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A DATA MINING PROBLEM
IN STOCHASTIC PROGRAMMING

Andras Prékopa Xiaoling Hou

Abstract. In this paper we consider a linear programming problem where some or
all technology coefficients are deterministic but their values are unknown. Samples
are taken to estimate these coefficients and the problem is to determine the optimal
sample sizes. If we replace the unknown coefficients by their estimations, then we
obtain a random linear programming problem the optimum value of which is also
random. We want to find sample sizes such that the confidence interval, created for
the unknown deterministic optimum value, by the use of the samples, should cover
it by a prescribed large probability, and, subject to this constraint, the total cost of
sampling should be minimum.
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1 Preliminaries

Consider the following random linear programming problem:

max{c1x; + ca%o + - - - + Cpxy }

subject to

1171 + Q1222+ e Fapr, < by

(2171 + A22T2+ e HFagx, < by

(1)

A1 T1 + Qp2To+ oo Fapmpt, < by

T1, T2, ,Tn > 0,
where the a;;, 1 =1,2,--+- ,m, k=1,2,--- ,n are independent random variables, and ¢; > 0,
k=1,2,---,n,b; >0,¢=1,2,---,m are constants.

We may assume, without loss of generality, that ¢, = 1, k = 1,2,--- ,n, b =1, i =
1,2,---,m, because we can divide the ¢th constraint by b;, + = 1,2,---,m, and introduce
new variables, replacing c,xy by zx, k = 1,2, --- ,n. If the optimum value of problem (1) is
finite with probability 1, then it is also positive with probability 1.

Assuming the existence of the expectations a§,2> = Elay], together with the random linear

programming problem (1) we consider the deterministic problem:

max{c1xy + caxs + -+ - + ¢}

subject to
ag(i)xl + agg):l:g—l— . —i—aﬁ)xn < b
agi)xl + ag;)xg—i— e —i—aé?fxn < by
(2)
)y + alyaat e daimT, < b
T1,T2," " ,Tn > 07
where ¢, =1, b; = 1, agg) = Elag],i=1,2,--- ,m, k=1,2,---  n. If the optimum value of

problem (2) is finite, then it is also positive.

It is known (see Kuhn and Quandt, 1963, Prékopa, 1972, 1995, Kabe, 1983, Cohen and
Newman, 1989) that if m, n — oo, subject to some conditions, then the difference between the
random optimum value z of problem (1) and the optimum value (%), that corresponds to the
expectations, goes to 0 (in probability or with probability 1, depending on our conditions).
This fact is due solely to the increase of the problem sizes m and n, we do not assume that
the “order of magnitude” of the random variables a;,, ¢ = 1,2,--- ,;m, k =1,2,--- ,n change
while m,n — oo.

Some of the theorems in the above cited literature state convergence in probability, others
convergence with probability 1. We recall only one of the theorems.
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Lemma 1.1 (Prékopa, 1972). Suppose that for every m, n, the random variables &y,
1 =1,2,---.m, k=1,2,--- ,n are independent, have 0 expectations, their fourth moments
exist and are uniformly bounded. Let m,n — oo in such a way that the following condition
18 satisfied

m

l<a<— <8<,

n

where o and B are constants. Under these conditions we have (= means convergence in

probability):
. §int &+ +&n

ma = 07
1<i<m n
max Sk + &op + -+ & =0
1<k<n m
In what follows we will use the notation &;; = a;;, — al(,g), 1=1,2,--- m, k=1,2,--- ,n.

Theorem 1.1 (Prékopa, 1972). Suppose that in connection with problem (1) the following
conditions are satisfied:

(a) There ezist positive integers mg, ng such that for every m > mg,n > ng the random
linear programming problem (1) has a finite optimum value p with probability 1; also, problem
(2) has a finite optimum value p® and p® < 3, where § does not depend on m or n.

(b) The random variables &y, i = 1,2,--+ ,m, k = 1,2,--- ,n satisfy the conditions of
Lemma 1.1.

