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Abstract. Given n arbitrary events in a probability space, we assume that the
individual probabilities as well as the joint probabilities of up to m events are known,
where m < n. Using this information we give lower and upper bounds for some
Boolean functions of events (e.g., at least one, or exactly one occurs). The available
information can be cast in the form of a linear equality-inequality system. The
bounds are obtained in such a way that we formulate linear objective functions and
find feasible solutions to the dual problem.
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1 Introduction

Let Ay, ..., A, be arbitrary events in some probability space, and introduce the no-
tations

Sk = Z pilmik? k = 1,...,71,.

1S1,1<<1,k S’I’L

Let Sy = 1, by definition. If v designates the number of those events (among
Ay, ..., A,) which occur, then we have the relation:

El(Z)] = Sp, k=0,...,n (1)

The equations (1) can be written in the more detailed form

Z(Z})’l)l == Sk, k:(),...,n,

where v; = P(v =1), it =0,...,n.

The values (1) are called the binomial moments of v. If we know all binomial
moments of v, then the probabilities vg,...,v,, and also the value of any linear
functional acting on the probability distribution vy, ...,v,, can be determined. If,
however, we only know S, ..., S;,, where m < n, then linear programming problems
provide us with lower and upper bounds on the true value of this functional. We
formulate two closely related types of linear programming problems:

n
min(max) Z Cix;

=1
subject to (2)
- ?
Z T, = Sk, k= 1, ,m
=1 ( k )
z; >0, 1=1,....n,

and

min(max) Z Cix;
7=0

subject to (3)
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These provide us with lower and upper bounds on the linear functionals -7 ; ¢;v;,
and Y1, ¢;v;, respectively. Note that the first constraint in problem (3) does not
appear in problem (2). The following objective functions are of particular interest:

c=¢c=..=¢_1=0, ¢, =...=¢c, =1 (4)

¢, =1, ¢g=01or i #r. (5)

If we use the objective function coefficient (4) in the linear programs (2), (3),
then the optimum values provide us with lower and upper bounds for the probability
that at least r out of n events occur. The objective function with coeflicients (5)
provides us with bounds for the probability that exactly » events occur. Any dual
feasible basis of any of the problems (2) and (3) provides us with a bound. The best
bound corresponds to the optimal basis which is both primal and dual feasible, and
is called sharp.

Lower and upper bounds for the probability that at least one out of n events
occurs, based on the knowledge of 51, ..., S, were found by Bonferroni (1937). These
bounds are not sharp. For the case of m = 2, sharp lower bound for the probability
that at least one out of n events occurs was proposed by Dawson and Sankoff (1967).
For the case of m < 3, Kwerel (1975a,b) has obtained sharp lower and upper bounds.
He applied linear programming theory in his proofs. For the case of m = 2 other
results are due to Galambos (1977), and Sathe, Pradhan and Shah (1980). For
a general m, the linear programs with objective functions (4), and (5) have been
formulated and analyzed by Prékopa (1988, 1989). He also presented simple dual
type algorithms to solve the problems. Boros and Prékopa (1989) utilized the results
and presented closed form bounds.

Problems (2), and (3) use the probabilities p;, ;, in aggregated forms, i.e.,
S1, ..., Sm are used rather then the probabilities in these sums. This way we trade
information for simplicity and size reduction of the problems. We call (2) and (3)
aggregated problems.

The linear programs which make us possible to use the probabilities p;, . s, ,
1 <3 < ... < i < nindividually, will be called disaggregated, and can be formu-
lated as follows. Let Dy be the n x 2" — 1 matrix, the columns of which are formed
by all 0,1-component vectors which are different from the zero vector.

Let us call the collection of those columns of D, which have exactly k
components equal to 1, the k** block, 1 < k < n. Assume that the columns in
D, are arranged in such a way that first come all vectors in the first block, then
all those in the second block, etc. Within each block the vectors are assumed to
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be arranged in a lexicographic order, where the 1’s precede the 0’s. Let dy,....d,
designate the rows of Dy, and define the matrix Dy, 2 < k < m, as the collection
of all rows of the form: d;,...d;,, where the product of the rows d;,,...,d;, is taken
component-wise. Assume that the rows in Dy are arranged in such a way that
the row subscripts (i1, ..., ¢;) admit a lexicographic ordering, where smaller numbers
precede larger ones. Let

D,

A =
Dy,

1 17

0 D
A = ,

0 D,

where 1 is the 2" — 1-component vector, all components of which are 1, and the
zeros in the first column mean zero vectors of the same sizes as the numbers of rows
in the corresponding D; matrices.

Let p7 = (pi, 4,, 1 <41 < ...<ip <m, k=1,....m), where the order of the
components follow the order of the rows in 4, and p7 = (1, pT). The disaggregated
problems are:

min(max) fz
subject to (6)

Ax = p

x>0,

and

min(max)fT:E
subject to (7)

Az = p

z > 0,

where fT = (fo, f7), &7 = (z0,27).

8



PAGE 4 RRR 36-95

The duals of the above problems are:

max(min)py
subject to (8)
ATy <(2) f,
and
max(min)p’ g
subject to (9)

ATy < (>) f,

where §7 = (yo,y7T). Since the dual vector y multiplies the vector p in problem (8),
it is appropriate to designate the components of y by y;, 4., 1 <41 < .. <45 <
n, k=1,...,m.

