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PROBLEM USING STOCHASTIC PROGRAMMING

Michael R. Murr Andras Prékopa

Abstract. A stochastic programming model of optical fiber manufacturing is cre-
ated. The purpose is to set the best fiber manufacturing goals while accounting
for the uncertainty primarily in the yield and secondly in the demand. The model
is solved for the case when the data follows a multivariate discrete distribution.
The model is also solved for the case when the distribution is approximated by a
multivariate normal distribution.
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1 Manufacturing Process

The process of manufacturing optical fibers can be divided into two major parts. The first
1s preform manufacturing. One process to make preforms is called modified chemical vapor
deposition (MCVD). In the MCVD process, glass is deposited on the inside of a quartz tube.
When the deposition is complete, the tube is collapsed into a solid rod called a preform
(Flegal, Haney, Elliott, Kamino, and Ernst [7]).

The second part is fiber draw. In this process the end of the preform is heated in a
furnace and fiber is drawn from it. The fiber has the same cross-sectional structure as the
preform except that the fiber is much thinner and much longer (Jablonowski, Paek, and
Watkins [10]).

The fiber draw process produces a variety of lengths of fiber. The fiber lengths that are
produced depend on the size of the preform and on the capacity of the fiber spool. When
the length reaches the spool capacity, the fiber is cut and a new spool is started. Naturally
the lengths produced also depend on the rate of unplanned fiber breakage.

We assume that the preforms are used to produce the longest fibers, that is, fibers are
not cut in the course of the drawing process. They may break, though. The fibers obtained
are the primary products. After some cutting has been done to satisfy demands, remnants
are produced. Some of these are just thrown away because their lengths are very short but
some of them are used to satisfy future demands. These can be called secondary products.
It is not necessary, however, to distinguish between the two kinds of products in the model.

In addition to length, fibers have other characteristics, too. For the sake of simplicity
we will speak about one additional characteristic that we term “performance” but note that
performance is in reality determined by more than one additional measurement.

2 Requirements of A Mathematical Model

Our goal is to calculate a recommended production level to meet the demand. Typical results
of the calculation are expected to be, for example, 80%, 90%, or 100% of the manufacturing
capacity. To reach a sufficient level of accuracy, the model needs to include several features
outlined below. Leaving out any of these features will lead to inaccuracies amounting to at
least 10% of the manufacturing capacity and will reduce the usefulness of the results of the
calculation. The necessary features include:

e account for substitution of longer length fibers to meet shorter length demand,

o account for substitution of higher performance fibers to meet adequate performance
demand,

e account for the inventory on hand at each length and performance level,
o account for the expected production at each length and performance level,

o account for the expected demand at each length and performance level, and
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e account for the opportunity to produce fiber in the current period to meet a surge in
demand in a later period.

Leaving out any of the following features will lead to inaccuracies amounting to at least
5% of the manufacturing capacity. These additional necessary features are:

e account for the various possible outcomes (randomness) of the production at each
length and performance level, and

e account for the various possible outcomes (randomness) of the demand at each length
and performance level.

3 Mathematical Model

Let r be the number of performance levels and assume that these obey a linear ordering,
performance level number 1 being the best. Thus, to have a performance level ¢ product
satisfy the requirements imposed on a performance level j product, it is necessary to have
1< 7.

The model presented here is a multi-period stochastic programming model. The following
notation is used:

n: number of different lengths of fibers

ly.: length of fibers of type k

Mpp, = U—ZJ the number of fibers of length k that can be obtained by cutting one
fiber of length h.

T: number of time periods

yt: overall intended production level in period ¢, t =1,2,...,T

aly: expected number of performance level i fibers of length h produced
in period ¢ per unit of production, ¢+ = 1,...,7, h = 1,....,n, t =
1,2,...,T

L (') = aly’ + &,: number of performance level 7 fibers of length h produced in period
t,i=1,....r, k=1,....n,t =1,2,...,T. Note that the random
components ¢!, have an expected value of 0.

I number of performance level ¢ fibers of length h available at the be-

ginning of period t, ¢ =1,....r., h=1,... n,t=12,....T

Cipt cost (per fiber) to produce each performance level i fiber of length h
inperiodt,e=1,....r, h=1,...,n,t=1,2,...,T
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2h: number of performance level ¢ fibers of length h carried in inventory
between period ¢ and period t 4+ 1, ¢ =1,...,r, h = 1,....n, t =
1,2,...,T

dly,: demand for performance level j fibers of length k in period ¢, j =

L,....r,k=1,....n,t=1,2,....T

Tk number of performance level 7 fibers of length h used to meet demand
for performance level j fibers of length %k in period ¢, 1 < ¢ < j <7,
1<h<k<n,t=12,....T

ijhk: upper bound for T’ﬁjhk
Summary of notation

. t ot ¢
Constants: oy Uy Mk, @Gy Ciy X,

?