(c) For every m > mg,n > ng problem (2) and its dual have an optimal solution pair

I'(O) = (Sﬂg()), xg))v e 71;510))T7 y(O) = (y§0)7 yé[])v e 7y7(7?))T such that
(0) (0)
nxk _nxk §L17i2172’-“’m’

'I.S-O) + 'I.g)) + .. _|_ I.%O) M(O)

iy my®
OO o= Lo SLlnk=12n,
Y1ty e+ Ym ®

where Ly, Ly are constants (do not depend on m or n).
Then i — p® = 0, when m,n — co.

2 Main Results

The problem that we consider in this paper has deterministic but unknown technology co-
efficients. In order to obtain information, we take sample for each of them and estimate
each unknown coefficient by a sampling mean. We assume that the samples are taken inde-
pendently of each other. Let p and u(® designate the optimum values corresponding to the

e . . . _ (0) )
random and deterministic linear programming problems with coefficients a;; and a;;’, respec
tively, where a;;, is the sampling mean used to estimate a§,2>, 1=1,2,--- ,m, k=1,2,--- ,n.
We want to determine the sample sizes based on some principle. Our principle is that the
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sample sizes Ny ¢ =1,2,--- ,m, k=1,2,--- n should be large enough such that for given
small positive real numbers ¢y, &5, 6; and ds, we have

P(u® —p<ep) >1—ey

P — > —01p) > 1— 6,

and subject to these constraints the total cost of the sampling should be minimum.

The pair of inequalities (1 — d;)pu < p®, u® < (1 4 1) gives rise to the confidence
interval [(1 — 01)u, (1 + €1)u], where, however there are two confidence levels, 1 — ey, 1 — 0o,
corresponding to the two inequalities, respectively. A lower bound for the joint probability
of the two inequalities can be given as:

P((1=06)p < p® < (1+er)p)
= P —p <epp, p — p > —61p1) (3)
Z 1-— €9 — (52.

We take the cost of a sample proportional to the sample size and designate by Cj;. the price

to obtain elements in the sample taken to estimate agg), 1=1,2,--- m, k=1,2,---,n. Let
a%), j=1,2,---, N be the sample to estimate ag,g) and a;;, = Nik Z;v:”‘l a%), i=1,2,---,m,
k=1,2,---,n. '

Our sample size optimization problem can be formulated in the following way:

min 2111 ZZ:1 Clir N

subject to

Pl —p<ep) >1—¢ (4)
P(u® — > —d1p) > 1 — 6

Ny >1, i=1,2,--- m, k=1,2,--- n.

Assume that all objective function coefficients are positive.
The next step is to replace the constraints in (4) by mathematically more tractable ones.
In order to do that we need the following:

Theorem 2.1. Suppose that all variances Var(a%)) exist and let Var(al(-i)) = o3, for each

7,7=12,--- Ny,t=1,2,---,m, k=1,2,--- ,n. Suppose that all conditions of Theorem
1.1 hold and &, @ = 1,2,--- .m, k = 1,2,---,n have normal distribution. If for the Ny,
1=1,2,---,m, k=1,2,---,n, we have

H;‘ilq)(g—l(o)) >1—e
o ”?k(“”k 2
k=1""N;
m_o(—a ) >1-4
o2 (y.(o))2
m ik 7
=1 Ny

NszL i:1727"'7m7 k:1727"'7n7

then the constraints in (4) are satisfied with the same sample sizes.
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Proof. We have the relations (see Prékopa, 1972,1995):

m

min — ko S = 5 ax —
1<k<n m 4= 11(0) po p0 T i<i<mn

This inequality can be written as

1 )
o= 3> (ol) —al?) o)
ik j=1
it follows that
1 N
lec - Ny Z(afi) — a(k))
j=1
We have the relations
E&r] =0

2
Var(gik): ]0\-;k7 221727 , 1, k:1,2, , M.

Since & ¢ = 1,2,--- .,m, k = 1,2,--- ,n have normal distributions with expectation 0, it
follows that >, _, Earl” and Z;il(—fikygo)) also have normal distributions with expectation

0 and

oy e ok ()
Var(Y guaf?) = > PR,
k=1 k=1 ¢
m m 0
Uizlc (?Jz( ))2'

V(M“(Z(_fikyz(()))) = Z N,

i=1 i=1
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Also, using the independence of the &, i =1,2,--- ,m, k=1,2,--- ,n we obtain