If we construct bounds for P(A4; U...U A,), then we should take fr =
(1,...,1), and fT = (0, ) in the above problems. In this case the more detailed
form of problems (8) is the following

max(min) » > Diy iy Yi ..y

k=11<41 <. <5 <n
subject to (10)

i > Yiriy = (=) 1.

=1 1<y <. <y <n
The more detailed form of problem (9) is the following

max(min) {yo + > > pil...ikyil...ik}

k=11<31<... < <n
subject to (11)

Yo + > Yi,a, < () 1.

=1 1< <. << n

The above probability approximation scheme was first proposed by George
Boole (1854). A detailed account on it was presented by Hailperin (1956). Kounias
and Marin (1976) made use of problem (11) to generate bounds for the case of
m = 2.

Concerning problems (6), (7), (8) and (9) the following objective functions
are of particular interest:

(12)

£ = 1 ifi corresponds to a column in D; which has at least r 1’s
* 1 0 otherwise,
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(13)

fi = 1 if i corresponds to a column in D; which has exactly r 1’s
' 0 otherwise.

If we take the objective function given by (12), then the optimum value
of the minimization (maximization) problem (7) gives lower(upper) bound for the
probability that at least  out of the n events occur. If we take the objective function
given by (13), then the optimum value of the minimization(maximization) problem
(7) gives lower(upper) bound for the probability that exactly r out of the n events
occur. Any dual feasible basis of any of the above problems provides us with a
bound. The sharp (best) bounds correspond to optimal bases.

In case of the objective function (12), » = 1, the optimum values of the
minimization problems (6) and (7) are the same. The optimum values of the maxi-
mization problems (6) and (7) are the same provided that the optimum value cor-
responding to (6) is smaller than or equal to 1. Otherwise, they are different but in
that case we should take 1 as the upper bound.

2 Connection Between the Aggregated and
Disaggregated Problems

Any feasible solution of problem (6) gives rise, in a natural was to a feasible solution
of problem (2). Similarly, any feasible solution of problem (7) gives rise to a feasible
solution of problem (3).

Conversely, any feasible solution of the aggregated problem (2) or (3) gives
rise to a feasible solutions of the corresponding disaggregated problem. In fact, we
obtain problem (6) or (7) from problem (2) or (3) in such a way that we split rows
and columns. Splitting a column in the aggregated problem means its representation
as a sum of columns taken from the corresponding disaggregated problem.

Another question is that which bases in the aggregated problem produce
bases in the disaggregated problem. Consider problem (2) for the case m = 2. Then,

in the corresponding disaggregated problem we have n + ") rows. The ** and

2

7" columns in problem (2) split into ( 7; ) and ( 7; ) columns, respectively. A
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necessary condition that these columns form a basis in problem (6) is that ( 7; ) +

(7;) =n+ ( g ), where ¢+ < j. This condition holds if ¢ = 1 and j = 2, or

i=n—2and j =n — 1. On the other hand these are in fact bases in problem (6),
as 1t 1s easy to see.

The structures of the dual feasible bases of problems (2) and (3) have been

discovered by Prékopa (1988, 1990a, 1990b) for the cases of the objective functions
(4) and (5) and some others, too. We recall one theorem of this kind.

Theorem 2.1 Let aq,...,a, designate the columns of the matriz of problem (2),

I c{l,...n}, | I |= m, and assume that the objective function coefficients are:
¢g =..=c¢, =1. Then, {a;, i € I} a dual feasible basis if and only if I has the
structure:

m even m odd

min problem o+ 1,....7,7+1 i+ 1,...7,7+1,n
max problem 1,¢,¢+1,...,73,7+1,n 1,e,¢+1,..775+1

a

n

In view of this theorem, the first n+ ( 9

) columuns of the matrix of problem

n
2
the last, and third to the last blocks of problem (6) form a dual feasible basis. The
corresponding dual vectors can be computed from the equations produced by the
aggregated problem:

(6) form a dual feasible basis. Similarly, the n + columns in the second to

(y17y2)(a17a2) = (171)7
and
(y17y2)(an—2van—1) = (171)7

respectively. The detailed forms of these equations are:

Y1 =1
20 + y2 = 1

and
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respectively. The first system of equations gives y; = 1, y» = —1, and the second
one gives: ¥ = 2/(n—1), y2 = —2/(n —1)(n — 2). If we assign y; = 1 to all vectors
in the first block and y» = —1 to all vectors in the second block of problem (6), then
we obtain the the dual vector corresponding to the first dual feasible disaggregated
basis. Similarly, if we assign y; = 2/(n — 1) to vectors in the block n» — 2 and
y2 = —2/(n — 2)(n — 1) to all vectors in block n — 1 of problem (6), then we obtain
the dual vector to the other dual feasible disaggregated basis. The first dual vector
gives the Bonferroni lower bound:

Z pij = 51— 52

1<ei<g<n
The second dual vector gives the lower bound

2 2
i L (n—2)(n—1)

n—1

P(ALU..UA,) >

Ss.
The optimal lower bound corresponds to that dual feasible basis (a;, a;41) of problem
(2), which is also primal feasible. This gives ¢ = 1 4+ |252/51], and the bound is:
2
i(t+ 1)
This formula was first derived by Dawson and Sankoff (1967).

P(A;U...UA,) >

2.

—0F
i1t

If we want to find the sharp lower bound for P(A; U...U A,), by the use of
problem (6) for m = 2, then we may start from any of the above mentioned two dual
feasible bases and use the dual method of linear programming, to solve the problem.
Since we want lower bound, we have a minimization problem. This suggests that
the second dual feasible basis is a better one to serve as an initial dual feasible basis.
The reason is that in blocks n — 2, and n — 1 the coefficients of the variables are
larger, and since it is a minimization problem we may expect that we are closer to
the optimal basis than in case of the first dual feasible basis.

