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In the present paper we are concerned with two topics: the probability distributions
of the random variables consisting of a completely additive stochastic set function and
the discontinuities of the realizations by supposing the latters to be completely additive
number-valued set functions. Some theorems of Chapter 11l are analogous to those well-
known in the theory of stochastic processes with independent increments. (cf. mainly

[13]).

There are questions arising in a natural way in the field discussed in this paper which
we did not consider in detail such as the representation of a stochastic set function as a
sum of an atomless and an atomic part, etc. These problems are not very difficult to solve
with well-known methods or with our results.

We refer to the definitions and notations of the previous papers [19], [20] which are
used here without any remark. Some new definitions and notations will also be introduced
at the place where they are needed.

[. PRELIMINARY REMARKS ON TOTALS

The notion of the “total”, which is a generalization of the Burkill integral, was intro-
duced by M. CoTLAR and Y. FRENKEL [4]. A special case of this was generalized by the
author [22] for functions with values in a Banach algebra. These notions and the theorems
proved in connection with them find an extensive application in the present paper.

In this Chapter we formulate some definitions and theorems relative to the totals in a
form convenient for our treatment. We do not strive in the definitions for the most general
versions and mention only the simplest theorems. To other theorems proved in the paper
[22] we refer at the place of their application.

Let H be an abstract set and K a semi-ring of sets consisting of some subsets of H.
This means the following:

DErFINITION 1. 1 A class of sets K is called a semi-ring if for every pair of sets A € K,
B € K for which A C B there is a finite system of sets Cy € K (k=1,...,r) such that

k=1

'This notion of semi-rings is due to A. CsAsz4R.




further with every I/ € K and F € K we have also FF € K.

The elements of K can obviously always be decomposed as sums of disjoint sets be-

longing to K. If A € K and
=3
k=1

where Ay € K (k=1,...,r), A;Ar = 0 for ¢ # k, then the system of sets Ay,..., A, will
be called a subdivision of the set A. The subdivisions will be denoted by simple or signed

letters 3 as 3 = {Ay,..., A}
If 3y = {A},..., AL} and 3" = {A],..., A"} are two subdivisions of the set A € K

and every set A} is a part of a set A’ € K, then we write 3’ C 3"”. Every “total” is in a
closed connection with a partial ordering relation < which orders (partially) the space of
the subdivisions. This relation is supposed to be fulfilling the requirement that 3’ C 3”
implies 3 < 3”. In § 1 of Chapter II we consider the case when the relation < reduces to
the relation C. If H is a metric space, then a possible partial ordering relation, which we
denote by the sign —, is the following: 3’ 3" if maxy d(AY) < maxg d(A}).2

Let f(A) (A € K) be a set function the values of which lie in a commutative Banach
algebra B. The additive total of this function over a set A € K is defined by

DEFINITION 2. If there is a g € B such that to every € > 0 a subdivision 3. of the set
A can be found with the property

(1.1) <e

Y (A -y
k=1

for every 3 = {Ay,..., A} > 3., then the element ¢ will be called the additive total of the
function f over the set A and will be denoted by

S.f(dA).

For real-valued set functions (i.e. when B is the Banach algebra of the real numbers)
we define the lower and upper totals as follows:

DEFINITION 3. Consider the sums

f(Ak)v
k=1
where 3 = {Ay,..., A, } is a subdivision of the set A € K and take the suprema and infima

r

sup Y f(Ax), inf zr:f(Ak).
k=1

3:5>8 1 3:3>3

2d(A) denotes the diameter of the set A, i.e. d(A) = SUDp A, hoca d(hi1,h2) where d(hy, h2) is the

distance between the points hi, ha.



The infimum of the suprema and the supremum of the infima — while 3’ runs over the
subdivisions of the set A — will be called the upper and lower totals, resp., of the function
f over the set A. For these values we introduce the notations

Saf(dA)  and S, f(dA),

respectively.

The following theorems can be proved by well-known arguments:

THEOREM 1.1. There is at most one g € B fulfilling the requirements in Definition 1.

THEOREM 1.2. The additive total of a function f(B) (B € K) exists over the set A € K
if and only if for every e > 0 there is a subdivision 3. = {Ay,...,A,} of the set A such
that

(1.2) <e,

D F(A) =D (A
k=1 k=1
provided 3 = {A}, ..., AL} > 3.