0 .
1%2);25”“% <e) = P(;fikxé) <ep, 1=1,2,---,m)
= H?LP(Z §ik$,(fo) <)
k=1

= I, 9( !

o’ (0))
>kt

lg}clg Z&k% > P(Z; Eayy) > =01, k=1,2,---n)

= M, PO &y > —oy)

=1

= HZ:1P(Z(—&I<?/§O)) < d1)
i=1

= szﬁ)( l

Zm oh (i )?
=1 Ny

Thus, if
Iy, & L )>1- e
(0))
Zk 1
5
I, &( ! )>1—6,

Zm o (Y )2
=1 Ny

hold, then the confidence constraints in (4) are satisfied.

O
Based on Theorem 2.1, we formulate the new problem:
min 33", >4 CinNa
subject to
H?llq)( 61—) >1—e
lk(m(o))2
ket N (5)
Iy, &( a 1— 6,
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Problem (5) is a relaxed problem as compared to problem (4). Thus, the set of feasible
solutions in the former one is somewhat smaller than that of the latter one. Hence the
optimum value of problem (4) is smaller than or equal to the optimum value of problem (5).

We show that problem (5) is convex, i.e., the set of feasible solutions is a convex set
(here we handle the Ny, i =1,2,--- ,m, k=1,2,--- ,n as continuous variables). We prove
somewhat more: the constraining functions in the constraints of problem (5) are logconcave
functions of the variables Ny, : =1,2,--- ,m, k=1,2,--- ,n.

Theorem 2.2. The functions I, &(——2—) and M}_, &(——2L—) are logcon-
cave functions of Ny, 1 =1,2,-+- ,m, k=1,2,-++ n.

Proof. First we prove the concavity of the function

Jln iz ym) = L+Li...+i
21 29 Zn
Z1%22 " Zn

)

2923 ZptZ123 2yt 212900 2

where z; > 0, 20 >0, ---, z, > 0.
For simplicity, we introduce the notation g = 2023+ -2, + 2123 - 2, + -+ 2129+ Zp_1.
Since g_g = JTAESIEELE it follows that
2; 2;
gy
af B (Zzzg...zn)g_zlzz...zng%
0z g

= (2023 2,)%g 2

0 f g — Zo23° 2
- — _222: "'Zn2 73—n
073 (2225 )9 %
0 f g— 2123+ 2
= 22(z---20)%g 2 — 2(2023- -+ 2,)%g T
02107 2( 3 )9 (2 3 )9 oy
= 2z129(23-- -zn)3g_3
0 f
= 2z120(2223 -2 1)%g 3
92107, 1 (23 1)9
0 f
= 22129(z3++2,)%¢073
822821 ! 2(3 n)g
0 f o 39— 2123 Zp

) ez
923 (2123 2n)°g -
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0 f
= 222, (2123 20 1)°9 7
92207, 2 (13 1)9
82f g — zZ122° " Zp—1
—L = —2zze2y1)%g8 e
022 (2122 1)°g Py

Let D;, j =1,2,--- ,n designate the jth principal minor of the following negative Hessian

matrix of the function f:

_o  _ef .. __2f
Bz% 021022 0210zn
_oy o ... __0f
022021 022 0220zn
Loy oy o
02n 021 02n 022 8232
Since
o —1 - -1
|
_1 _]_ . e Cj
; 1 1 1
= [1_ 1+¢)(1— — e — ,
Z_l( l)( ]_"—Cl ].—|—02 ]_—|—Cj)
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we obtain
_ —3\j 2 2 2
Dy = (207 (e m) Az ) oz 1z )
g—2223""Zn  __ Z123""Zn . _ 21°Zj-1Zj4102n
Z1 z2 Zj
| spmyern  gemzsem | FLZ_12j41n
Z1 z2 Zj
_ 2223'Zn _ 2123"'Zn - g—21"Zj—1%j+41"""%n
21 29 2j
—3\j 35 —4
= (207 (22 20)¥ (2122 - 25)
g—2223"Zn _ . _
o 1 1
1 g—aza 1
P
B B  gmmesiazipiem
1 1 B
J ,
_ —3\j 3j —4 9 2172 &
= (2077 (2122 20)7 (21227 - 25) ;
(leZ ... zn)]
(1_2:223"'271_2]_23"'2:77,_ _z]_"'zjf]_zj+]_"'zn)
9 g 9
. ) VAR AV sz +"'+ZZ"'Z7
. j 2j \—3~1 jej+2 n 1<2 n—1
= 2 (22 20)Y (2122 25) TS
> 0,
for every j = 1,2,---,n. This proves the concavity of function f.
. 0 . . . . .
Since €1, 07, x,g) are constants and /- is an increasing and concave function, it follows
that
€1
0
S o2 (@)
k=1 Ny
is a concave function of Ny, i = 1,2,--+,m, k = 1,2,--- ,n. Since log®(.) is increasing
and concave (see, e.g., Prékopa, 1995), and the product of logconcave functions is logcon-
cave, it follows that [[;", @(5—1(0)) is logconcave. The proof of the logconcavity of
P of ey )?
k=1""Ni
v ®(—2% ) is the same.
k=1 a?k(ygo))2
m 7 1
Ez:l le
O
0 0 . .
In problem (5) we have the values LE,(C ), k=1,2,---n, yg ), i=1,2,---,m which are

unknown, therefore we cannot use the problem in this form in practice. However, using past
. . . 0
experience or other information, we may know some upper bounds for :[;,(c ), k=1,2,---n,
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2 < xV k=12 n
g < vi=12- m,

where the right hand side values are known, then we formulate the following sample size
deterministic problem:

miny ", Y0 CipNig

subject to
m €1 >1—
HZ:IQ)( \/En ”?k(XIEO)V ) z1-e
k=1 Nik (6)
I, &( o ) > 1 -0y

. "'i2k (Yi(O))2
=1 TN

Np>1, i=1,2,---.m, k=1,2,---,n.

The set of feasible solutions of problem (6) is part of that of problem (5). Hence the optimum
value of problem (6) is greater than or equal to that of problem (5). If the variances in
problems (5) or (6) are unknown, then we can use upper bounds for them, too, to obtain
a completely specified optimization problem. Using bounds on statistical parameters to
determine sample sizes is a well-known technique in statistics.

Problems (5) and (6) are discrete variable problems because the Ny, i = 1,2,---  m,
k=1,2,---,n mean sample sizes. Since these problems are convex nonlinear programming
problems if we handle the Ny, ¢ = 1,2,---,m, k = 1,2,--- ,n as continuous variables, to

solve the problem for integer variables we advise a two stage solution procedure: (1) solve the
continuous variable problem and then (2) make a search for the integer optimal solution N*
around the continuous optimal solution N or take simply N* = [N]| where [N| = ([ Ni])
and [Ny| is the smallest integer not smaller than Ny, i =1,2,--- ,m, k=1,2,--- n.
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3 The Case of General Inequality Constraints

In this section we allow that some of the constraints in the LP (1) are of “<” type while
some others are of “>” type. Our random linear programming problem is:

max{c1x; + oy + - -+ + T, }

subject to

1171 + a1202+ s +amr, < b

Ar121 + GT2$2—|— e +arnxn S br (7)
A(r+1)121 + Q(r4+1)2T2+ o FaGgnTe > by

Am1T1 + am2x2+ e +amnxn > bm

T1,T2," ", Ty Z 0.

We assume, as before, that ¢, =1, k=1,2,--- ,n, b, =1,:=1,2,--- ,m.
Together with the random linear programming problem (7) we consider the deterministic
problem, written up with the expectations:

max{c;xy + cay + - + cpy}

subject to

agg)xl + ag)xﬁ e +a§?3xn < b

afn[i)xl 4+ aT(g)xz—F s +a7(~(7)1)$n < b (8)
(0) (0) (0)

Qpy1)1 %1+ QLT LT 2 br41

a%xl + a,(g)zxfr o A, > by

L1,T2,° " ,Tn Z 0.