Numerical Example. Let n = 6, and assume that

pr =030 p, =035 ps =055 py =040 ps =030 ps =0.35
P12 = 0.15 p13 =0.25 p1a =0.05 p5 =0.15 pig=0.15

P23 = 0.25 pasa = 0.15 pas = 0.15 pyg = 0.05

p3a = 0.25 p35s = 0.25 pgg = 0.25

pas = 0.15 pge = 0.15

pse = 0.15

We used the dual method to solve the minimization problem (6). As initial

dual feasible basis we chose the collection of vectors in blocks n—2 =4 and n—1 = 5.

PAGE 7
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These vectors have indices 42, ...,62. After twenty iterations an optimal basis was
found, the indices of which are:

12, 13, 16, 20, 22, 25, 28, 29, 36, 38, 39, 43, 44, 45, 48, 50, 51, 52, 54, 55, 56.
The basic components of the primal optimal solution are:

z12 = 0.01, 213 = 0.02, 216 = 0.10, x99 = 0.03, x93 = 0.08, x5 = 0.01, x5 = 0.03,
Tag = 0.03, 36 = 0.05, z3s = 0.02, x39 = 0.05, x43 = 0.02, z44 = 0.03, z45 = 0.01,
x4 = 0.01, x50 = 0.08, z51 = 0.00, z52 = 0.06, 54 = 0.05, z55 = 0.01, z55 = 0.01.

The components of the dual optimal dual solution are:

y1 = 0.4, y2 = 0.6, ys = 0.6, ya = 0.8, ys = —0.2, ys = 0.0,
yi2 = —0.2, y13=-0.2, y14=-04, y5=0.2, y6=-0.2,

Yos = —0.2, you = —0.4, ys =0.0, 926 =—-0.2,

Ysa — _047 Yss = 007 Yse = —027

Yas — 027 Yae = —047

yse = 0.0.

The optimum value equals 0.71.

We generated the right-hand side vector p in problem (6) in such a way

that we defined z° = (:132, 7 =1,...,63)T, where w? 1s different from zero only if
g =4k, k = 1,...,15, and for these j values we made the assignments w? = 0.05;
then set p = Az In this case ?11 zf = 0.75 and 2§ = 0.25. The optimum value

of the maximization problem (6) is 1.

3 A
Method of Partial Aggregation-Disaggregation
to Generate Bounds

Let Eq, ..., E, be pairwise disjoint nonempty subsets of the set {1,...,n} exhausting
the set {1,...,n}, and introduce the notation n; =| E; |, 7 =1,...,s.

Out of the events A, ..., A, we create s event sequences, where the i** one
is {Ai, 1 € E;, 1 <j <s}. Any of the events A, ..., A, is contained in one and only
one event sequence. For these event sequences we will use the alternative notations:

A117 ---7A1n1
(14)
Ag,y ooy Agn,.

Let ¢; designate the number of those events in the 5" sequence, which occur, and
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(a4] K g
(15)
0<a;<mn;, 3=1,..,s.
We formulate the multivariate binomial moment problem:
min(max) Y ... ¥ fi. i i i,
721 =0 7s=0
subject to (16)
Z Z ( “ )( b )xil...is = SOél...Oés
11=0 1,=0 ! Qs

a; >0,3=1,....,8, s +...+a, <m
\V/’I:l, ...,’1:3 . xil...is Z 0

The Sa; .., (@1+...+ @, < m) multivariate binomial moments can be computed from
the probabilities p;, ;, (1 <1 < ... < ip < m). In order to simplify the rule how to
do this, assume that By = {1,....n1}, ... E,={n1+ ...+ ne_1 + 1, ong + ..+ ng )
Then, we have the equality

SOél...Oés - Z pill ...ilal ...isl...isas )
where the summation is extended over those indices which satisfy the relations

]_ Sill < ... <’I:1041 §n1

Ny F o+ 01+ 1 <ty <o < g, <N+ s+ N
For example, if n = 6 and E; = {1,2,3}, E» = {4,5,6}, then

Sio=p1+p2+ps, So1 =ps+05+ps, Sa0 = P12+ i3+ D23, Soz = pas + Pac + Pse.

S11 = p1a + p1s + P16 + P2a + Pas + P26 + Psa + P35 + Pss,
So1 = P12a + P125 + D126 + P134 + P13s + Pise + Pasa + Pass + Pase,
So2 = Pr2as + P1246 + P25 + P1sas + P13ac + Pi3se + Pasas + Dasas + Passe

ete.

We have yet to formulate suitable objective functions for problems (16).
These depend on the type of bounds we want to create. Suppose that we want to

PAGE 9
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create bounds for two types of logical functions of events:
(1) at least » out of Ay,..., 4, occur, where r > 1;
(ii) exactly r out of Ay, ..., A, occur, where 0 < r < n.

Then, we formulate the objective functions as follows. In case of (i):

fioin=1,if iy + ..+, >7
(17)
fidn=0,if iy + ... 414, <7

and in case of (ii):

fil...is = ]., i+ ...+, =7
(18)
firii =0, if iy + ... i, £

Problems (16) reduce to problems (2), if s = 1, and to problems (7), if s =
n. Problems (16) are disaggregated counterparts of problems (2), and aggregated
counterparts of problems (7). The objective functions (17), and (18) are counterparts
of the objective functions (4), (5), and (12), (13), respectively.