; .ogt ot gt

Random variables: &4, (5, di
o : .ot £t
Decision variables:  zig.., y*, 2,

Holding the random variables fixed for now, our downgrading model is the following
network flow model:

Constraints

We need for the inventory of fibers of performance level ¢ and length A at the beginning of
the first period plus the number of fibers of performance level ¢ and length h produced during
the first period to equal or exceed the number of fibers of performance level ¢ and length A
assigned to meet demand during the first period, for each performance level 2,2 =1,....r
and each length o, h =1,... n:

G + apy’ + & — zn > ngjhk' (1)

k=h j=t

We need for the number of fibers of performance level 7 and length h carried from the
first period to the second period plus the number of fibers of performance level ¢ and length
h produced during the second period to equal or exceed the number of fibers of performance
level 7 and length h assigned to meet demand during the second period, for each performance
level ¢, 2 =1,...,r and each length h, h =1,... n:

Zip + oahy’ + -z =) Zw?jhk' (2)
k=h j=t
In general, for each time period ¢, ¢t = 2,....T, we need for the number of fibers of

performance level ¢ and length h carried from period ¢ — 1 to period ¢ plus the number of
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fibers of performance level ¢ and length h produced during period ¢t to equal or exceed the
number of fibers of performance level 7 and length h assigned to meet demand during period

t, for each performance level 7, 2 = 1,... r and each length h, h =1,... n:
it 4 abyt + &2 > D) szjhk' (3)
k=h j=t

We need for the sum of the number of fibers assigned to meet the demand to equal or
exceed the demand, in each performance level 53, 3 = 1,...,r, in each length category k.
k=1,...,n, and in each period ¢, t = 1,...,T. The number of fibers assigned needs to be
multiplied by the appropriate factor myy if the length of fibers in length category h is at
least twice the length of fibers in category k:

ko
D D ik = d. (4)

h=1 1=1

We may want to limit the amount of downgrading and cutting, using upper bounds, for
each ¢ and 57, 1 < ¢ < 5 < 7; for each h and k, 1 < h < k < n; and in each period ¢,
t=1,2,...,T:

0< J’Ejhk < Xitjhk- (5)

4 Objective Function

The objective function of the underlying deterministic problem is the total production cost
equal to

P

> Z Yenfuly) = 33 Z<y e, (©)

7=1 t=1 h=1 1=
where the ¢;;, are some positive constants.

The underlying deterministic problem consists of minimizing the objective function (6)
subject to the constraints (1) - (5).

5 The Stochastic Programming Problem

The formulation of a multi-period stochastic programming problem, based on the underlying
deterministic problem presented above, would lead us to extremely large sizes that we want
to avoid. We would like to, however,

e capture the dynamics of the production control process, and

e impose a probabilistic constraint regarding demand satisfiability.
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We can take into account the above aspects in a rolling horizon model system where each
model encompasses the present and a few future periods. We choose only one period from
the future and thus, altogether two periods are included in any model that we formulate
and solve. The problem that we have of periods ¢, ¢ + 1 contains (}, that we assume to be

a known value. In principle the problem contains (5! too. However, if the first stochastic
constraint in (7) and (8) holds, then (5! = 2! and therefore we enter 2%, in the second

stochastic constraint instead of Ct+1.

We want to ensure that the constraints (1) - (3) are satisfied for periods ¢, t + 1 by a
prescribed large probability p. Under this condition and the constraints (4), we want to
minimize the production cost.

We distinguish two cases:

Case 1. {};, are random and d, are known. This is a case where we know the future
demand.

Case 2:  {f, and d, are random. We may wish to allow for randomness in the future
demand.

5.1 Casel

The optimization problem is the following:
Minimize
S 3 [t + it
=1 =1

subject to the probabilistic constraint

—I_ azhy + ézh - Z Z szfjhk &H ’I:, h

k=hj=1

t+1 t+1 t+1 .
2h +atytTt G > Z Z J’Jhk all i, h

k=h j=1

and the other constraints

ko3
h=1 =1

k3
Z wa;'hlkmhk > dt+1 all 5, k
=1

h=1 1=

?
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5.2 Case 2

In this case, the optimization problem is the following:
Minimize

t t 1 t+1 t+1, t41
[Cu#%hy + Gnoain'y

>

h=1 =1

subject to the probabilistic constaint

Z wajhk all 2, h

ot oahyt + &y — oz 2

k=h j=t
n 7

t+1 t+1 t+1 .

