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� Introduction

Let A�� ���� An be arbitrary events in some probability space� and introduce the no�
tations

P �Ai� � ��� �Aik� 	 pi����ik� 
 � i� � ��� � ik � n�

Sk 	
X

��i������ik�n

pi����ik� k 	 
� ���� n�

Let S� 	 
� by de�nition� If � designates the number of those events �among
A�� ���� An� which occur� then we have the relation


E

��
�
k

��
	 Sk� k 	 �� ���� n� �
�

The equations �
� can be written in the more detailed form

nX
i��

�
i
k

�
vi 	 Sk� k 	 �� ���� n�

where vi 	 P �� 	 i�� i 	 �� ���� n�

The values �
� are called the binomial moments of �� If we know all binomial
moments of �� then the probabilities v�� ���� vn� and also the value of any linear
functional acting on the probability distribution v�� ���� vn� can be determined� If�
however� we only know S�� ���� Sm� where m � n� then linear programming problems
provide us with lower and upper bounds on the true value of this functional� We
formulate two closely related types of linear programming problems


min�max�
nX
i��

cixi

subject to ���
nX
i��

�
i
k

�
xi 	 Sk� k 	 
� ����m

xi � �� i 	 
� ���� n�

and

min�max�
nX
i��

cixi

subject to ���
nX
i��

�
i
k

�
xi 	 Sk� k 	 �� ����m

xi � �� i 	 �� ���� n�
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These provide us with lower and upper bounds on the linear functionals
Pn

i�� civi�
and

Pn
i�� civi� respectively� Note that the �rst constraint in problem ��� does not

appear in problem ���� The following objective functions are of particular interest


c� 	 c� 	 ��� 	 cr�� 	 �� cr 	 ��� 	 cn 	 
 ���

cr 	 
� ci 	 � for i �	 r� ���

If we use the objective function coe�cient ��� in the linear programs ���� ����
then the optimum values provide us with lower and upper bounds for the probability
that at least r out of n events occur� The objective function with coe�cients ���
provides us with bounds for the probability that exactly r events occur� Any dual
feasible basis of any of the problems ��� and ��� provides us with a bound� The best
bound corresponds to the optimal basis which is both primal and dual feasible� and
is called sharp�

Lower and upper bounds for the probability that at least one out of n events
occurs� based on the knowledge of S�� ���� Sm� were found by Bonferroni �
����� These
bounds are not sharp� For the case of m 	 �� sharp lower bound for the probability
that at least one out of n events occurs was proposed by Dawson and Sanko� �
�����
For the case ofm � �� Kwerel �
���a�b� has obtained sharp lower and upper bounds�
He applied linear programming theory in his proofs� For the case of m 	 � other
results are due to Galambos �
����� and Sathe� Pradhan and Shah �
����� For
a general m� the linear programs with objective functions ���� and ��� have been
formulated and analyzed by Pr�ekopa �
���� 
����� He also presented simple dual
type algorithms to solve the problems� Boros and Pr�ekopa �
���� utilized the results
and presented closed form bounds�

Problems ���� and ��� use the probabilities pi����ik in aggregated forms� i�e��
S�� ���� Sm are used rather then the probabilities in these sums� This way we trade
information for simplicity and size reduction of the problems� We call ��� and ���
aggregated problems�

The linear programs which make us possible to use the probabilities pi� ���ik�

 � i� � ��� � ik � n individually� will be called disaggregated� and can be formu�
lated as follows� Let D� be the n� �n � 
 matrix� the columns of which are formed
by all ��
�component vectors which are di�erent from the zero vector�

Let us call the collection of those columns of D�� which have exactly k
components equal to 
� the kth block� 
 � k � n� Assume that the columns in
D� are arranged in such a way that �rst come all vectors in the �rst block� then
all those in the second block� etc� Within each block the vectors are assumed to
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be arranged in a lexicographic order� where the 
�s precede the ��s� Let d�� ���� dn
designate the rows of D�� and de�ne the matrix Dk� � � k � m� as the collection
of all rows of the form
 di����dik � where the product of the rows di� � ���� dik is taken
component�wise� Assume that the rows in Dk are arranged in such a way that
the row subscripts �i�� ���� ik� admit a lexicographic ordering� where smaller numbers
precede larger ones� Let

A 	

�
BBBBBB�

D�

�
�
�

Dm

�
CCCCCCA
�

In addition� we de�ne the matrix �A by

�A 	

�
BBBBBBBB�


 �T

� D�

� �
� �
� �
� Dm

�
CCCCCCCCA
�

where � is the �n � 
�component vector� all components of which are 
� and the
zeros in the �rst column mean zero vectors of the same sizes as the numbers of rows
in the corresponding Di matrices�

Let pT 	 �pi����ik� 
 � i� � ��� � ik � n� k 	 
� ����m�� where the order of the
components follow the order of the rows in A� and �pT 	 �
� pT �� The disaggregated
problems are


min�max�fTx

subject to ���

Ax 	 p

x � ��

and

min�max� �fT �x

subject to ���
�A�x 	 �p

�x � ��

where �fT 	 �f�� fT �� �xT 	 �x�� xT ��
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The duals of the above problems are


max�min�pTy

subject to ���

ATy � ��� f�

and

max�min��pT �y

subject to ���
�AT �y � ��� �f�

where �yT 	 �y�� yT �� Since the dual vector y multiplies the vector p in problem ����
it is appropriate to designate the components of y by yi����ik � 
 � i� � �� � ik �
n� k 	 
� ����m�

If we construct bounds for P �A� � ��� � An�� then we should take fT 	
�
� ���� 
�� and �fT 	 ��� fT � in the above problems� In this case the more detailed
form of problems ��� is the following

max�min�
mX
k��

X
��i������ik�n

pi����ikyi� ���ik

subject to �
��
mX
k��

X

 � i� � ��� � ik � n

yi����ik � ��� 
�

The more detailed form of problem ��� is the following

max�min�

	

�y� �

mX
k��

X
��i������ik�n

pi����ikyi����ik

�

�

subject to �

�

y� �
mX
k��

X

 � i� � ��� � ik � n

yi����ik � ��� 
�

The above probability approximation scheme was �rst proposed by George
Boole �
����� A detailed account on it was presented by Hailperin �
����� Kounias
and Marin �
���� made use of problem �

� to generate bounds for the case of
m 	 ��

Concerning problems ���� ���� ��� and ��� the following objective functions
are of particular interest


fi 	

�

 if i corresponds to a column in D� which has at least r 
�s
� otherwise�

�
��
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and

fi 	

�

 if i corresponds to a column in D� which has exactly r 
�s
� otherwise�

�
��

If we take the objective function given by �
��� then the optimum value
of the minimization �maximization� problem ��� gives lower�upper� bound for the
probability that at least r out of the n events occur� If we take the objective function
given by �
��� then the optimum value of the minimization�maximization� problem
��� gives lower�upper� bound for the probability that exactly r out of the n events
occur� Any dual feasible basis of any of the above problems provides us with a
bound� The sharp �best� bounds correspond to optimal bases�

In case of the objective function �
��� r 	 
� the optimum values of the
minimization problems ��� and ��� are the same� The optimum values of the maxi�
mization problems ��� and ��� are the same provided that the optimum value cor�
responding to ��� is smaller than or equal to 
� Otherwise� they are di�erent but in
that case we should take 
 as the upper bound�

� Connection Between the Aggregated and

Disaggregated Problems

Any feasible solution of problem ��� gives rise� in a natural was to a feasible solution
of problem ���� Similarly� any feasible solution of problem ��� gives rise to a feasible
solution of problem ����

Conversely� any feasible solution of the aggregated problem ��� or ��� gives
rise to a feasible solutions of the corresponding disaggregated problem� In fact� we
obtain problem ��� or ��� from problem ��� or ��� in such a way that we split rows
and columns� Splitting a column in the aggregated problem means its representation
as a sum of columns taken from the corresponding disaggregated problem�

Another question is that which bases in the aggregated problem produce
bases in the disaggregated problem� Consider problem ��� for the casem 	 �� Then�

in the corresponding disaggregated problem we have n �

�
n
�

�
rows� The ith and

jth columns in problem ��� split into

�
n
i

�
and

�
n
j

�
columns� respectively� A



Page � RRR �����

necessary condition that these columns form a basis in problem ��� is that

�
n
i

�
��

n
j

�
	 n �

�
n
�

�
� where i � j� This condition holds if i 	 
 and j 	 �� or

i 	 n � � and j 	 n� 
� On the other hand these are in fact bases in problem ����
as it is easy to see�

The structures of the dual feasible bases of problems ��� and ��� have been
discovered by Pr�ekopa �
���� 
���a� 
���b� for the cases of the objective functions
��� and ��� and some others� too� We recall one theorem of this kind�

Theorem ��� Let a�� ���� an designate the columns of the matrix of problem ����
I � f
� ���� ng� j I j	 m� and assume that the objective function coe�cients are�
c� 	 ��� 	 cn 	 
� Then� fai� i 	 Ig a dual feasible basis if and only if I has the
structure�

m even m odd
min problem i� i� 
� ���� j� j � 
 i� i� 
� ���� j� j � 
� n
max problem 
� i� i� 
� ���� j� j � 
� n 
� i� i� 
� ���� j� j � 
�

�

In view of this theorem� the �rst n�

�
n
�

�
columns of the matrix of problem

��� form a dual feasible basis� Similarly� the n �

�
n
�

�
columns in the second to

the last� and third to the last blocks of problem ��� form a dual feasible basis� The
corresponding dual vectors can be computed from the equations produced by the
aggregated problem


�y�� y���a�� a�� 	 �
� 
��

and
�y�� y���an��� an��� 	 �
� 
��

respectively� The detailed forms of these equations are


y� 	 

�y� � y� 	 


and

�n� ��y� �

�
n� �
�

�
y� 	 


�n� 
�y� �

�
n� 

�

�
y� 	 
�
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respectively� The �rst system of equations gives y� 	 
� y� 	 �
� and the second
one gives
 y� 	 ���n� 
�� y� 	 ����n� 
��n� ��� If we assign y� 	 
 to all vectors
in the �rst block and y� 	 �
 to all vectors in the second block of problem ���� then
we obtain the the dual vector corresponding to the �rst dual feasible disaggregated
basis� Similarly� if we assign y� 	 ���n � 
� to vectors in the block n � � and
y� 	 ����n� ���n� 
� to all vectors in block n� 
 of problem ���� then we obtain
the dual vector to the other dual feasible disaggregated basis� The �rst dual vector
gives the Bonferroni lower bound


P �A� � ��� �An� �
nX
i��

pi �
X

��i�j�n

pij 	 S� � S��

The second dual vector gives the lower bound

P �A� � ��� �An� �
�

n� 

S� �

�

�n� ���n � 
�
S��

The optimal lower bound corresponds to that dual feasible basis �ai� ai��� of problem
���� which is also primal feasible� This gives i 	 
 � b�S��S�c� and the bound is