Let us introduce the notations:
P,y = probability that at least r out of Ay, ..., A, occur;
Py) = probability that exactly r out of Ay, ..., A, occur.
Further notations are presented in the following tableau:

optimum value Type, and problem Objective function

Ly min, (7) (12)
Uty max, (7) (12)
Ly min, (7) (13)
U max, (7) (13)
Iy min, (16) (17)
U(r) max, (16) (17)
U min, (16) (18)
Uy max, (16) (18)

By construction, we have the following inequalities:
lr) = Ly = Py = Upr > () (19)
l[r]SL[]<P <U U[y]- (20)

In fact, the problems with optimum values (), and w) (I}, and up,]) are aggrega-
tions of problems with optimum values Ly, and Uy (L), and U, ) respectively.



RRR 36-95 PAaGE 11

The duals of problems (16) are the following:

max(min) Z yal...asSal...as
a; >0,j=1,...,8
1<a1+...+a,<m

subject to (21)

> - ( I ) ( - ) < (2) forui

a; >0, 3=1,...,8

1< +...+a,<m
0 <3 < my,3=1,..,8
1+ ... +12, > 1.

In the left-hand sides of the constraints of problems (21) there are values
of a polynomial of the variables iy, ...,%,, defined on the lattice points of the set
x%_1[0,n;]. Replacing z; for i;, the m-degree polynomial takes the form

Pz, .. 2) = > Your.re ( 211 ) ( ; ) : (22)

Problems (16) provide us with a method to construct polynomials

P(z,...,2s) for one sided approximation of the function f, ., which we will also
designate by f(z1,...,2s). Any polynomial can be used to create bound, provided
that it runs entirely below or above the function f(z1, ..., z,).

If this latter condition holds, then the bound can be obtained in such a way
that we write up the polynomial in the form of (22), subdivide the set {1,...,n} into
pairwise disjoint, nonempty subsets Ey, ..., E,, define the S,, o, accordingly, and
then make the following assignment: the constant term, if different from zero, 1s
assigned to So o = 1 in problem (16), yq,. o, is assigned to S,, o, in problem (16)
for every ay, ..., o, for which a; > 0, 7 =1,...,8, g + ... + @, < m. Then, we form
the products of the assigned quantities and the S,,  ,,; the sum of the products is
the bound.
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4 Construction of Polynomials for One-Sided
Approximations

In this section we describe a general method to construct polynomials of the type

(22) which satisfy (21).

The method consists of construction of dual feasible bases to problem (16).
Each dual feasible basis of problem (16) determines a dual vector satisfying the
inequalities (21), hence it determines a polynomial (22), which approximates the
function f in a one-sided manner.

First we make a general remark. Suppose that the matrix A of the linear

programming problem: min ¢z, subject to Az = b, = > 0, has rank equal to its

number of rows m. Let T' be an m x m nonsingular matrix and formulate the
problem: min ¢z, subject to (TA)z = Th, = > 0. Then a basis is primal (dual)
feasible in one of these two problems if and only if it is primal (dual) feasible in the
other one. In fact, if A = (ay,...,ay), then we have the relations

(TB)™'Tb = B™'b
Crp — cg(TB)_lTak = ¢, — c5 B ay,
which imply the assertion.

Let us associate with problem (16) a multivariate power moment
problem in such a way that we replace 7", ...,20* for (;1 ) ( ;3 ) and
1 E]

the power moment p,, . o, for the binomial moment S,, ., on the right-

hand side. A single linear transformation takes the column vector in
(16): (( ;11 ) ( ;3 ) coa; >0, 5=1,..,8 a1+ ... +a, < m), into the vector
(47482 a; >0, j=1,....8 ar + ... + a; < m) The same transformation applies

to the right-hand sides. The matrix of this transformation is nonsingular (it is also
triangular). Thus, the above remark applies, and therefore a basis in the multivariate
binomial moment problem is primal (dual) feasible if and only if the corresponding
basis in the power moment problem primal (dual) feasible.

In view of the above fact the construction of dual feasible bases can be
carried out by the use of the results concerning the multivariate power moment
problems. In this respect we will make use of the results of the paper by Prékopa
(1993), which is entirely devoted to this problem. We recall a few facts from that

paper.
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Let us associate the lattice point (i1, ...,4,) € R* with the vector

((Zl )( b ) ca; >0, 5=1,...,s; al—l—...—l—asgm)
(a4] Mg

of the matrix of the equality constraints of problem (16). Let Ba and B” designate
the sets of vectors corresponding to the sets of lattice points

{(P1,cests) | 2520, j=1,.0008 41 + ... + 1, < m}, (23)
and
{(n1 —i1,.cc,ms —15) | 4, >0, 5 =1,...,8; 41+ ... + 15 < m}, (24)

respectively. In (23), and (24) we assume that m < n;, j = 1,...,s. It is shown
in Prékopa (1993) that both Ba and B2 are bases in problem (16). The following
theorem summarizes the results in Theorems 5.1 and 5.2 of Prékopa (1993).

Theorem 4.1 The bases Ba and B® are dual feasible bases in the following types
of problems (16):

Case 1: all divided differences of f of total order m + 1 are nonnegative

m+1 even m-+1 odd
Ba min min
BA min maz.

Case 2: all divided differences of f of total order m + 1 are non-positive

m+1 even m-+1 odd
Ba max max
BA mazx min.