2+ aftyttt o+ G > Y jijﬂ%jzk all 4, h
k=h j=1
P koj 2P (8)
h=1 i=1
ko J
t+1 t+1 .
h=1 =1

and the bounds

0 <= xf]hk <= Xt]hk a..].]. 7:7 j, h, k, t.

?

The solution of Problem (7) (or Problem (8)) yields optimal z},,, y* and :Bf;"hlk, y** but

t+H1 ¢l

we accept as final only the :ijhk, y* whereas the T, ¥ will be finalized only after the

solution of the next problem.

A joint probabilistic constraint is generally given in the form Tz > ¢, where T' is a matrix
and ¢ and ¢ are vectors. Below is the matrix T for Problem (8). The column headings are
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the components of the vector #. The right hand side (RHS) is the vector &.
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1
L1111

1
L1122

1
L1112

1
T1212

1 1
L1211 L1222

1
L2211

1
L2212

1
L2222

yl

211

221

12

222

2
L1111

2
L1112

2
L1122

2
L1211

2
L1212

2
L1222

2
L2211

2
L2212

2
L2222

y2

RHS

-1

1
11

1
21
1
12

1
29

-1
-1

-1

-1

1 1
_Cll _611

1 1
_421 _621

1 1
_<12 _612

1 1
_<22 _622
1
dll

1
d21

1
d12

1
d22

—¢h
—&,
—&t
—&5
diy
d3
di,

2
d22

411

21

2
12

_ 2
1 a3,

6 Properties and Solutions of Models (7) and (8)

Models (7) and (8) contain a probabilistic constraint in a joint constraint form and penalize
the violations of the stochastic constraints. Without the probabilistic constraint it is the
“simple recourse problem” first introduced and studied by Dantzig (1955) and Beale (1955).
The probabilistic constraints applied individually for the stochastic constraints were used first
by Charnes, Cooper, and Symonds (1958). Joint constraints involving independent random
variables were used by Miller and Wagner (1965). General joint probabilistic constraints
including stochastically dependent random variables were introduced by Prékopa (1970)
who also obtained convexity results of the problem and also solution methods (1971, 1973,
1980). For a detailed description of programming under probabilistic constraints, see Prékopa
(1995). For the case of Problems (7) and (8) we have, as a special case, the following convexity
theorem.

Theorem 1 If the random wariables &, €5, 1 r, h 1, ..., n have

continuous joint probability distribution and logconcave joint probability density function then
the probability on the left hand side in the probabilistic constraint is a logconcave function of
the variables xj;,., :Bf;"hlk, (all i, j, h, k) and y*, y***.

1 s ey

For our problem the data are essentially discrete. The continuous case is an approx-
imation. For the case when the random variables are discrete, Prékopa (1990) proposed
a dual type method, Prékopa and Li (1995) presented a more general version of it, and
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Prékopa, Vizvari, and Badics (1996) proposed a cutting plane method. All these methods
allow for the solution of problems which are combinations of probabilistic constrained and
simple recourse models and thus, contain as special cases both model constructions. The
above methods require the generation of all p-level efficient points (pLEPs). Methods for
this have been developed by Murr (1992) and in the above cited paper by Prékopa, Vizvari,
and Badics.

T. Szantai (1988) has developed a method for the solution of a probabilistic constrained
stochastic programming problem involving multivariate normal, gamma, or Dirichlet distri-
butions. In his method the deterministic constraints as well as the objective function are
linear. Successful uses of this method and code are reported in Prékopa and Szintai(1978),
Dupagova, Gaivoronski, Kos, and Szantai (1991), and Murr (1992). Numerical examples for
both the discrete case and the continuous approximation will be presented in sections below.

7 Modeling the Variability of the Production

Let us examine more closely our model for the number of performance level ¢ fibers of length
h produced. We are saying that

fin@') = apy® + &

In other words, the number produced is the decision variable y* (the intended production
level) multiplied by af, (the expected, i. e. mean, capability of the process to produce
performance level 4, length h fibers) plus a random variable depending on ¢ and h.