Assume that there exist positive integers mg, ng such that for m > mg, n > ny problem (8)
has finite optimum value and problem (7) has finite optimum value with probability 1. It
follows that these optimum values are also positive (with probability 1 in case of problem
(7)). As before, we want to determine the minimum cost sample sizes such that a confidence
interval should cover the unknown optimum value by a prescribed probability. We prove the
following:



PAGE 12

RRR 5-2003

Theorem 3.1. Suppose all conditions in Theorem 2.1 are satisfied for problems (7) and (8).

If for given positive numbers d, and do, we have the relations:

m_o(—2 ) >1-4

Nyp>1, i=1,2,---,m, k=1,2,---,n,

then we also have:
P(u® — > —d1p) > 1 — 6

NszL t=1,2,---,m, k:1727"'7n'

Proof. Since 1 is the optimum value of the dual of problem (7):
min{y; +y2 + - + Y}

subject to
a11Yy1 + a21Y2+ o+ am1Ym
A1pY1 + G2nlY2+ o FAmnYm

Y, Yr 207 Yr+1y° "y Ym Soa
it follows that

— = max min AirYi

Where/}/izoa i:1,2,"',T, /Ylgoa i:T+1,T+2,"',m, Z;illyzz]-

v

Y

(10)

If 4y and p® are optimal solution and optimum value, respectively, of the dual of

problem (8), we also have the following equation:

m (0)
L = min a¥ Yi
p®  1<k<n ik p(©)

S : . (0)y, .
; max min 2 (&in + ay, )vi
m 0
: ) (0)\ Ji
z i 2 Gt G

(11)

(12)
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The rest of the proof is the same as that of Theorem 2.1. O

Based on Theorem 3.1 we formulate the sample size determination problem:

min 221 ZL CirNik
subject to
m_ o(——a ) >1-4 (13)

Nip>1, i=1,2,---.m, k=1,2,---,n.

In problem (13), we can replace the y(o), 1 = 1,2,---,m by their upper bounds Y(O), 1=

[ 7
1,2,---,m to get a more relaxed problem with completely specified parameters.
We can see that only the “<” inequality constraints contribute to the constraints in
problem (13), the others are irrelevant from this point of view.

4 An Illustrative Example

The diet problem as a optimization problem was first formulated by Stigler (1945). There are
various stochastic programming formulations of it, see, e.g., Armstrong and Balintfy (1975),
Lancaster (1992), Prékopa (1995). The problem formulation and solution we are presenting
in this section serve as illustration to the results of the former sections but may be useful in
the practical application of the diet problem as well.

Suppose that we want to create a plan for the composition of a fruit cocktail to be served
for everybody in a population of 25-50 years old females such that thiamin, riboflavin, niacin
and ascorbic acid should be contained in on the DRI (Dietary Reference Intakes) level and
its carbohydrate content be minimized. For possible inclusion into the cocktail we choose the
fruits: apple, banana, cherry, grape, orange, peach, pear, plum, tangerine and watermelon.
The nutrient contents of these fruits will be estimated by taking samples. The nutrient
content data (see Gebhardt and Thomas, 2002) may serve only as a guideline. In Table 4.1
we present these data for the chosen fruits, together with the DRI [11] of these nutritional
elements for a female, aged 25-50.
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Fruat Vitamin
Thiamin | Riboflavin | Niacin | Ascorbic Acid | Carbohydrate
Apple 0.02 0.02 0.1 8 21
Banana 0.05 0.12 0.6 11 28
Cherry 0.03 0.04 0.3 5 11
Grape 0.05 0.03 0.2 5 9
Orange 0.11 0.05 0.4 70 15 Table 4.1
Peach 0.02 0.04 1.0 6 11
Pear 0.03 0.07 0.2 7 25
Plum 0.03 0.06 0.3 6 9
Tangerine 0.09 0.02 0.1 26 9
Watermelon 0.23 0.06 0.6 27 21
RDA 1.1 1.1 14 75

One Apple: Raw, unpeeled, 2%” diam (about 3 per lb). One Banana: Raw, whole, medium, 7” - 7%” long.
Ten Cherries: Sweet, raw, without pits and stems. Ten Grapes: Raw, Seedless. One Orange: Raw, whole,
without peel and seeds, 22”7 diam. One Peach: Raw, whole, pitted, 23" diam (about 4 per 1b). One Pear:
Raw, whole, cored, 2%” diam. Omne plum: Raw, 2%” diam. One Tangerine: Raw, without peel and seeds,
2%” diam. One Wedge of Watermelon: Raw, one wedge is about 11—6 of a melon (15” long, 7%” diam).