Any dual feasible basis produces a one-sided approximation for f, hence also
a bound. A dual feasible basis in a maximization (minimization) problem produces
an upper (lower) bound. If a bound of this type is not satisfactory (e.g. a lower
bound may be negative, an upper bound may be greater than 1, or a lower (upper)
bound is not close enough to a known upper (lower) bound), then we regard the
basis as an initial dual feasible basis, and carry out the solution of the problem by
the dual method. This way we obtain the best possible bound, at least for a given
subdivision Fj, ..., E, of the set {1,....,n}.
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Note that problem (7) has 1 +n + ( g ) + ..+ ( :z ) equality con-

s+ m

straints and 2" variables, whereas problem (16) has constraints and

(n1 + 1)...(ns + 1) variables. Thus, problem (16) has a much smaller size than prob-
lem (7). For example, if n = 20, s = 2, n; = ny = 10, m = 3, then problem (7) has
sizes 1351 and 1,048,576, whereas problem (16) has sizes 10 and 121.

To obtain the best possible bound which can be given by our method, one
has to maximize (minimize) the lower (upper) bound with respect to all subdivisions
E,, ..., E, of the set {1,....,n}. In practice we use only a few trial subdivisions, and
choose that one which provides us with the best bound.

Next, we consider the objective function (17) for the cases of r = 1 and
r =n. If r = n, then the function (17) is the same as the function (18). Thus, if
r = 1, then we look at

0 if (i1,.ryds) = (0,...,0)
Jirroie = (25)

1 otherwise,

and if r = n, then we look at

1 if (’1:1,...,’1:3) = (nl,...,ns)
Jivois = (26)

0 otherwise.

It is easy to check that all divided differences of any order of the function
(26) are nonnegative, and if m + 1 is even (odd), then all divided differences of the
function (25) of total order m + 1 are non-positive (nonnegative). Combining this
with Theorem 4.1, we obtain

Theorem 4.2 The bases Ba and B2 are dual feasible bases in the following types
of problems (16):

the objective function is given by (25)
m+1 even m-+1 odd
Ba max min

BA mazx maz.

the objective function is given by (26);
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m+1 even m-+1 odd
Ba min min
BA min maz.

Note that the problems with objective functions (25), and (26) can be trans-
formed into each other. The optimum value of the problem with objective function
(25) is equal to 1-(optimum value of the problem with objective function (26), and
Se, .., replaced by Sal_...as)- The binomial moments S'al...as correspond to the com-

plementary events Ay, ..., A, in the same way as S,,. o, correspond to Ay, ..., A,.

The polynomials determined by the bases Ba, and B2 can be taken from
Prékopa (1993). They are multivariate Lagrange interpolation polynomials with
base points (23) and (24), respectively. We designate them by La(z,...,2,), and

LA(2, ..., z,), tespectively, and present them here in Newton’s form:
La(z1, .0y 25) =
(27)
s tj—1
> 0, i 0, 1 TT I (25— 1)
i1 4t i, <m i=1 h=0
0 S ’I:j §nj,j == 1,...,3
and
LA(21, .y 25) =
(28)
s n;—1
> (1 — 41, oy nas s — i, ung FI [T T (25— B)-
21+ ...+, <m 3=1 h=nj—i;+1
0 S ’I:j §nj,j == 1,...,3
In case of function (25) we have L2 (zy, ..., z,) = 1, and

La(z1,.y25) = Yoo (—pyntetet ( o ) ( % ) : (29)

1<t +...+2,<m 3 1g
In case of function (26) we have La(z1,...,2:) =0, and
LA(21,y 0y 2,) =

1+ > (—1)irttes ( "11._21 ) ( ”Z_Z ) . (30)
1<ij+..+i,<m ' ’
0 S’I,] §nj, j: 1,...,3
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Theorem 4.2 tells us the following. If f is the function (25) and La(z1, ..., z5)
is the polynomial (29), then

LA(Zla---azs) > (S) f(zlv"'vzé?)v (31)
if m + 1 is even (odd); if L?(21, ..., 2,) is the polynomial (30), then
LA(zl,...,zs) > f(z1, .0y 25), (32)

no matter if m + 1 is even, or odd. If f is the function (26), then we have the
inequalities

La(z1y .o 25) < f(2z1y .00y 25), (33)
no matter if m 4 1 is even, or odd, and
LA(zl,...,zs) <(>) f(z1,..., z4), (34)

if m+ 1 is even (odd).

5 Numerical Examples

Example 1. Let n = 20, n;y = ny = 10, m = 3, and assume that we have obtained
the following numbers:

501 - SlO - 45, Soz - Szo - 12, 511 - 2025, So3 - S30 - 21, 512 - S21 - 54

The polynomial (29) takes the form

LA(Zl,Zz) = Z1 — ( 221 ) + ( 21 ) + 29 — Z129 (35)

(3)a=(5)2(3)+(3)
hence the dual vector corresponding to the basis Ba equals:
y = (01 —-111 -11 —111)7. (36)
The polynomial (30) takes the form
L%z, 2,) = 1, (37)
hence the dual vector corresponding to the basis B2 equals:

y = (1000000000)7, (38)
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Note that Ba, and B? correspond to the lattice points {(
(1,0), (1,1), (1,2), (2,0), (2,1), (3,0)}, and {(10,7), (10,8
(9,9), (9,10), (8,9), (8,10), (7,10)}, respectively.

0,0), (0
); (10,9

Y

By (32) we have that L2(21,25) > f(21, 22), which is a trivial inequality in
view of (37). Since m + 1 = 4 is even, by (31) we have that La(z1,22) > f(z1,22)
for all (z;,22). Thus, both B4, and Ba are dual feasible bases in the maximization

problem (16).