We have a problem in that a more valid model would be to say that

fay’) = (@i + &)y"

In other words, the amount of randomness that we anticipate is proportional to y* rather
than independent of 3°.

To modify the model to account for this would introduce random variables on the left
hand side of the probabilistic constraint. This would make solution of the model using
existing codes difficult or impossible.

Nonetheless we can do almost as well with the model as originally written and with
existing codes. Let us consider a model

finy') = agy® + &0,

where b* is a multiplier of the random variable in time period ¢.
We recommend solving the model for several values of b. A solution is valid only when
yt and b* are approximately equal.



RRR 32-96 PAGE 9

8 Data Common to Continuous Case and Discrete Case

The expected numbers of fibers produced in each category are the following:

7 7 7 7
17 G9y  Q1a Qoo

84 658 126 679

The production cost coefficients for the first time period are:

7 7 7 7
€11 €1 Ca Cos

720 720 300 300

The production cost coefficients for the second time period are 5% less:

2 R =y Ry
€11 C1 Gz Cas

684 684 285 285

The deterministic demands in the first period are:

dy, dy di,  di,
10 300 30 1000

The deterministic demands in the second period are:

dif’ i’ dyyt dl
10 300 100 1000

The starting inventories are:

Gi G Gy Gy
5 200 10 400

The multipliers for fiber length substitution are:

N1 Mg Mz

1 2 1

The upper bounds for the use or downgrading of fiber to meet demand are:

Xflll X{112 X{122 X{211 X{212 X{222 X§211 X§212 X§222
1000 100 1000 40 20 40 1000 1000 1000

The probability level is:
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9 Discrete Case

9.1 Casel

The production variable ¢, has 50 possible values, each with probability .02. They are
—25,-24,...,-2,—-1,1,2,...,24,25.

The production variable %, also has 50 possible values, each with probability .02. They
are —125,—120,...,—10,-5,5,10,...,120,125.

The production variable ¢, has 100 possible values, each with probability .01. They are
—50,—-49,...,-2,—-1,1,2,3,...,49.50.

The production variable ¢, has 100 possible values, each with probability .01. They are
—150, —147,—144,....,—6,-3,3,6,9,...,147,150.

The discrete distribution of the production in period ¢ 4+ 1 is the same as the discrete
distribution in period ¢ and is independent of the distribution in period ¢.

9.2 Case 2

The demand variable d%;, has 50 possible values, each with probability .02. They are
0,1,2,...,48,49.

The demand variable d%, has 100 possible values, each with probability .01. They are
251,252,253, ..., 349, 350.

The demand variable d%, has 100 possible values, each with probability .01. They are
21,22,23,...,119,120.

The demand variable d%, has 100 possible values, each with probability .01. They are
902,904, 906, . ..,1098, 1100.

The discrete distribution of the demand in period ¢ 4+ 1 is the same as the discrete
distribution in period ¢ and is independent of the distribution in period ¢.

The remainder of the data for Case 2 is identical to the data for Case 1.

10 Continuous Case

Here we assume that the random variables each have a normal distribution. As stated in the
description of the model, the production variables &%, ¢, &8, and &, have mean 0. Their
standard deviations are:

Gh & Gy &y
10 45 15 50

The distributions of the production variables within a given time period are correlated.
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The following correlation matrix will be used:

G & &y &

G| 1
G| 01
¢, 107 0 1

¢l 0 07 0 1

The correlation of production variables between the two different time periods is assumed
to be zero.

The demands are also assumed to have a normal distribution. Their means and standard
deviations are:

di, ds, i,  di,
mean 20 300 70 1000
std. dev. 10 25 25 50

The demands, within and between time periods, are assumed to be uncorrelated.

11 Solution Method

An approach to solving discrete probabilistic constrained stochastic programming problems
has been developed by Prékopa, Vizvari, and Badics (1996). Let the pLEPs be represented
by 2, 23 .. 2z Recall that the matrix version of the stochastic constraint may be
written as:

Tx > &.

The probabilistic constraint P(T'z > £) > p can be written in the form: Tz > 2 holds for
at least one ¢ = 1,..., N. If we also have deterministic constraints Az = b, then the problem
to be solved becomes:

Minimize

Tz (9)

subject to

Az b

N

Tz > 2% for at least onei=1,...,

z > 0.