P �A� � ���� An� �
�

i� 

S� �

�

i�i� 
�
S��

This formula was �rst derived by Dawson and Sanko� �
�����

If we want to �nd the sharp lower bound for P �A� � ����An�� by the use of
problem ��� for m 	 �� then we may start from any of the above mentioned two dual
feasible bases and use the dual method of linear programming� to solve the problem�
Since we want lower bound� we have a minimization problem� This suggests that
the second dual feasible basis is a better one to serve as an initial dual feasible basis�
The reason is that in blocks n � �� and n � 
 the coe�cients of the variables are
larger� and since it is a minimization problem we may expect that we are closer to
the optimal basis than in case of the �rst dual feasible basis�

Numerical Example� Let n 	 �� and assume that

p� 	 ���� p� 	 ���� p� 	 ���� p� 	 ���� p� 	 ���� p	 	 ����
p�� 	 ��
� p�� 	 ���� p�� 	 ���� p�� 	 ��
� p�	 	 ��
�
p�� 	 ���� p�� 	 ��
� p�� 	 ��
� p�	 	 ����
p�� 	 ���� p�� 	 ���� p�	 	 ����
p�� 	 ��
� p�	 	 ��
�
p�	 	 ��
�

We used the dual method to solve the minimization problem ���� As initial
dual feasible basis we chose the collection of vectors in blocks n�� 	 � and n�
 	 ��
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These vectors have indices ��� ���� ��� After twenty iterations an optimal basis was
found� the indices of which are


�� 
�� 
�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �
� ��� ��� ��� ���
The basic components of the primal optimal solution are

x�� 	 ���
� x�� 	 ����� x�	 	 ��
�� x�� 	 ����� x�� 	 ����� x�� 	 ���
� x�
 	 �����
x�� 	 ����� x�	 	 ����� x�
 	 ����� x�� 	 ����� x�� 	 ����� x�� 	 ����� x�� 	 ���
�
x�
 	 ���
� x�� 	 ����� x�� 	 ����� x�� 	 ����� x�� 	 ����� x�� 	 ���
� x�	 	 ���
�
The components of the dual optimal dual solution are


y� 	 ���� y� 	 ���� y� 	 ���� y� 	 ���� y� 	 ����� y	 	 ����
y�� 	 ����� y�� 	 ����� y�� 	 ����� y�� 	 ���� y�	 	 �����
y�� 	 ����� y�� 	 ����� y�� 	 ���� y�	 	 �����
y�� 	 ����� y�� 	 ���� y�	 	 �����
y�� 	 ���� y�	 	 �����
y�	 	 ����

The optimum value equals ���
�

We generated the right�hand side vector p in problem ��� in such a way
that we de�ned x� 	 �x�j � j 	 
� ���� ���T � where x�j is di�erent from zero only if
j 	 �k� k 	 
� ���� 
�� and for these j values we made the assignments x�j 	 �����

then set p 	 Ax�� In this case
P	�

j�� x
�
j 	 ���� and x�� 	 ����� The optimum value

of the maximization problem ��� is 
�

� A

Method of Partial Aggregation�Disaggregation

to Generate Bounds

Let E�� ���� Es be pairwise disjoint nonempty subsets of the set f
� ���� ng exhausting
the set f
� ���� ng� and introduce the notation nj 	j Ej j� j 	 
� ���� s�

Out of the events A�� ���� An we create s event sequences� where the ith one
is fAi� i 	 Ej � 
 � j � sg� Any of the events A�� ���� An is contained in one and only
one event sequence� For these event sequences we will use the alternative notations


A��� ���� A�n�

��� �
��

As�� ���� Asns�

Let �j designate the number of those events in the jth sequence� which occur� and
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S������s 	 E

��
��
��

�
���

�
�s
�s

��

�
��

� � �j � nj� j 	 
� ���� s�

We formulate the multivariate binomial moment problem


min�max�
n�X
i���

���
nsX
is��

fi� ���isxi����is

subject to �
��
n�X
i���

���
nsX
is��

�
i�
��

�
���

�
is
�s

�
xi����is 	 S������s

�j � �� j 	 
� ���� s� �� � ���� �s � m


i�� ���� is 
 xi����is � ��

The S������s ���������s � m� multivariate binomial moments can be computed from
the probabilities pi����ik �
 � i� � ��� � ik � m�� In order to simplify the rule how to
do this� assume that E� 	 f
� ���� n�g� ���� Es 	 fn� � ���� ns�� � 
� ���� n�� ���� nsg�
Then� we have the equality

S������s 	
X

pi�����i��� ���is����is�s �

where the summation is extended over those indices which satisfy the relations


 � i�� � ��� � i��� � n�

���

n� � ���� ns�� � 
 � is� � ��� � is�s � n� � ���� ns�

For example� if n 	 � and E� 	 f
� �� �g� E� 	 f�� �� �g� then

S�� 	 p�� p�� p�� S�� 	 p�� p�� p	� S�� 	 p��� p��� p��� S�� 	 p��� p�	� p�	�

S�� 	 p�� � p�� � p�	 � p�� � p�� � p�	 � p�� � p�� � p�	�

S�� 	 p��� � p��� � p��	 � p��� � p��� � p��	 � p��� � p��� � p��	�

S�� 	 p���� � p���	 � p���	 � p���� � p���	 � p���	 � p���� � p���	 � p���	

etc�

We have yet to formulate suitable objective functions for problems �
���
These depend on the type of bounds we want to create� Suppose that we want to
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create bounds for two types of logical functions of events

�i� at least r out of A�� ���� An occur� where r � 
�
�ii� exactly r out of A�� ���� An occur� where � � r � n�

Then� we formulate the objective functions as follows� In case of �i�


fi����is 	 
� if i� � ���� is � r

�
��

fi����is 	 �� if i� � ���� is � r�

and in case of �ii�


fi����is 	 
� if i� � ���� is 	 r

�
��

fi����is 	 �� if i� � ���� is �	 r�

Problems �
�� reduce to problems ���� if s 	 
� and to problems ���� if s 	
n� Problems �
�� are disaggregated counterparts of problems ���� and aggregated
counterparts of problems ���� The objective functions �
��� and �
�� are counterparts
of the objective functions ���� ���� and �
��� �
��� respectively�

Let us introduce the notations

P�r
 	 probability that at least r out of A�� ���� An occur�
P�r� 	 probability that exactly r out of A�� ���� An occur�
Further notations are presented in the following tableau


optimum value Type� and problem Objective function
L�r
 min� ��� �
��
U�r
 max� ��� �
��
L�r� min� ��� �
��
U�r� max� ��� �
��
l�r
 min� �
�� �
��
u�r
 max� �
�� �
��
l�r� min� �
�� �
��
u�r� max� �
�� �
��

By construction� we have the following inequalities


l�r
 � L�r
 � P�r
 � U�r
 � u�r
 �
��

l�r� � L�r� � P�r� � U�r� � u�r�� ����

In fact� the problems with optimum values l�r
� and u�r
 �l�r�� and u�r�� are aggrega�
tions of problems with optimum values L�r
� and U�r
 �L�r�� and U�r��� respectively�
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The duals of problems �
�� are the following


max�min�
X

�j � �� j � �� ���� s
� � �� � ���� �s � m

y������sS������s

subject to ��
�

X
�j � �� j 	 
� ���� s


 � �� � ���� �s � m

y������s

�
i�
��

�
���

�
is
�s

�
� ��� fi����is

� � ij � nj� j 	 
� ���� s

i� � ���� is � 
�

In the left�hand sides of the constraints of problems ��
� there are values
of a polynomial of the variables i�� ���� is� de�ned on the lattice points of the set
�s

j����� nj�� Replacing zj for ij� the m�degree polynomial takes the form

P �z�� ���� zs� 	
X

�j � �� j 	 
� ���� s
�� � ���� �s � m

y������s

�
z�
��

�
���

�
zs
�s

�
� ����

Problems �
�� provide us with a method to construct polynomials
P �z�� ���� zs� for one sided approximation of the function fz����zs which we will also
designate by f�z�� ���� zs�� Any polynomial can be used to create bound� provided
that it runs entirely below or above the function f�z�� ���� zs��

If this latter condition holds� then the bound can be obtained in such a way
that we write up the polynomial in the form of ����� subdivide the set f
� ���� ng into
pairwise disjoint� nonempty subsets E�� ���� Es� de�ne the S������s accordingly� and
then make the following assignment
 the constant term� if di�erent from zero� is
assigned to S����� 	 
 in problem �
��� y������s is assigned to S������s in problem �
��
for every ��� ���� �s for which �j � �� j 	 
� ���� s� �� � ���� �s � m� Then� we form
the products of the assigned quantities and the S������s� the sum of the products is
the bound�
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� Construction of Polynomials for One�Sided

Approximations

In this section we describe a general method to construct polynomials of the type
���� which satisfy ��
��

The method consists of construction of dual feasible bases to problem �
���
Each dual feasible basis of problem �
�� determines a dual vector satisfying the
inequalities ��
�� hence it determines a polynomial ����� which approximates the
function f in a one�sided manner�

First we make a general remark� Suppose that the matrix A of the linear
programming problem
 min cTx� subject to Ax 	 b� x � �� has rank equal to its
number of rows m� Let T be an m � m nonsingular matrix and formulate the
problem
 min cTx� subject to �TA�x 	 Tb� x � �� Then a basis is primal �dual�
feasible in one of these two problems if and only if it is primal �dual� feasible in the
other one� In fact� if A 	 �a�� ���� an�� then we have the relations

�TB���Tb 	 B��b

ck � cTB�TB�
��Tak 	 ck � cTBB

��ak�

which imply the assertion�

Let us associate with problem �
�� a multivariate power moment

problem in such a way that we replace i��� � ���� i�s
s for

�
i�
��

�
���

�
is
�s

�
and

the power moment 	�� ����s for the binomial moment S������s on the right�
hand side� A single linear transformation takes the column vector in

�
��


��
i�
��

�
���

�
is
�s

�

 �j � �� j 	 
� ���� s� �� � ���� �s � m

�
� into the vector

�i��� ���i�s
s 
 �j � �� j 	 
� ���� s� �� � ���� �s � m� The same transformation applies

to the right�hand sides� The matrix of this transformation is nonsingular �it is also
triangular�� Thus� the above remark applies� and therefore a basis in the multivariate
binomial moment problem is primal �dual� feasible if and only if the corresponding
basis in the power moment problem primal �dual� feasible�

In view of the above fact the construction of dual feasible bases can be
carried out by the use of the results concerning the multivariate power moment
problems� In this respect we will make use of the results of the paper by Pr�ekopa
�
����� which is entirely devoted to this problem� We recall a few facts from that
paper�
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Let us associate the lattice point �i�� ���� is� 	 Rs with the vector

� �
i�
��

�
���

�
is
�s

�

 �j � �� j 	 
� ���� s� �� � ���� �s � m

�

of the matrix of the equality constraints of problem �
��� Let B� and B� designate
the sets of vectors corresponding to the sets of lattice points

f�i�� ���� is� j ij � �� j 	 
� ���� s� i� � ���� is � mg� ����

and

f�n� � i�� ���� ns � is� j ij � �� j 	 
� ���� s� i� � ���� is � mg� ����

respectively� In ����� and ���� we assume that m � nj� j 	 
� ���� s� It is shown
in Pr�ekopa �
���� that both B� and B� are bases in problem �
��� The following
theorem summarizes the results in Theorems ��
 and ��� of Pr�ekopa �
�����

Theorem ��� The bases B� and B� are dual feasible bases in the following types
of problems �	
��

Case 	� all divided di�erences of f of total order m� 
 are nonnegative

m� 
 even m� 
 odd
B� min min
B� min max�

Case �� all divided di�erences of f of total order m� 
 are non�positive

m� 
 even m� 
 odd
B� max max
B� max min�

�

Any dual feasible basis produces a one�sided approximation for f � hence also
a bound� A dual feasible basis in a maximization �minimization� problem produces
an upper �lower� bound� If a bound of this type is not satisfactory �e�g� a lower
bound may be negative� an upper bound may be greater than 
� or a lower �upper�
bound is not close enough to a known upper �lower� bound�� then we regard the
basis as an initial dual feasible basis� and carry out the solution of the problem by
the dual method� This way we obtain the best possible bound� at least for a given
subdivision E�� ���� Es of the set f
� ���� ng�
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Note that problem ��� has 
 � n �

�
n
�

�
� ��� �

�
n
m

�
equality con�

straints and �n variables� whereas problem �
�� has

�
s�m
m

�
constraints and

�n��
�����ns�
� variables� Thus� problem �
�� has a much smaller size than prob�
lem ���� For example� if n 	 ��� s 	 �� n� 	 n� 	 
�� m 	 �� then problem ��� has
sizes 
��
 and 
��������� whereas problem �
�� has sizes 
� and 
�
�

To obtain the best possible bound which can be given by our method� one
has to maximize �minimize� the lower �upper� bound with respect to all subdivisions
E�� ���� Es of the set f
� ���� ng� In practice we use only a few trial subdivisions� and
choose that one which provides us with the best bound�

Next� we consider the objective function �
�� for the cases of r 	 
 and
r 	 n� If r 	 n� then the function �
�� is the same as the function �
��� Thus� if
r 	 
� then we look at

fi������is 	

	�

��

� if �i�� ���� is� 	 ��� ���� ��


 otherwise�
����

and if r 	 n� then we look at

fi������is 	

	�

��


 if �i�� ���� is� 	 �n�� ���� ns�

� otherwise�
����

It is easy to check that all divided di�erences of any order of the function
���� are nonnegative� and if m� 
 is even �odd�� then all divided di�erences of the
function ���� of total order m � 
 are non�positive �nonnegative�� Combining this
with Theorem ��
� we obtain

Theorem ��� The bases B� and B� are dual feasible bases in the following types
of problems �	
��

the objective function is given by ��
�

m� 
 even m� 
 odd
B� max min
B� max max�

the objective function is given by ��
��
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m� 
 even m� 
 odd
B� min min
B� min max�

�

Note that the problems with objective functions ����� and ���� can be trans�
formed into each other� The optimum value of the problem with objective function
���� is equal to 
��optimum value of the problem with objective function ����� and
S������s replaced by �S������s�� The binomial moments �S������s correspond to the com�
plementary events �A�� ���� �An in the same way as S������s correspond to A�� ���� An�

The polynomials determined by the bases B�� and B� can be taken from
Pr�ekopa �
����� They are multivariate Lagrange interpolation polynomials with
base points ���� and ����� respectively� We designate them by L��z�� ���� zs�� and
L��z�� ���� zs�� respectively� and present them here in Newton�s form


L��z�� ���� zs� 	

����

X
i� � ���� is � m

� � ij � nj � j 	 
� ���� s

��� ���� i�� ����� ���� is� f �
sY

j��

ij��Y
h��

�zj � h�

and

L��z�� ���� zs� 	

����

X
i� � ���� is � m

� � ij � nj � j 	 
� ���� s

�n� � i�� ���� n�� ���ns � is� ���� ns� f �
sY

j��

nj��Y
h�nj�ij��

�zj � h��

In case of function ���� we have L��z�� ���� zs� � 
� and

L��z�� ���� zs� 	
X

��i������is�m

��
�i������is��
�
z�
i�

�
���

�
zs
is

�
� ����

In case of function ���� we have L��z�� ���� zs� � �� and

L��z�� ���� zs� 	


 �
X


 � i� � ���� is � m
� � ij � nj� j 	 
� ���� s

��
�i������is
�
n� � z�

i�

�
���

�
ns � zs

is

�
� ����
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Theorem ��� tells us the following� If f is the function ���� and L��z�� ���� zs�
is the polynomial ����� then

L��z�� ���� zs� � ��� f�z�� ���� zs�� ��
�

if m� 
 is even �odd�� if L��z�� ���� zs� is the polynomial ����� then

L��z�� ���� zs� � f�z�� ���� zs�� ����

no matter if m � 
 is even� or odd� If f is the function ����� then we have the
inequalities

L��z�� ���� zs� � f�z�� ���� zs�� ����

no matter if m� 
 is even� or odd� and

L��z�� ���� zs� � ��� f�z�� ���� zs�� ����

if m� 
 is even �odd��

� Numerical Examples

Example �� Let n 	 ��� n� 	 n� 	 
�� m 	 �� and assume that we have obtained
the following numbers


S�� 	 S�� 	 ���� S�� 	 S�� 	 
�� S�� 	 ������ S�� 	 S�� 	 �
� S�� 	 S�� 	 ���

The polynomial ���� takes the form

L��z�� z�� � z� �

�
z�
�

�
�

�
z�
�

�
� z� � z�z� ����

�

�
z�
�

�
z� �

�
z�
�

�
� z�

�
z�
�

�
�

�
z�
�

�
�

hence the dual vector corresponding to the basis B� equals


y 	 �� 
 � 
 
 
 � 
 
 � 
 
 
�T � ����

The polynomial ���� takes the form

L��z�� z�� � 
� ����

hence the dual vector corresponding to the basis B� equals


y 	 �
 � � � � � � � � ��T � ����
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Note that B�� and B� correspond to the lattice points f��� ��� ��� 
�� ��� ��� ��� ���
�
� ��� �
� 
�� �
� ��� ��� ��� ��� 
�� ��� ��g� and f�
�� ��� �
�� ��� �
�� ��� �
�� 
��� ��� ���
��� ��� ��� 
��� ��� ��� ��� 
��� ��� 
��g� respectively�

By ���� we have that L��z�� z�� � f�z�� z��� which is a trivial inequality in
view of ����� Since m� 
 	 � is even� by ��
� we have that L��z�� z�� � f�z�� z��
for all �z�� z��� Thus� both B�� and B� are dual feasible bases in the maximization
problem �
���

The dual vector ���� produces the trivial upper bound yTS 	 

����� where

S 	 �S��� S��� S��� S��� S��� S��� S��� S��� S��� S���
T �

The dual vector ���� produces the upper bound yTS 	 
� which is at the same time
the optimum value of the maximization problem �
��� and the sharp upper bound
for P ����

i��Ai��

The sharp lower bound is obtained by the solution of the minimization
problem �
��� We obtained the following optimal solution�

x�� 	 ��

� x�� 	 ��������� x�� 	 ��
���
�� x�� 	 �� x�� 	 �����

x�	 	 ��������� x�
 	 �� x�� 	 ��������� x���� 	 �� x����� 	 �����

This provides us with the lower bound


P ����
i��Ai� � 
� x�� 	 �����

The dual vector corresponding to the optimal basis is


y 	 ��� ������������� ������� ���������� ��������������� ������� ���

This determines the polynomial

L��z�� z�� 	 ����z� � ������

�
z�
�

�
� ������

�
z�
�

�
� ���z� � ����z�z� �

������

�
z�
�

�
z� � ������

�
z�
�

�
� ������z�

�
z�
�

�
�

which satis�es L�z�� z�� � f�z�� z�� for all �z�� z���

Example �� In this example we consider �� events for which all binomial
moments of order up to 

 have been computed� The �� events have been subdivided
into two ���element groups and all bivariate binomial moments of total order at most
� have been computed�
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Lower and upper bounds for the probability that at least one out of the ��
events occurs have been computed based on the two sets of data� The bounds are
displayed for all lower order binomial moments� too� Thus� we have two sequences
of bounds� The bounds in the �rst sequence are optimum values of problems ����
where the objective function is ��� and r 	 
� The bounds in the second sequence
are optimum values of problems �
��� where the objective function is �
�� and r 	 
�
The latter problem is a partially disaggregated problem� as compared to problem
����

The results show that much better bounds can be obtained in the latter
case� The bounds obtained from the partially disaggregated problem for m 	 � are
better than those obtained from the aggregated problem for m 	 

� The data and
the bounds are presented below�

Univariate binomial moments� �� events

S� 
����
S� ��
��
S� ������
S� �������
S� 
�������
S� �

�����
S	 ���������
S� 
���������
S
 ���������

S� ��������
��
S�� �����������
S�� 
�����������
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Bivariate binomial moments when the �� events are subdivided into two

���element groups

�rst second group
group � � � 
 � � �
� ���� ��	
 ���� ����	 ����� ����
� 
�����
� ���
 
��� 
���� �����	 �	���� �������
� ����� 
���� �	��	� ������� ������	

 �����	 �����	 ������� ��������
� ����
� �	���� ������	
� ������� �������
� 
�
	��	

Bounds based on univariate binomial moments

m lower bound upper bound

 �����
� 
������
� ������� 
������
� ������� 
������
� �����
� 
������
� ������� 
������
� ������� �������
� ������� �������
� ������� ���
���
� ����
�� ���

��

� ����
�
 ������



 ������� �������

Bounds based on bivariate binomial moments

m lower bound upper bound

 ���

�� 
������
� ������� 
������
� ������� ���
���
� ������� ������

� ������� �������
� ������� �����
�

Example �� In this example we consider �� events �di�erent from those of
Example �� which we subdivide into two ���element groups� We have computed the
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univariate binomial moments of order up to 
� and the bivariate binomial moments
of total order up to �� Based on these� two sequences of bounds have been computed�
The bounds in the �rst sequence are optimum values of problems ��� with objective
function���� where r 	 �� The bounds in the second sequence are optimum values
of problem �
�� with objective function �
��� where r 	 �� The results show the
usefulness of using problem �
�� rather than problem ��� to create bounds� The
data and the bounds are presented below�

Univariate binomial moments� �� events

S� 
����
S� 
���
�
S� 

���
�
S� �������
S� ��������
S� 
��������
S	 ���������
S� 
���������
S
 ����������
S� �����������
S�� ��
��������
S�� 
���
�������
S�� ������������
S�� ������������
S�� 
����������


S�� �
������
����
S�	 �������������

Bivariate binomial moments when the �� events are subdivided into two

���element groups

�rst second group
group � � � 
 � � � � �
� ��� ��� �
�� 
��
 ����� �	��� ����� ������ ������
� 	�
 ���� ����� 
���� ������ �	���� �����	 ��	����
� ���� ��
�� ����� ���	�� 	��	�
 ��	
��� �������

 ����� 	���� 
����	 �
����� �	����� ��������
� 
���� �
���� ������� ������� �	�
	���
� ����� �	���� �	����� ����
���
� ���
�� 	��
�� �������
� �����	 ��	����
� �
���	
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Bounds based on univariate binomial moments

m lower bound upper bound

 ������� 
������
� ��
���� �������
� ����
�� �������
� ������
 �������
� ������� �������
� �����
� ����
��
� ������� ����
��
� ������� ����
��
� ����
�� ����
��

� ������� �������


 ������� ������


� ������� �������

� ������� �������

Bounds based on bivariate binomial moments

m lower bound upper bound

 ������� 
������
� ��
���� �������
� ������� �������
� ������� �������
� ������� ����
��
� ������� ����

�
� ���
��� �������
� ������� �������

� Upper Bounds Based on Graph Structures

The bounds given in Section � can be interpreted as bounds based on special hy�
pergraphs� Let

X
i� � ���� is � m

� � ij � nj � j � �� ���� s

ai����is

�
z�
i�

�
���

�
zs
is

�

be any polynomial� Let N 	 f
� ���� ng� and Nj � N� j 	 
� ����m with N 	 �m
j��Nj�

j Nj j� nj� and 
j� �	 j� 
 Nj� �Nj� 	 �� Let Ei����is be the set of all subsets of N
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containing exactly ij elements from Nj� j 	 
� ���� s� Then we de�ne the hypergraph
as follows


H 	 �N� E��

where
E 	

�
i� � ���� is � m

� � ij � nj� j 	 
� ���� s

Ei����is�

All hyperedges lying in Ei����is are weighted by ai����is� These weights form a dual
feasible vector of problem ���� The scalar product of that and the right�hand side
vector of problem ��� provides us with the lower or upper bounds� If m 	 �� then
only nodes and pairs of nodes have weights� To each node we assign the weight 
�

In what follows� the components of an

�
n

�

�
�vector are indexed by



� 
�� ���� �n� 
�n or 
� ����

�
n

�

�
depending on which notation is more convenient�

The following lemma is very simple� the proof is omitted�

Lemma 	�� The

�
n

�

�
�component vector �
� 
� ���� 
��w��� �����wn���n� is feasible

in the minimization problem ��� if and only if for all S � N containing at least two
elements the inequality

P
i�j�S� i�j wij �j S j �
 holds� �

Remark� It is easy to see� that any feasible solution to the problem ���
has w�� ���� wn � 
� Lemma ��
 implies that if w� 	 ��� 	 wn � 
 then 

 � i� j �
n� i �	 j 
 wij � 
�

The above lemma can be applied in the following way� Let G��N�E�� and
G��N�E�� be two graphs on the vertex set N � Assume that to each fi� jg� i� j 	
N� i �	 j a real number wij is assigned and the following conditions are satis�ed

�i� E� � E� 	 ��
�ii� if fi� jg 	 E� then wij 	 
�
�iii� if fi� jg 	 E� then wij � ��
�iv� if fi� jg �	 E� � E� then wij 	 ��
�v� is S � N� j S j� �� then

P
i�j�S� i�j wij �j S j �
�

The �rst bound which can be discussed in the framework of the above
lemma is Hunter�s bound �see Hunter �
������ Let G� 	 T �N�E� be any tree� and
G� 	 �N� ��� Let

wij 	

�

 if fi� jg 	 E
� otherwise�
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Let S � N� j S j� � As any induced subgraph of a tree is a forest� it follows thatP
i�j�S�i�j wij �j S j �
� Thus� the conditions of the lemma are satis�ed� This means

that any tree determines an upper bound� and Hunter�s bound is the best among
them� Thus� Lemma ��
 generalizes that bound�

Lemma 	�� If n � � then

P �A� � ��� �An� � S� � max
��k�l�n

X
i��k�l

�pik � pli� � �n � ��pkl� ����

Proof For a �xed k and l let G� be the complete bipartite graph connecting k and
l with all other vertices� G� the edge fk� lg� and wkl 	 � � n� Thus� G� has �n � �
edges� Let S � N be any subset containing at least two elements� If k� l �	 S� then
the subgraph of G� induced by S has no edge� thus�

X
i�j�S�i�j

wij 	 ��

If S contains only one of k� and l� then

X
i�j�S�i�j

wij 	 j S j �
�

Finally� if S contains both k� and l� then

X
i�j�S�i�j

wij 	 � j S j �� � � n � j S j � 
�

Thus� the conditions of Lemma ��
 are satis�ed in all cases� �

As the structure of the graph obeys the above mentioned hypergraph
scheme� the polynomial

g�z�� z�� 	 z� � z� � z�z� � �n� ��

�
z�
�

�

satis�es the condition



z�� z� 	 Z� 
 �z�� z�� �	 ��� ��� z� � n� �� z� � � implies g�z�� z�� � 
�

Lemma 	�� Assume that n � �� Let G��N�E� be any 	�tree and C 	
ffu�� u�g� fu�� u�g� ���� fuk��� ukg� fuk� u�gg be the unique simple circuit contained in
G�� Assume that k � �� Let s� t be positive integers with 
 � s � t � k�
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and t � s �� 

�mod k�� Let G� be a graph containing a single edge such that
E 	 ffus� utgg� Finally� let

wij 	

	�

��


 if i � j and fi� jg 	 E�

�
 if i � j and fi� jg 	 E�

� otherwise�

Then we have the inequality�

P �A� � ��� �An� � S� �
X

fi�jg�E��i�j

pij � pusut � ����

Proof Any subgraph of G� induced by a set S � N contains at most j S j �

edges� except C� which contains as many edges as vertices� But even in this case
the necessary inequality� given in Lemma ��
� holds because of the presence of the
��
��valued edge fus� utg� and thus� the conditions of Lemma ��
 are satis�ed� �

The following method is an approximation algorithm for determining the
best bound of this type� The algorithm works on the complete graph Kn�N�E��
The edge fi� jg of Kn is weighted by pij�

STEP 

 Find a maximum weight spanning tree of Kn� designate it by
T �N�ET ��

STEP �
 For any edge fi� jg 	 E nET let Cij 	 ffuij� � u
ij
� g� ���� fu

ij
lij��

� uijlijg�

fuijlij � u
ij
� gg be the unique simple circuit of the graph Tij�N�ET � fi� jg�� where lij is

the length of Cij� Then� let

�i�� j�� s�� t�� 	 argmax fpij � pst 
 lij � �� 
 � s � t � lij� t� s �� 

 mod lijg� ��
�

If pi�j� � ps�t� 
 �� then the resulting bound based on the graphs G 	
Ti�j� and G��N� fs�� t�g� is an improvement on Hunter�s bound� The order of the
algorithm is O�n��� In ��
� the number of pairs fi� jg to be considered is O�n���
The determination of Cij is equivalent with �nding the unique simple path going
from i to j in T which can be done in O�n� steps as the sum of the degrees of the
vertices in T is �n � �� Then� the selection of the best possible pair fs� tg takes
O�n�� operations�

A special case of this type of upper bound is obtained by restricting G� to
be a Hamiltonian circuit� Let H be the set of all Hamiltonian circuits� In this way
the following upper bound can be obtained


P �A� � ��� �An� � S� � max
H�H

X
fi�jg�H�i�j

pij � min
fs�tg��H

pst� ����
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The second term of the right�hand side is equivalent to a traveling salesman problem
which is known to be NP�hard� But plenty of good and fast heuristics are available
to generate approximate solutions�

� Comparison with the Aggregated Upper Bound

The optimal value of the maximization problem ��� with objective function ��� and
r 	 
� and m 	 � is

S� �
�

n
S�

as it is shown by Kwerel �
���a�� Sathe� Pradhan and Shah �
����� and Boros�
Pr�ekopa �
����� In this section a general lemma is proved� which makes it easy
to prove� for a wide class of upper bounds� that they are at least as good as the
corresponding aggregated ones�

Lemma 
�� Let N� 	 ffi� jg j 
 � i� j � n� i �	 jg� N� 	 f
� �� ���� rg� where

r 	

�
n
�

�
� and assume that the function � 
 N� � N� de�nes a one�to�one cor�

respondence between the two sets� Let w�� ���� wr be any real numbers satisfying the
equation

rX
j��

wj 	 n� 
�

Finally� let � be any permutation of the set f 
� ���� n g� Then we have the inequality�

max
��

n��X
i��

nX
j�i��

w��i�j
p����i
���j

 �
�

n
S�� ����

Proof The left�hand side of the inequality is the maximum of some numbers� The
average of the same numbers is




n�

X
��

n��X
i��

nX
j�i��

w��i�j
p����i
���j

�

The symmetricity of the expression implies that all p�s must have the same coe�cient
in the sum� which is Pn��

i��

Pn
j�i�� w��i�j
�
n
�

� 	
�

n
�
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as there are n� permutations� the number of w�s is

�
n

�

�
� and their sum is n � 
�

Thus� the above average is equal to the right�hand side of the inequality� Hence the
statement follows immediately� �

Remark The proof does not use any property of the p�s� hence the state�

ment holds for any vector p 	 R
n�n���

� � and S� 	
Pn��

i��

Pn
j�i�� pij �

In the statement the w�s represent a �xed structure and the permutation
of the p�s ensures that the best sample is chosen which is isomorphic with the �xed
structure� For example� the statement that Hunter�s bound is at least as good as the
aggregated bound� follows from the lemma in two steps� First� the vector w is �xed
in such a way that it represents a certain tree structure� The best tree is selected
which is isomorphic with this structure� Then� we look at all tree structures and
the best of bests gives Hunter�s bound� But it follows from the lemma that the best
of any tree structure is at least as good as the aggregated bound�

Assume that if the vector �
� 
� ���� 
��w�� �����wT
r � 	 Rr�n represents a dual

feasible solution to problem ���� Then Lemma ��
 is applicable and

S� �max
��

n��X
i��

nX
j�i��

w��i�j
p����i
���j

 � S� �
�

n
S��

	 Some Special Problem Classes

In this section we show that all upper bounds mentioned in Section � have at least
one problem class containing for every n a problem such that the upper bound
coincides with the actual value of P �A� � ��� �An��

Lemma ��� If the vector �
� ���� 
��w��� �����wn���n�T 	 R
n�n���

� is a feasible solu�
tion of the dual of the maximization problem� and for every j the inequality wj 
 �
implies that wj 	 
� then there is a problem instance such that the upper bound is
equal to P �A� � ���� An��

Proof The upper bound is

S� �
nX

j�i��

wijpij �
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If A�� ���� An are events such that pi 	 
�n �
 � i � n� and if i �	 j then

pij 	

�
�
n�

if wij 	 

� if wij � ��

����

then the following equations hold

P �A� � ��� �An� 	 
�

P
�i�j
�i�j�wij�� 


n�
	 S� �

n��X
i��

nX
j�i��

wijpij �

i�e�� the statement of the lemma is true� These eventsA�� ���� An can be constructed in
the following way� Let 
�� ���� 
n� be n

� mutually exclusive events� Let the probability
of each 
i be 
�n�� Let A� 	 
� � ��� � 
n� If w�� � �� then we de�ne A� 	

n�� � ����
�n� otherwise let A� 	 
� �
n�� � ����
�n��� Assume that A�� ���� Ai��

are determined and Aj 	 
kj� � ��� � 
kjn if 
 � j � i� 
� i�e� the set of the indices
of 
l�s contained in the composite event Aj is f kj�� ���� kjn g� Let f l�� ���� lt g 	 f j 


 � j � i�
� wji 	 
 g� Then� let Ai 	 
kl�i � ����
klti �
ki���n��� ����
ki���n�n�t�

Thus� Ai and Aj are mutually exclusive if wij � �� otherwise pij 	 
�n�� �
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