THEOREM 1.3. If A = Ay 4+ Ay where Ay € K, Ay € K, A € K, A1Ay = 0 and the
function f(B) (B € K) is totalizable over the set A, then this holds also for the sets Ay,
As and

(1.3) SAf(dA) = Sa, f(dA) + D4, F(dA).
TueorEM 1.4. If f(B) (B € K) is real-valued and subadditive, i.e.
J(AL+ Az) < f(A1) + f(42)

whenever A1 € K, Ay € K, A1 + Ay € K, then the total of [ exists over every set A € K
where f has a finite variation and

(14) Safa) = sup S (),

(A1 A} 22T

where {Ay, ..., A} runs over the subdivisions of the set A.

In the sequel we suppose that the Banach algebra B has a unity element which will be
denoted by e. We introduce the notion of the multiplicative total.

DEFINITION 4. If there is a g € B such that to every € > 0 a subdivision 3. of the set
A € K can be found with the property

|JEEDEY
k=1

for every 3 = {4y,...,A,} > 3., then the element g will be called the multiplicative total
of the function f over the set A and will be denoted by

<e

[ 1. raa).



The following theorems are almost trivial:
THEOREM 1.5. There is at most one g € B fulfilling the requirements in Definition j.

THEOREM 1.6. The multiplicative total of a function f(B) (f(B) € B, B € K) exists
over the set A if and only if for every ¢ there is a subdivision 3. = {Ay,..., A} of the set
A such that

<e&,

IT 70 =TT £4%)
k=1 k=1

provided 3 = {A},..., AL} > 3.

In the present paper multiplicative totals are used only in the case when H is a compact
metric space, further K has the additional properties:

«) If h € H, then {h} € K.

g) If A € K, then for every € > 0 there exists a subdivision 3 = {Ay,...,A,} of the
set A such that
max d(Ag) <e.

v) Relation < reduces to —<.

If the (partial) ordering relation < reduces to the relation —« and K is the semi-ring
of the subintervals of an interval [a, b] (permitting open, closed and semi-closed intervals
equally), finally if B is the Banach algebra of the real numbers, then the additive total
introduced by Definition 2 coincides with the Burkill integral.

II. THE PROBABILITY DISTRIBUTION OF A COMPLETELY
ADDITIVE STOCHASTIC SET FUNCTION

§ 1. Atomless set functions

One proves in the theory of stochastic processes with independent increments that if some
continuity conditions are fulfilled, e.g. if for every € > 0

P(|55+As_€5| >€)—>0 if As —= 0

uniformly in s; then the differences &, — &, are distributed according to an infinitely
divisible probability distribution. This is the starting point of the considerations on other
questions concerning the distributions of the process &;. As the space H is abstract, an
analogous continuity condition for stochastic set functions cannot be formulated. There
is, however, a property which is at the same time of probabilistic and set-theoretic nature
and which enables the proof of some theorems concerning the probability distributions of
a completely additive stochastic set function £(A): the atomlessness. Its definition is the
following:



DEFINITION 5. Let £(B) be a completely additive set function defined on a o-ring S.
A set A € § will be called an atom relative to the set function & if for every C' € AS we
have either £(C) = 0 or £(C) = &(A).

DEFINITION 6. The completely additive set function £(B) (B € S) will be called atom-
less if for every atom A we have £(A4) = 0.

The set function &(B) (B € K) is atomless if and only if for every A € § satisfying

P(E(4) £0) >0
there exist sets 41 € AS, A9 € AS, A1 Ay = 0 such that

(2.1) P(E(A) £0) >0,  P(£(Ag) #0) > 0.

This shows that the values of an atomless set function in a set A € § are not concen-
trated with probability 1, i.e. they are well-distributed in “every part” of the set A. If for
every A € § the random variable £(A) is constant, then our definitions 5-6 reduce to the
analogous definitions formulated for number-valued set functions.?

The following two theorems have a fundamental role in our discussion:

THEOREM 2.1. Let £(A) be a completely additive set function defined on a o-ring S.
If there is a T > 0 such that the measure W (T, A) (A € 8)* is atomless, then the same
holds for £(A) (A € S).