In the above cited paper the second constraint of problem (9) is approximated by the con-
straint:
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where

Ao > 0, ¢=1,....N.
Then the approximate problem to be solved becomes:
Minimize
T (10)
subject to
Az = b
N .
Te —u — Z)\iz(’) =0
=1
N

]
>
I
-

8 &
(AVARR hV/
o \'O
Il
\'l—\
=

I
IV
o

The solution method works in such a way that first we drop the constraint involving the
pLEP’s and then subsequently build them up, by the use of a cutting plane method.

If the number of pLEP’s is small or the sizes of the matrix T' are small, then problem
(9) can be solved exactly by the solution of N linear programming problems, where the ith
one has the constraint Tz > 2. If () is the optimal solution of the ith problem, and
cfe = 11;%i<nN T2® | then 2 is the optimal solution of problem (9).

Systems to solve discrete probabilistic constrained stochastic programming problems this
way have been developed by Maros and Prékopa (1990) and Murr (1992). The former one
is based on the linear programming system MILP, developed by Maros (1990), the second
one is based on the linear programming subroutine DLPRS of IMSL (1987) available on the

Convex C220 machine.

Here we report about results of the use of the second system. It consists of the pro-
grams translator, plep, and optimizer. The relationships among them are diagrammed be-
low. Names in boxes represent executable programs. Names associated with arrows represent
input and/or output files.
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points pLEP’s optim.out
plep optimizer

matrices

translator

Translator: Contains the matrices and vectors in a human (or, more accurately, pro-
grammer) readable format. Writes out these data in a format readable by the stochastic
optimization programs.

Plep: Computes p-Level Efficient Points for a multivariate discrete distribution given the
discrete distribution of each variable.

Optimizer: It has two input files. One is the output of translator, giving the matrices,
vectors, and other data about the optimization problem. The second input file is the list of
pLEPs. The optimal solution of the discretized stochastic programming problem is at the
end of its output.

On a Convex €220 it took us 6 seconds to run plep, and it took us 202 seconds to run
optimizer to solve the linear program 3532 times and obtain the optimal solution.

For the continuous case, we used pesp, which is described in Széntai (1988). On a Convex
(€220, the optimal solution was obtained in 408 minutes.

12 Computational Results for Production and Demand
Both Random (Case 2)

12.1 Decision Variables

For the first period, the intended production level computed in each case is:

Discrete Case | Continuous Case

" 0.997 1.013
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The plan for assigning/downgrading the inventory and production to meet the demand in
the first period is:

Discrete Continuous
Case Case

z1,1; | Use high performance, long length for high 48.0 44.6
performance, long length

T1y15 | Cut high performance, long length to high 15.7 15.2
performance, short length

T1145 | Use high performance, short length for high 88.6 100.0
performance, short length

T14; | Downgrade high performance, long length to 0. 0.
adequate performance, long length

T1q5 | Downgrade and cut high performance, long 0. 0.
length to adequate performance, short length

T1q9, | Downgrade high performance, short length to 0. 0.
adequate performance, short length

T341; | Use adequate performance, long length for 350. 390.8
adequate performance, long length

T3915 | Cut adequate performance, long length to 86.7 133.4
adequate performance, short length

T340 | Use adequate performance, short length for 926.7 905.4
adequate performance, short length

12.2 Other Information about the Solution

The worst case production levels (values of the random variables) that the model is planning
for are as follows. The value p is the (univariate) probability of the variable taking a value
equal to or worse than the value shown.

Discrete Case | Continuous Case
£ p £ p
&, —25. 00 —24.2 .008
&, | —125. .00 | —144.1 .001
&, | —4T7. 03| —36.0 .006
&, | —150. .00 | —182.4 .000

The maximum demand levels in the first period that the model guarantees to satisfy are
as follows. Here the value p is the (univariate) probability of the random variable taking a
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value equal to or greater than the value shown.

Discrete Case | Continuous Case
d P d P
di, 48. .02 44.6 .007
dy, | 350. .00 390.8 .000
di, | 120. 00| 130.4 .008
d3, | 1100. .00 | 1172.2 .000

13 Conclusion

13.1 Summary

Both discrete and continuous probability distributions can be used successfully for this prob-
lem. The probability distributions are not difficult to create for a person who understands
a probability distribution.

The discrete case and the continuous case differed by less than 2% in the recommended
production level for the first period.



PAGE 16 RRR 32-96

References

1]

2]

[9]
[10]

[11]

[12]

[13]

Beale, E. M. L. 1955. On Minimizing a Convex Function Subject to Linear Inequalities.
J. Royal Statist. Soc., Ser. B 17, 173-184.

