1 columns of A are linearly
independent, i.e., form a basis of the collection of columns ag,aq,...,a,. As usual, we
designate by B a basis of the columns of A and also the matrix, formed by the basic vectors,
in increasing order of the subscripts.

If B! > 0, then B is a (primal) feasible basis and if

fEBta; < (>)fi, foralli (A.3)

then B is a dual feasible basis in the minimization (maximization) problem. In (A.3) equality
holds if i is the subscript of a basic vector. It is shown in Prékopa (1990) that if Lg(z) is the
Lagrange interpolation polynomial determined by the base points {z;,i € Iz} , where Ip is
the set of subscripts of the basic vectors, then

ng_lai = LB(Zi)a 1 :0,...,n. (A4)
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Figure 3: Subscripts of a dual feasible basis of a minimum problem in case of m =4

Thus, the dual feasibility of the basis means that Lp(2) never goes above (below) the function
f(z) if the objective function is to be minimized (maximized).

It follows that if By, By are the dual feasible bases in the minimization and maximization
problems, respectively, then we have the relation

Lp,(2) < f(2) < Lp,(2), z€ Z (A.5)
This, in turn, implies that
E[Ls, (X)] < E[f(X)] < E[Lg, (X)]. (A.6)

Any of the two inequalities in (A.6) is best possible, in other word, sharp, if the basis involved
is optimal in the LP (A.2), i.e., it is primal feasible as well.

The dual feasible bases have a simple characterization if the function f(z), z € Z has
a higher order convexity property. This is formulated in terms of higher order divided
differences.

The following theorem is proved in Prékopa (1990):

Theorem A.1 Suppose that the function f(z), z € Z is convexr of order m + 1. Then if,
the subscripts of B have following structure:

m+ 1 even m+ 1 odd
main problem u,u+1,...,0,v+1 O,u,u+1,...,0v,v+1 (A.7)
max problem 0O,u,u+1,...,v,v+1,n uw,u+1,...,v,v+1,n

then B is a dual feasible basis in the corresponding problem. If the function is strictly convex
of order m + 1, then B is a dual feasible basis iff it has the structure (A.7).

Theorem A.1 provides us with a simple way to find dual feasible bases in problem (A.2).
Any dual feasible basis, on the other hand, can serve as the initial basis in the dual algorithm
to solve the problem. If f(z), z € Z is strictly convex of order m+1, then the dual algorithm
takes the following simple form:

Step 0: Find an initial dual feasible basis, by the use of Theorem A.1.

Step 1: Check for primal feasibility, i.e., B~'p > 0. If yes, then stop, B is an optimal
basis. If no, then go to Step 2.

Step 2: Choose any i satisfying (B~'u); < 0. Remove the i’ vector from the basis B
and include that unique vector into the basis which makes the new basis dual feasible. Go
to Step 1.
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B Multivariate discrete moment problem

In the two theorems below we recall some facts from the paper by Madi-Nagy and Prékopa (2004),
which give dual feasible basis structures. Let us use the following notation (compatible with
the notations used in M&di-Nagy and Prékopa, 2004) for the coefficient matrix and vectors
of (3.4):

min(max) f'p

subject to
ip - b (B.1)
p > 0.

If B, (B,) is a dual feasible basis in the minimization (maximization) problem, Vs, (V3)
is the corresponding objective function value and V., (Vines) is the optimum value in the
same problem, then we have the relations

Vs, < Vinin < E[f(Xi1,..., Xs)] < Vi < Vs, (B.2)
We will use the following subscript sets:
I=1IU (U1, (B.3)
where
Ip = {(i1,...,i5)| 0 <i; <m—1, integers, j =1,...,s, i1 +---+1is <m} (B.4)
and

L ={(ir,...,is)| i; € Kj, iy =01# 5}

Kj:{k](l),...,ky[(j')}c{m,m+1,...,nj}, j=1,...,s.

We assume that the cardinality of each Kj, j =1,...,s is even.
We will also use some further subscript sets, called subscript structures, labelled them
by min and mazx.

(B.5)

min uD @) 41, 0l pl) 41
mazr m,u? w0 +1, ... 00 @) 4 1,n;.

(B.6)

Theorem B.1 Suppose that the function f(z), z € Z has nonnegative divided differences of
total order m+1, and, in addition, in each variable z; it has nonnegative divided differences
of order m + |Kj|, where the set K; has one of the min structures in (B.6), j =1,...,s.

Under these conditions, if my +1 =m + |Ky|, k =1,...,s, then the set of columns B
ofﬁ in problem (B.1), with the subscript set I, is a dual feasible basis in the minimization
problem.

Theorem B.2 Suppose that the function f(z), z € Z has nonnegative divided differences of
total order m+1, where m~+1 is odd and, in addition, in each variable z; it has nonnegative
divided differences of order m + |Kj|, where K; has one of the maz structures in (B.6).
Under these conditions, if my +1 = m + |Kg|, k = 1,...,s, then the set of columns B of
A in problem (B.1), with the subscript set (nqy,...,ns) — I, is a dual feasible basis in the
mazximization problem.
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Figure 4: Dual feasible subscript structures corresponding to Theorems B.1 (on (a)) and B.2
(on (b)). Elements of I are colored by gray while elements of I;’s are black.
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