Conversely, if £(A) (A € §) is atomless, then for every T > 0 the measure W (T, A)
(A € 8) has also this property.

Proor. If for some 7' > 0 and X € § we have W(T, X)) = 0, then £(X) = 0 which
proves the first assertion.

Let us consider the second statement. If £(B) (B € S) is atomless and A € § is an
arbitrary set, then there can be found sets 4; € S, Ay € § such that A; A3 =0 and (2.1)
holds. In this case for every T" we have

VV(T7 Al) > 0, VV(T7 Az) > 0, O

THEOREM 2.2. If&(B) (B € 8) is an atomless completely additive set function, then
for every set A € § the distribution of the random variables £(A) is infinitely divisible.

Proor. Let T be a fixed positive number. Since the measure W(T, B) (B € §) is
atomless, to every € > 0 there is a subdivision of the set A into pairwise disjoint sets
By, ..., B, belonging to & such that

W(T,By) <e (k=1,...,r).

Hence

8Cf. [10], p. 48.
*See e.g. [20], p. 12.



(2.2) sup |1 — f(t,By)| < ¢ (k=1,...,r).
[tI<T

It follows from the inequality
1 T

1 1
o |-tz o (s> 1)

(cf. [19], p. 220) that there exists a sequence of subdivisions {Byl)7 ces ,B,(:l)} of the set

A such that the random variables in the double sequence

g(B§”)),...,g(B,gj)) (n=1,2,...)

are infinitesimal (cf. [9], § 20). But for every n

=3¢ (B,
k=1

hence the distribution of the random variable £(A) is a limiting distribution of sums of
infinitesimal independent random variables. According to Theorem 2 of [9], § 24, this
proves our statement. [l

Let us consider the LEVI’s canonical form of the characteristic function of £(A):

log £(t, ) = iy () - T
(2.3)

+ itr _ = " aM(a, A +/ (m’—l——)dN CA).
/(_oo,o) (6 1+9€2) (=, 4) (0,00) ‘ L+ 22 (=, 4)

A slightly modified form of this is the following:

log f(t, A) = i(r, A)t — "2(‘24 L

(2.4) + /(_ . )(em’ - 1) dM(w,A)—I—/( )(em’ —1)dN(z, A)

+ / (e — 1 —itx) dM (z, A) —I—/ (e — 1 —itz) dN (z, A),
[-7,0) (0,7]

where 7 is an arbitrary positive number.

The numbers y(A), a?(A), v(r, A) are uniquely determined by the probability dis-
tribution of £(A). The same holds for the functions Mz, A), N(z,A) if in the points
of discontinuity we make some convention. We shall suppose M (z, A) and N(z, A) to be
continuous to the left. From what has been said above and from the convergence theorems
of infinitely divisible distributions it follows

THEOREM 2.3. Let {(A) (A € S) be an atomless completely additive set function and T
a fized positive number. Then the number-valued set functions v(A), v(7, A) are completely
additive, and o?(A), M(z,A) (for fized x < 0), —N(x, A) (for fivred x > 0) are finite

measures on the o-ring §. Fach of these number-valued set functions is atomless.



PrOOF. The preceding set functions are obviously additive. Let By, Bs,...be a non-
increasing sequence of sets of S for which [],~,; Br = 0. Since

Ft,By) =1 if k- oo,

it follows that
v(By) = 0, o*(By) — 0,
M(z,Br) -0 (2<0), N(z,By)—>0 (z>0)
if £ — oo.

As for the sequence (7, By), we proceed in the following way. The functions M (z, By),
N(z,Bg) (k = 1,2,...) are monotone, hence the set of their points of discontinuity is
countable. Thus there exists a 7y > 0 so that 7y < 7, moreover the points —7; and 71 are
points of continuity of the functions M (x, By) (k=1,2,...) and N(z, Bg) (k=1,2,...),
respectively. But we know that limg_ e v(m1, Br) = 0 (cf. [9], § 19, Theorem 2), hence the
relation

Y B =(n B - [

z dN(z, By) —/ x dM (z, By)
T1<x<T

—T<e<—T1
proves the statement. [l

We prove finally that the mentioned set functions are atomless. Let A € S and choose

a sequence of subdivisions 3, = {Byl)7 . ,B,(:l)} for which
n 1
(2.5) W(T,B,g))gE (k=1,... ks n=12...).