The dual vector (36) produces the trivial upper bound y©.S = 114.75, where
S = (SOO7 SlO7 S207 5307 SOl7 Sll7 S217 5027 5127 503)T-

The dual vector (38) produces the upper bound y¥§ = 1, which is at the same time
the optimum value of the maximization problem (16), and the sharp upper bound

for P(U2, A4;).

The sharp lower bound is obtained by the solution of the minimization
problem (16). We obtained the following optimal solution.

2oo = 0.11, g = 0.055556, w7s = 0.160714, =75 =0, zs5 = 0.33,

L3 — 0208333, Log — 0, Log = 0075397, L10,9 = 0, L10,10 = 0.06.

This provides us with the lower bound:
P(UZ,A) > 11—z = 0.89.
The dual vector corresponding to the optimal basis is:
y = (0,0.28,—-0.0577,0.0066,0.2, —0.04, 0.0044, —0.0222, 0.0022, 0).

This determines the polynomial

La(z,2) = 0.282 — 0.0577 ( 221 ) +0.0066 ( 231 ) +0.225 — 0042125 +

0.0044( z21 ) 25 — 0.0222 ( Z; ) +0.00222, ( Z; ) :

which satisfies L(z1,22) < f(z1, 22) for all (z1, 22).

Example 2. In this example we consider 40 events for which all binomial
moments of order up to 11 have been computed. The 40 events have been subdivided
into two 20-element groups and all bivariate binomial moments of total order at most
6 have been computed.
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Lower and upper bounds for the probability that at least one out of the 40
events occurs have been computed based on the two sets of data. The bounds are
displayed for all lower order binomial moments, too. Thus, we have two sequences
of bounds. The bounds in the first sequence are optimum values of problems (2),
where the objective function is (4) and » = 1. The bounds in the second sequence
are optimum values of problems (16), where the objective function is (17) and r = 1.
The latter problem is a partially disaggregated problem, as compared to problem

(2).

The results show that much better bounds can be obtained in the latter
case. The bounds obtained from the partially disaggregated problem for m = 6 are
better than those obtained from the aggregated problem for m = 11. The data and
the bounds are presented below.

Univariate binomial moments, 40 events

So 1.000
Sy 8.164
Ss 94.025
S3 290.574
S 1435.025
Sy 7115.369

Se 34884.230
S7 158338.877
Ss 637735.541
So  2249527.156
S0 6955762.090
S11 18955303.836
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Bivariate binomial moments when the 40 events are subdivided into two

first
group

SO W N

20-element groups

second group
0 1 2 3 4 5 6
1.00 1.93 4.70 12.19 41.05  127.37 317.72
6.23 3.28 31.15 186.89  794.26 2541.64
46.04 31.15 295.90 1775.41 7545.49
216.09 186.89 1775.41 10652.46
724.30 794.26 7545.49
1848.66 2541.64
3739.79

Bounds based on univariate binomial moments

m  lower bound upper bound

1 0.20410 1.00000
2 0.57400 1.00000
3 0.63452 1.00000
4 0.67613 1.00000
9 0.77875 1.00000
6 0.78559 0.97028
7 0.79960 0.92088
8 0.80000 0.81438
9 0.80156 0.81185
10 0.80191 0.80671
11 0.80299 0.80638

Bounds based on bivariate binomial moments

m  lower bound upper bound
1 0.31147 1.00000
2 0.66045 1.00000
3 0.79552 0.91272
4 0.80255 0.83071
5 0.80275 0.80583
6 0.80325 0.80410

Example 3. In this example we consider 40 events (different from those of
Example 2) which we subdivide into two 20-element groups. We have computed the
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univariate binomial moments of order up to 16 and the bivariate binomial moments
of total order up to 8. Based on these, two sequences of bounds have been computed.
The bounds in the first sequence are optimum values of problems (2) with objective
function(4), where r = 3. The bounds in the second sequence are optimum values
of problem (16) with objective function (17), where » = 3. The results show the
usefulness of using problem (16) rather than problem (2) to create bounds. The
data and the bounds are presented below.

Univariate binomial moments, 40 events

So 1.000
Sy 13.714
Ss 110.413
S3 603.262
S 2658.333
Sy 10803.206
Se 43678.754

S7 174426.944
Ss 656045.333
Sy 2238906.635
S10 6817994.468
S11 - 18451870.302
S1o 44444753.675
Sis 95592963.786
S1a 184250604.611
S5 319293071.452
Sie 498850545.349

Bivariate binomial moments when the 40 events are subdivided into two
20-element groups

first second group
group 0 1 2 3 4 5 6 7 8
0 1.0 4.4 13.1 36.3 107.1 291.6 671.8 1285.6 2040.5

9.3 48.7 142.7 385.1 1106.6 2965.7 67769 12911.5
48.5 263.6 865.8 2769.6 9029.3 25931.6 61585.5
160.7 916.2  3546.9 13607.6  49160.0 148050.8
384.1  2360.4 11254.7 50856.2 197398.0
728.1  4966.1 29560.7 151037.0
1183.6  9113.2 65687.4
1742.9 14978.8
2355.9

GO =~ O O = W N =
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Bounds based on univariate binomial moments

m  lower bound upper bound

1 0.09360 1.00000
2 0.13693 0.99709
3 0.43143 0.86736
4 0.63421 0.84467
9 0.66969 0.84276
6 0.75414 0.84128
7 0.76038 0.84127
8 0.77968 0.84126
9 0.78129 0.84120
10 0.78748 0.83873
11 0.78845 0.83831
12 0.78885 0.83823
13 0.78899 0.83042