This problem can be formulated as the following linear programming problem:

m1n{2121 + 2822 + 112’3 + 924 + 152’5 + 112’6 + 2527 + 92’8 + 92’9 + 21210}
subject to

40.022¢ + 0.0327 + 0.0325 + 0.0929 + 0.23 219
0.02z1 + 0.1229 + 0.0423 + 0.03z4 + 0.0525
4+0.042z5 + 0.07z7 + 0.0625 + 0.0229 4+ 0.0621¢

0.121 +0.622 + 0.323 + 0.224 + 0.425

+1.0z + 0.227 + 0.3258 + 0.12z9 + 0.6219
821+ 1129 + 5z3 + Hz4 + 7025
+625 + Tz7 + 628 + 2629 + 27219
Z1, %2, 23, 24, Z5, 26, X7y 285 295 210

v v

v

(VARV}

1.1

1.1

14

75

To obtain an LP with all 1’s in the objective function coefficient vector and on the right
hand sides, we introduce the new variables y; = 2121, yo = 2825, y3 = 1lz3, ys = 924,
ys = 1bz5, y¢ = 1lzg, yr = 2527, ys = 923, Y9 = 929 and y;9 = 21219, and divide each

constraint by its right hand side value.

Then the dual of this new linear programming
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problem is:

max{z; + zs + x3 + x4}

subject to

87 x 107 +8.7x 107 *xy +3.4 x 107423 + 5.1 x 10324 < 1
1.6 x 10 %25 +3.9x 10 32, + 1.5 x 10 %25 + 5.2 x 10732, < 1
2.5 x 10732, +3.3x 107325+ 1.9 x 107325 + 6.1 x 107324 < 1
5.1 x 10732, +3.0 x 107325+ 1.6 x 107325 + 7.4 x 107324 < 1
6.7 x 10732, +3.0 x 10325+ 1.9 x 107323 + 6.2 x 107224 < 1 (15)
1.7x 10732, +3.3 x 10732, + 6.5 X 107325 + 7.3 x 107324 < 1
1.1 x 107321 + 2.5 x 107325 + 5.7 x 107423 + 3.7 x 10732, < 1
3.0x 10732 +6.1 x 10325 +2.4 x 10323 + 8.9 x 107324, < 1
91x 10732, +2.0x 1022, + 7.9 x 107423 + 3.9 x 1022, < 1
1.0 x 10227 +2.6 x 10 325 + 2.0 x 10 %25 + 1.7 x 1022, < 1
T1, T2, T3,T4 > 0.

Using Ezxcel, we get the optimal solutions of problem (15) and its dual problem:

20 = (56,102,87.4,0)7,
y® = (0,0,0,0,0,105.8,0,82.2,0,57.3)". (16)

The optimal solutions (16) have been obtained on the basis of the nutrient contents
presented in Table 4.1. Since the data in that table are not necessarily the same as those
contained in those foods that we want to serve the calculation of the optimal sample sizes,
by the use of 2(*) and y®). provide us only with a guideline. Let ¢ = g5 = 6; = 6> = 0.1.
Suppose 045,]{), 1 =1,2,---,10, k = 1,2,3,4 have independent normal distributions, p;; =
EloY] = ag, i =1,2,---,10, k = 1,2,3,4, then o5 ~ 0.10pp, i = 1,2, -+, 10, k = 1,2,3,4.
So

g = (Uzk) =

87 x 107"
1.6 x 10~*
2.5 x 10~*
5.1 x 10~*
6.7 x 1074
1.7 x 1074
1.1 x 10~*
3.0 x 1074
9.1 x 1074
1.0 x 1073

8.7 x 10°°
3.9 x 1074
3.3x 1074
3.0 x 10~*
3.0 x 10~*
3.3 x 10°*
2.5 x 1074
6.1 x 1074
2.0 x 10~*
2.6 x 107*