If one of the above set functions had an atom, then in view of (2.5) it would be a contra-
diction. In fact, (2.5) implies that for any sequence k(™ (1 < k(?) < k)

e(BI)) =0 i noe

and hence
v (B](I,z)) — 0, o? (B](I,z)) — 0, v (T, B](I,z)) —0 (for 7 > 0),
M (2, B)) =0 (for = < 0), N (2, B{)) =0 (fore>0)

if n = co. Thus Theorem 2.3 is proved.

In the following theorem we establish some connections between the above set functions
and the distributions F(z, A) (A € §). The totals in this § are taken relative to the
(partial) ordering relation L.

THEOREM 2.4. If £(B) (B € §) is an atomless completely additive set function, then
for every A € § we have the following relations:

(2.6) log f(t, A) = OA(f(t,dB) — 1),

Mz, A) = O4F(z,dB) (x < 0),
(2.7)

N(z,A) = S4(F(z,dB) - 1) (z > 0)



for every x where the functions on the left-hand side are continuous. If 7 > 0 is a number
such that M (x, A) is continuous at —7 and N(z, A) at T, then

(2.8) v(r, A) = SAoe(T7 dB) where a(r,B) = / zdF(z, B),
|z|<T
finally
(2.9) o*(4) = lim S.B(e,dB) = lim S .5(e,dB)
where
2
B(s, B) :/ a*dF(z, B) — (/ xdF(ac,B)) :
lz|<e |z|<e
Proor. First we prove the relation (2.6). Let 3 = {By,...,B,} be a subdivision of

the set A € S for which (2.2) holds (0 < = < 1). Hence we get

r

log f(t, A) = (f(t, By) = 1)

k=1

(2.10)

r

< " Jlog £(1, Bi) — (£, Bi) = 1] < S IF (8 By) — 1 < W(T, A)e.

If we substitute 3' 1 3 for 3, then (2.10) remains true, hence (2.6) is proved. It can be seen
from (2.10) that the convergence to the total is uniform in every finite ¢-interval.

Now, we consider the relations (2.7)—(2.8). Let 31 C 32 C ... be a sequence of subdivi-
sions of the set A such that

(2.11) log f(t, A) = g&i (f (t,B,ﬁ”)) - 1) ,
k=1

where 3, = {Byl)7 . ,B,(:l)}. Suppose that either (2.7) or (2.8) does not hold. Let this
be e.g. the first row of (2.7), the others can be treated similarly. By condition there exists
an x < 0, an g9 > 0 and for every n a subdivision 3/ = {Cin), e ,C’g:l)} T 3, such that

M (z, A) is continuous at the point 2 and

Sn
(2.12) ‘M(aaA) —ZF(@C?)) > £o.
k=1
On account of (2.11) we get
Sn
— (n)
log f(t, A) = nlgﬂo; (f (t,Ck ) . 1) ,

8



or otherwise expressed
Sn

(2.13) expz (f (t,C,gn)) - 1) = f(t, A) if n — 00.
k=1

On the left-hand side of (2.13) there stands a sequence of infinitely divisible characteris-
tic functions. To the members of this sequence in LEVI’s formula correspond the following
functions:

(2.14) M, (2) = iF (w c,§”>) .
k=1

Relation (2.13) implies that at every point of continuity of M (z, A)
lim M, (z) = M(z, A)

n—0oo
which contradicts (2.12).

Concerning the proof of relation (2.8) we remark that in this case we have to use LEVY’s
formula in the form (2.4).

Finally we prove (2.9). Let us construct a sequence of subdivisions 3, = {Byl)7 ey

B,(:l)} for the members of which (2.2) holds and

kn
(2.15) lim kZﬂ (g, B,@) = S.p(e,dB).
=1
By Theorem 1 of [9], § 22 we have
. Q 2
lim S.B(e, dB) = 0*(A).