Bounds based on bivariate binomial moments

m  lower bound upper bound

1 0.09360 1.00000
2 0.13693 0.96005
3 0.49703 0.85782
4 0.67984 0.84248
9 0.70577 0.84164
6 0.77074 0.84118
7 0.81049 0.83394
8 0.82896 0.82896

6 Upper Bounds Based on Graph Structures

The bounds given in Section 4 can be interpreted as bounds based on special hy-

Z1 Zg
Z a’il...is 7:1 7,
L
il + ...+ is S m
0<;<my,7=1,..,s

pergraphs. Let

be any polynomial. Let N = {1,...,n},and N; C N, j=1,..,mwith N = U N;,
| N; |[<mnj, and Vg1 # ja: Nj NN, =0. Let E;,_;, be the set of all subsets of N
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containing exactly ¢; elements from N;, j =1,...,s. Then we define the hypergraph
as follows:
H = (N, E),
where
E = U E; i,
1+ ...+, <m
0 S ’I:j S nj,j == 1,...,3

All hyperedges lying in E;, ;, are weighted by a;, ;,. These weights form a dual
feasible vector of problem (6). The scalar product of that and the right-hand side
vector of problem (8) provides us with the lower or upper bounds. If m = 2, then
only nodes and pairs of nodes have weights. To each node we assign the weight 1.

In what follows, the components of an (g)—vector are indexed by

5 depending on which notation is more convenient.

The following lemma is very simple, the proof is omitted.

11,12,....(n — ) or 1,..., ( n

Lemma 6.1 The Z -component vector (1,1,...,1, —w1a, ..., —Wp_1,) is feasible

in the minimization problem (8) if and only if for all S C N containing at least two
elements the inequality 3, ;cs ;i wi; <| S| =1 holds. O

Remark. It is easy to see, that any feasible solution to the problem (8)
has wy,...,w, < 1. Lemma 6.1 implies that if w; = ... = w,, < 1 then V1 < 4,5 <
n,t# 7 wy < L

The above lemma can be applied in the following way. Let G'(N, E') and
G*(N, E?) be two graphs on the vertex set N. Assume that to each {i,5}, ¢,7 €
N, i # j a real number w;; is assigned and the following conditions are satisfied:
(i) E*NE? =0,
(i1) if {7,7} € E* then w;; = 1,
(ii1) if {¢,7} € E? then w;; <0,
(iv) if {¢,5} € E* U E? then w;; = 0,
(v)is S C N,|[ S |> 2, then 3, ;cs ;5w <| S| —L.

The first bound which can be discussed in the framework of the above
lemma is Hunter’s bound (see Hunter (1976)). Let G* = T'(N, E) be any tree, and
G* = (N,0). Let

0 otherwise.

i = { 1 if {i,j} € E
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Let S C N,| § |> 2 As any induced subgraph of a tree is a forest, it follows that
Yijesici wij <| S| —1. Thus, the conditions of the lemma are satisfied. This means
that any tree determines an upper bound, and Hunter’s bound is the best among
them. Thus, Lemma 6.1 generalizes that bound.

Lemma 6.2 Ifn > 3 then

P(A;U...UA,) < S — max Z (pir + pii) + (n— 3)pu. (39)
1<k<i<n il

Proof For a fixed k and [ let G be the complete bipartite graph connecting &k and
[ with all other vertices, G* the edge {k,l}, and wy; = 3 — n. Thus, G* has 2n — 4
edges. Let § C N be any subset containing at least two elements. If k.1 ¢ S, then
the subgraph of G* induced by § has no edge; thus,

Z wij = 0

1,j€ES81<]

If S contains only one of k, and [, then

Z wij:|5'|—1.

1,J€85,4<j
Finally, if S contains both k, and [, then

1,j€Si<]
Thus, the conditions of Lemma 6.1 are satisfied in all cases. O

As the structure of the graph obeys the above mentioned hypergraph
scheme, the polynomial

g(z1,22) = 21 + 22 — 72120 + (n—3) ( z;)

satisfies the condition:

Vz1,22 € Z4 ¢ (21,22) # (0,0), 21 < —2, 2o < 2implies g(z1,22) > 1.

Lemma 6.3 Assume that n > 4. Let GY(N,E) be any I-tree and C =
{{ur, us}, {us, ust, ..., {up_1, up}, {ug, w1 }} be the unique simple circuit contained in
G'. Assume that k > 4. Let s,t be positive integers with 1 < s < t < k,
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and t — s £ +1(mod k). Let G* be a graph containing a single edge such that
E = {{u,,us}}. Finally, let

1 ifi<jand{i,j} € E*
wi; = 3 —1 ifi<jand {i,j} € E?
0 otherwise.

Then we have the inequality:

{idreB i<y

Proof Any subgraph of G* induced by a set S C N contains at most | S | —1
edges, except C, which contains as many edges as vertices. But even in this case
the necessary inequality, given in Lemma 6.1, holds because of the presence of the
(—1)-valued edge {us, us}, and thus, the conditions of Lemma 6.1 are satisfied. O

The following method is an approximation algorithm for determining the
best bound of this type. The algorithm works on the complete graph K, (N, E).
The edge {7, j} of K, is weighted by p;;.

STEP 1: Find a maximum weight spanning tree of K,, designate it by
T(N,Er).