3.4 x 1075
1.5 x 10~*
1.9 x 10~*
1.6 x 10~*
1.9 x 10~
6.5 x 10~*
5.7 x 10~°
2.4 x 1074
79 x 10~°
2.0 x 10~*

5.1 x 1074
5.2 x 1074
6.1 x 1074
7.4 x 107*
6.2 x 1073
73 x 1074
3.7 x 107
8.9 x 1074
3.9x107°
1.7x 1073

(17)



PAGE 16 RRR 5-2003

The optimal fruit composition problem, as a special case of problem (5), takes the form:

min 2;21 22:1 Nig
subject to
2, @(————) > 0.9
Thoy ke (18)

H%Zld)(#(o)) >0.9
ol (y; )2
Xl Tk —

Nzkzla Z:1727 7]-07 k:17273747

where yl(ﬂ)’ £E,(€O), Ok, 0 = 1,2,+-+,10, k = 1,2,3,4 are given by (16) and (17). Using Ezcel,

we compute the minimum sample sizes as continuous variables for this diet problem, they
are given in:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1.056682 1 1 1
N = (Nix) = 1 1.75022  3.423089 4.103629
1 1 1 1
1.222637 2.722797 1.057123 3.886176
1.396225 1 1 1
3.028301 1 1 5.175706
If we take N* = [N], then
1111
1111
1111
1111
. i 211 1
1111
2 3 2 4
211 1
4116

Otherwise, we can make a search around the optimal solution of the continuous problem to
get a better integer solution if any exists. We were able to find one in our example which is
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exhibited below:

N™ = (Ni) =

— =W = N e

O DD DD M
e e T e TG R e S S =
UM B s 1 1

Suppose now that we do not know the nutrient contents of the fruits, that we plan
to include into the fruit cocktail, but we know upper bounds on the components of the
optimal solutions (¥, y(®). Let the upper bounds be given by the components of the vectors
X0y, X0 = (60,110,90,10)7, Y = (10,10, 10, 10,10, 110, 10, 90, 10, 60)". We also
suppose that the variances oy, i = 1,2,---,10, k = 1,2, 3,4 are exactly known (if they are
not, then we may have upper bounds on them as well). Then, using the same ey, €, d; and
d2, as before, the solution of problem (6) gives the following fractional values:

1 1 1 1
1 1.239755 1 1
1 1.051974 1 1
1 1.067844 1 1
1.361261 1.117383 1 1
N = (Nig) = 1 1.972729 3.805863 4.476521
1 1 1 1
1.424193 3.237028 1.233966 4.466415
1.781922 1 1 1
3.479575 1.16157 1 5.686951
Then we either use N* = [N] to get
1111
1 211
1 211
1 211
. . 2 2 11
1111
2 4 2 5
2 1 11
4 2 16
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or search for a better integer sample sizes . We succeeded to find such an N** and we present
it below:

N* = (V) =

NN~ —NR =
O = R H DN NN N
e i N e e
O = U= U e e e

5 Application in Game Theory

Consider a two-person zero-sum game (see, e.g., Neumann and Morgenstern, 1944) with finite
strategy sets of m, n elements, respectively and payoff matrix A = (a;;). Let pu designate
the value of the game. We can obtain it as the reciprocal value of the optimum of any of the
problems in the primal dual pair of linear programs:

o= max{zy + a2+ -+ a,}

sulT)Lject to . (19)
Zkzlaikxkglv 221,2,"',777,

r > 0, k:1727 1,

L=min{y; + 9o+ -+ ym}

subject to (20)

Sriawy; > 1, k=1,2,---n
y; >0, i=1,2+-,m.

These are exactly the problems (1) and (2) if we replace there b; =1,7=1,2,--- ,;m and
e =1,k =1,2,--- ,n. Thus, the results of Sections 2, 3 can be applied to the LP’s (19),
(20) without change.

We assume that the elements of the payoff matrix are deterministic but unknown. We
designate these values by ag,g), 1=1,2,---,m, k=1,2,---,n and take independent samples
to estimate the unknown values. In order to find an optimal collection of sample sizes
we formulate and solve problem (5) or, if we replace the values yl(0)7 i=1,2,--+,m, £E,(€O),
k=1,2,---,n by their upper bounds, we solve problem (6).
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