Bitran. G. R. and T-Y. Leong. 1989. Deterministic Approximations to Co-Production
Problems with Service Constraints. Working Paper #3071-89-MS, MIT Sloan School of

Management.

Charnes, A., W. W. Cooper, and G. H. Symonds. 1958. Cost Horizons and Certainty
Equivalents: An Approach to Stochastic Programming of Heating Oil Production. Man-
agement Science 4, 235-263.

Dantzig, G. B. 1955. Linear Programming under Uncertainty. Management Science 1,

197-206.

Deak, I. 1988. Multidimensional Integration and Stochastic Programming. In Numerical
Techniques for Stochastic Optimization, Yu. Ermoliev and R. J-B Wets (eds.). Springer-
Verlag, New York.

Dupacova, J., A. Gaivoronski, Z. Kos, and T. Szantai. 1991. Stochastic Programming in
Water Management: A Case Study and a Comparison of Solution Techniques. Furopean
Journal of Operational Research 52, 28-44.

Flegal, W. M., E. A. Haney, R. S. Elliott, J. T. Kamino, and D. N. Ernst. 1986. Making
Single-Mode Preforms by the MCVD Process. ATET Technical Journal 65, 56-61.

Gassmann, H. 1988. Conditional Probability and Conditional Expectation of a Random
Vector. In Numerical Techniques for Stochastic Optimization, Yu. Ermoliev and R. J-B
Wets (eds.). Springer-Verlag, New York.

IMSL. 1987. IMSL Math/Library User’s Manual, IMSL, Houston, Texas.

Jablonowski, D. P., U. C. Paek, and L. S. Watkins. 1987. Optical Fiber Manufacturing
Techniques. ATET Technical Journal 66, 33-44.

Maros, 1. 1990. MILP Linear Programming Optimizer for Personal Computers under
DOS. Institut fur Angewandte Mathematik, Technische Universitat Braunschweig.

Maros, I. and A. Prékopa. 1990. MIPROB, A Computer Code to Solve Probabilis-
tic Constrained Stochastic Programming Problems with Discrete Random Variables.
Manuscript.

Miller, B. L. and H. M. Wagner. 1965. Chance Constrained Programming with Joint
Constraints. Operations Research 13, 930-945.



RRR 32-96 PAGE 17

[14]

[15]

Murr, M. R. 1992. Some Stochastic Problems in Fiber Production. Ph.D. Dissertation,
Rutgers University, New Brunswick, New Jersey.

Prékopa, A. 1970. On Probabilistic Constrained Programming. In Proceedings of the
Princeton Symposium on Mathematical Programming (1967), H. Kuhn (ed.). Princeton
University Press, Princeton, 113-138.

Prékopa, A. 1971. Logarithmic Concave Measures with Application to Stochastic Pro-
gramming. Acta Sci. Math. (Szeged) 32, 301-316.

Prékopa, A. 1973. On Logarithmic Concave Measures and Functions. Acta Sci. Math.
(Szeged) 34, 335-343.

Prékopa, A. 1980. Logarithmically Concave Measures and Related Topics. In Stochastic
Programming. Proceedings of the 1974 Ozford International Conference, M. Dempster
(ed.). Academic Press, London, 63-82.

Prékopa, A. 1990. Dual Method for the Solution of a One-Stage Stochastic Programming
Problem with Random RHS Obeying a Discrete Probability Distribution. ZOR 34, 441-
461.

Prékopa, A. 1995. Stochastic Programming. Kluwer Scientific Publishers. Dordrecht,
The Netherlands.

Prékopa, A. and W. Li. 1995. Solution of and Bounding in a Linearly Constrained Op-
timization Problem with Convex, Polyhedral Objective Function. Mathematical Pro-
grammang 70, 1-16.

Prékopa, A. and T. Szantai. 1978. Flood Control Reservoir System Design Using
Stochastic Programming. Mathematical Programming Study 9, 138-151.

Prékopa, A., B. Vizvari, and T. Badics. 1996. Programming under Probabilistic Con-
straints with Discrete Random Variables. RUTCOR, Research Report 10-96.

Szantai, T. 1988. A Computer Code for Solution of Probabilistic-constrained Stochas-
tic Programming Problems. In Numerical Techniques for Stochastic Optimization, Yu.

Ermoliev and R. J-B Wets (eds.). Springer-Verlag, New York.

Wets, R. J-B. 1983. Solving Stochastic Programs with Simple Recourse. Stochastics 10,
219-242.