STEP 2: For any edge {i,j} € E\ Er let Cyj = {{u? u¥}, ..., {uf?j_l,ufi},
{u;fj,u’f}} be the unique simple circuit of the graph T;;(N, Er U {i,5}), where [;; is
the length of C;;. Then, let

(2%, 5%, 8", %) = argmax {pij — pst : lij > 4,1 <s <t <l t—s# +1modl;}. (41)

If pi«j» — pger= > 0, then the resulting bound based on the graphs G =
Ti+j» and G*(N,{s*,t*}) is an improvement on Hunter’s bound. The order of the
algorithm is O(n*). In (41) the number of pairs {i,;} to be considered is O(n?).
The determination of Cj; is equivalent with finding the unique simple path going
from ¢ to j in T which can be done in O(n) steps as the sum of the degrees of the
vertices in T is 2n — 2. Then, the selection of the best possible pair {s,¢} takes
O(n?) operations.

A special case of this type of upper bound is obtained by restricting G* to
be a Hamiltonian circuit. Let H be the set of all Hamiltonian circuits. In this way
the following upper bound can be obtained:

P(A;U...UA4,) < 5 — max Z Pij + min pg. (42)

HeH . . .. t}EH
€ {i.d}eH i< {st}e
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The second term of the right-hand side is equivalent to a traveling salesman problem
which i1s known to be NP-hard. But plenty of good and fast heuristics are available
to generate approximate solutions.

7 Comparison with the Aggregated Upper Bound

The optimal value of the maximization problem (2) with objective function (4) and
r=1,and m = 2 is

2
S — =5,
n
as it is shown by Kwerel (1975a), Sathe, Pradhan and Shah (1980), and Boros-
Prékopa (1989). In this section a general lemma is proved, which makes it easy

to prove, for a wide class of upper bounds, that they are at least as good as the
corresponding aggregated ones.

Lemma 7.1 Let N' = {{i,5} | 1 < 4,5 < mn;i # 5}, N? = {1,2,...,r}, where

r = ( g , and assume that the function p : N* — N? defines a one-to-one cor-
respondence between the two sets. Let waq, ..., w, be any real numbers satisfying the
equation

-
ij = n—1.
=1

Finally, let © be any permutation of the set { 1,...,n }. Then we have the inequality:

n—1 n 2
max > Wi Py = S (43)
=1 j=i+1

Proof The left-hand side of the inequality is the maximum of some numbers. The
average of the same numbers 1s

l -8 o
220 D WalidPolria)-

Com =1 j=i+1

The symmetricity of the expression implies that all p’s must have the same coeflicient
in the sum, which is

St Yliit1 Wotig) 2

)
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as there are n! permutations, the number of w’s is and their sum is n — 1.

n
2 b
Thus, the above average is equal to the right-hand side of the inequality. Hence the
statement follows immediately. O

Remark The proof does not use any property of the p’s, hence the state-
ment holds for any vector p € R” T ,and Sy = Y0} i1 Pij-

In the statement the w’s represent a fixed structure and the permutation
of the p’s ensures that the best sample is chosen which is isomorphic with the fixed
structure. For example, the statement that Hunter’s bound is at least as good as the
aggregated bound, follows from the lemma in two steps. First, the vector w 1s fixed
in such a way that it represents a certain tree structure. The best tree is selected
which is isomorphic with this structure. Then, we look at all tree structures and
the best of bests gives Hunter’s bound. But it follows from the lemma that the best
of any tree structure is at least as good as the aggregated bound.

Assume that if the vector (1,1,..., 1, —wy, ..., —w?) € R"*" represents a dual
feasible solution to problem (6). Then Lemma 7.1 is applicable and

n—1 n 2
Si—maxd Y, WPoni ) S 1 — -

=1 j=i+1

8 Some Special Problem Classes

In this section we show that all upper bounds mentioned in Section 6 have at least
one problem class containing for every n a problem such that the upper bound
coincides with the actual value of P(A; U ... U A,).

Lemma 8.1 If the vector (1,...,1, —wia, ..., —Wp 1)} € R™™ s 4 feasible solu-

tion of the dual of the mazimization problem, and for every j the inequality w; > 0
implies that w; = 1, then there s a problem instance such that the upper bound ts

equal to P(A; U ...U A,).

Proof The upper bound is

k3

S1— Y. wipij.

G=i+1
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If Aq,..., A, are events such that p;, = 1/n (1 <¢ < n) and if ¢ # j then
LQ if Wi; = 1
pi; = { 0 if wij < 0, (44)

then the following equations hold

TS| e
P(AjU...UA,)=1- 2 (i) y=1 S1— Z Z W;; iz

n? i=1 j=it+1
i.e., the statement of the lemma is true. These events Ay, ..., A,, can be constructed in
the following way. Let w1, ..., w,2 be n? mutually exclusive events. Let the probability

of each w; be 1/n?. Let A; = wy U...Uw,. If wy < 0, then we define Ay =
Wpt1 U ... Uway,, otherwise let Ay = wy Uw,y1 U ... Uwsg,_1. Assume that Aq, ..., A; 4
are determined and A; = wy;, U...Uwy;, if 1 <5 <i—1,ie. the set of the indices
of w;’s contained in the composite event A; is { kj1, ...,k }. Let {l,.... L} ={7:
1<j3<i—1 wjy =1} Then,let 4; = Wiy ;U Uwgy Ui,y 1 U Uk bt
Thus, A; and A; are mutually exclusive if w;; < 0, otherwise p;; = 1/n*. O
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