A similar argument shows the statement relative to the lower total. Thus our theorem is
proved. O

§ 2. The probability distribution of a completely additive set
function in case of a metric space

In this § we suppose that H is a compact metric space and K is a semi-ring of some subsets
of H satisfying Conditions «), ), v) on. p. 4. We do not suppose that the stochastic set
function £(A) is defined on a o-ring but only that it is defined on every element of K. We
assume that £(A) is completely additive on K, i.e. besides the independence property®

E(A) = €A
k=1

5To disjoint sets there belong independent random variables.



whenever Ay, € K (k=1,2,...), A;/A, =0fori#kand A=) 77, Ay € K.
Before turning to the considerations on distributions we prove an auxiliary theorem.
THEOREM 2.5. If £(A) (A € K) is a completely additive set function defined on the
semi-ring K, then there exists a completely additive set function £(A) defined on R =
R(K)® for which
S =) i Aek.
If£(A) (A € K) satisfies an extension condition formulated in [19], Chapter 111 (substi-

tuting K for R), then £(A) (A € R(K)) does also, i.e. the set function & can be extended
to S(R).

Proor. The ring R(K) consists of finite sums of sets belonging to K. If Ay,..., A4,
are disjoint sets of K and A =3} _; A, then put

= Zf(Ak)-
=1

It is easy to see that the definition of the set function € is unique and it is completely
additive on R.

We prove the second assertion by the aid of Theorem 3.3 of [19]. If the condition of
this theorem holds for £(A) (A € K), then it is obviously holds also for £(A4) (A € R). On
the other hand, if some extension condition holds for £(A) (A € K), then — as it is very
easy to see in every special case — the condition of Theorem 3.3 is satisfied too. Thus &
can be extended to S(R) which implies the fulfilment of all extension conditions for . O

The fact that for £(A) (A € K) one of the extension conditions of [19], Chapter I1I holds,
will be mentioned simply as follows: £(A) (A € K) can be extended to S(R) = S(R(K)).
In the following theorems the totals are taken with respect to the (partial) ordering relation
—<.

THEOREM 2.6. Let (A) (A € K) be a completely additive set function and suppose
that it can be extended to S(R). In this case for every A € K the following totals exist:

(2.16) log g(t, A) = SA(f(t,dB) — 1)
where t is an arbitrary but fized real number;

(2.17) ( = SAF(z,dB) (z < 0),
(2.18) = SA(F(z,dB) - 1) (z > 0)

except at most a countable x-set and

(2.19) v(r, A) = SAoe(T7 dB) where a(r,B) = /| - zdF(z,B).

SR(K) denotes the smallest ring containing the semi-ring K.

10



In (2.19) 7 is a positive number with the property that M (xz, A) and N (z, A) are continuous
at —7 and T, respectively.

The sequence approzimating the total (2.16) converges to its limit uniformly in every
finite t-interval.

ProoOF. Let Br denote the Banach algebra of the continuous complex-valued functions
defined in the interval [-T, 7. Considering the functions f(¢, B) (B € K) only for |t| < T,
we get elements of Br. By condition £(A) (A € K) can be extended to S(R). To the
extended set function there corresponds a measure W(T, A) (A € S(R)). If

§(T,C) = sup |1 — f(t,C),
jtl<T

then obviously
(2.20) Vars(B) < W(T, B),

hence the set function f(t,C)—1 (|t| < T, C € K), the values of which are taken from Br,
is of bounded variation and v-continuous.” Hence by Theorem 1 of [22] the total (2.16)
exists for every ¢ satisfying —T <t < T and the convergence is uniform in the interval
[-T,T]. Since T was an arbitrary positive number, the statement concerning the totals

(2.16) follows.
Let 3, = {Byl)7 cen B,(:l)} be a sequence of subdivisions of the set A such that 3, <3,+1
and maxy, d (Blgn)) —0ifn — oco. If

(2.21) gn(t, A) = ﬁ exp (f (t, B,gn)) - 1) ,
k=1

then, by the precedings,
(2.22) gnlt, A) = g(t, A) = exp S4(f(t,dB) — 1).

The characteristic functions g, (¢, A) are infinitely divisible. In LEVI’s canonical form (of
the type (2.4)) in the place of M (z), N(z) and v(7) there stand the following functions:

(2.23) iF (=, B("), i (7 (. B1") 1)
k=1

k=1

and the constant

kn
(2.24) Z/ v dF (x7B,gn>)7
k=1 || <7

respectively. The well-known convergence theorems relative to infinitely divisible distri-
butions (cf. [9] , § 19) imply our statements. O

TCf. [22], p. 109, Definition 5.

11



REMARK 1. In the same way as we have proved the relevant assertion of Theorem 2.3,
we can prove also here that

(2.25) 02(A) = lim SA8(e, dB) = lim S 16, dB),

e—0

where

B(s, B) :/||< a*dF(z, B) — (/||< xdF(ac,B))

REMARK 2. If we consider the functions ¢(¢, B), f(t, B) (B € K) only in the interval
[-T,T], then by Theorem 1 of [22]

(2.26) Var,(B) < Vary_;(B) (BeK)

whence

(2.27) sup |logg(t, B)| < W(I,B) (B €K),
[t|<T

where W(T, B) is the same measure as in the proof of Theorem 2.6. Hence by simple
arguments follows that for every 7 > 0, v(7, A) is a bounded, completely additive number-
valued set function and o?(A), M(z, A) (x < 0), —=N(z, A) (z > 0) are bounded measures
on K.

THEOREM 2.7. Let us consider the infinitely divisible characteristic function

g(t, A) = exp {i'y(r, At — Uz(f)tQ
2.28 e — 1) dM(z, A € —1)dN(z, A
e [ A [ v

—I—/ (e — 1 — itx) dM(w,A)—I—/ (e — 1 — itx) dN(av,A)}7
[_7—70)

(0,7]

where M (z, A), N(z,A), v(1, A) *(A) are defined by formulae (2.17)~(2.19) and (2.25).
Then for every B € K and every t we have

(2.29) £, B) = [ 10 + 108 g1, da))
and the convergence to the total is uniform in every finite t-interval.

Proor. This theorem follows immediately from formula (2.26) and from Theorem 3
of [22].

Formula (2.29) gives the general form of the probability distributions of the random
variables £(A) (A € K).

According to Theorems 3-4 of [22], the correspondence between the set of distributions
{F(z,A), A € K} and the set of real-valued set functions {M(z, A) (# < 0), N(x, A)
(z > 0), v(r, A) (1 > 0), ¢*(A), A € K} is one-to-one. O

12



§ 3. The probability distributions in case of a metric space
and a weak continuity

In the beginning of this Chapter we have mentioned that in general a weak continuity
cannot be formulated for abstract stochastic set functions. It is, however, possible if H is
a metric space.

We suppose in this § (such asin § 2) that H is a compact metric space and K a semi-ring
of some subsets of H satisfying Conditions «), ) and v) on p. 378. We make here a little
digression by omitting the condition of complete additivity and supposing only additivity
for the set function £(A) (A € K). A remarkable special case of this type of stochastic
set functions is that generated by the differences of a stochastic process with independent
increments &. In this case H is an interval [a, b], K is the semi-ring of all subintervals of
[a,b] (permitting closed, open, semi-closed intervals equally) and £(A) equals &, — &, if
a < s; < sy <band A equals one of the intervals (si,s2), [s1,52), (s1,s2], [51,52]. Our
notion of weak continuity (given by Definition 6) reduces in this case to the classical one.

DEFINITION 7. An additive set function {(A) defined on the semi-ring K is said to be

weakly continuous if for every sequence of sets Ay, Ag, ... satisfying lim, o d(A,) =0
we have
(2.30) £(A,) =0 if  n— oo

In the following theorems the totals are taken with respect to the (partial) ordering
relation —<.

THEOREM 2.8. Let £(A) be an additive and weakly continuous set function defined
on the semi-ring K. In this case every random variable §(A) (A € K) depends on an
infinitely divisible distribution and in Lévy’s canonical form the functions and constants
are the followings:

(2.31) Mz, A) = S4F(z,dB) (x < 0),
(2.32) N(X,A) = S4(F(x,dB) - 1) (x> 0),
(2.33) v(r, A) = SAoe(T7 dB) where a(r,B) = /|| zdF(z, B),
finally

(2.34) o*(4) = lim S.B(e,dB) = lim S, 5(e, dB),

where

B(s, B) :/||< a*dF(z, B) — (/||< xdF(ac,B))

Relations (2.31) and (2.32) hold at the points of continuity of the functions M (z, A) and
N(z, A), respectively. T denotes a positive number which has the property that M (z, A)
and N (z, A) are continuous at —7 and T, respectively.
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ProoFr. Let 3, = {Byl)7 . ,B,(:l)} be a sequence of subdivisions of the set A such
that 3, < 3,41 and lim, ., maxy d (B,gn)) = 0. The weak continuity of £(B) (B € K)

implies that in the double sequence

(2.35) ¢ (B@) € (B,g:>)

there stand infinitesimal random variables (cf. [9], § 20). Since for every n

(=Y (7).
k=1

it follows that (cf. [9], § 24, Theorem 2) the probability distribution of £(A) is infinitely
divisible. The other part of the theorem follows from Theorem 4 of [9], § 25. (|

Contrary to Theorem 2.6 of the preceding §, in this case the total

(+) Sa(f(t,dB) - 1)

does not exist in general. But it can be proved that

log f(t, A) = S4(fi(t,dB) — 1),

where

Rt B) = [(t, B)e =B a(r,B) = /| PRI
x|<T

(cf. the proof of Theorem 1 of [9], § 24).

If £(A) is a set function generated by the differences of a stochastic process with inde-
pendent increments &, then the totals in Theorem 2.8 reduce to Burkill integrals. For such
set functions £(A) simple examples can be given where the total (x) does not exist. We
have only to put & = ¢(s) where ¢(s) is a conveniently chosen continuous real function
of unbounded variation.

The k-th moment and the k-th semi-invariant of a random variable £(A) will in the
sequel be denoted by My (A) and x;(A), respectively:

o] k

Mk(A):/_ b dF(z, A),  ap(A)

t=0

provided that the integral on the right-hand side of the first relation exists. We prove a
theorem concerning their connection. O

THEOREM 2.9. Let £(A) be an additive set function defined on the semi-ring K. Sup-

pose that for every A € K the moment My(A) exists and the following two conditions
hold:

1. The set functions M;(A) (¢ =1,...,k—1; A€ K) are of bounded variation.

14



2. If By, Ba, ... is a sequence of sets of K such that lim,,_, ., d(B,) =0, then

lim M(B,) =0 (i=1,....k—1).

n—0oo

In this case for every A € K we have
(2.36) 21(A) = S My (dB).

ProoOF. It can easily be verified that z;(B) equals the sum of Mj(B) and a finite
number of products of the form M;(B) M;(B) (1<i<k-1, 1<j<k—1). Hence the
theorem follows by a simple argument.

We remark that the results of this chapter contain implicitly the solution of the func-
tional equations

F(z, Ay + Ay) = F(z, Ay) * F(z, Ay)

and

k=1

F ($72Ak) = O:: F(vak)v
k=1 =

accordingly as £(A) is only additive or also completely additive. The sets Ay, A3,..., A1+
Ay and Y777, Ay belong to K or S according to the problem. The properties of the set
function £(A) used in this chapter can be formulated in terms of the distribution functions.
Thus we need not at all random variables, it is quite sufficient to consider the distributions
and the solutions of the above functional equations follow from the modified form of our
theorems.

IIT. CONSIDERATIONS ON THE REALIZATIONS

§ 1. Preliminaries

In this chapter we assume that the space H and the o-ring S consisting of some subsets
of H satisfy the following condition:

ay) Every set A € § has a sequence of subdivisions 3, = {Byl)7 . 7Bl(:1)} with the

property that 3, C 3,41 and if hy € H, hy € H, hy # hgy, then for some positive integers
1, k, N we have

(3.1) hieB™,  hyeB™, itk
This condition holds e.g. for countable-dimensional Euclidean spaces.

We start from a completely additive set function £(A4) = £(w, 4) (w € Q) which is
supposed to be defined on the o-ring §. If w is fixed, we get a number-valued set function.
This will be called a realization of the set function &. The complete additivity of & does
not imply in general that of the realizations as it was shown in [19] (Chapter I1I, § 1). But

15



in this chapter we need the complete additivity of the realizations. Therefore we introduce
the condition:

£1) There exists a set ; C Q with P(Q;) = 1 such that for every fixed w € Q; the
number-valued set function {(w, A) (A € §) is completely additive.

Besides ay) and (31) we suppose the condition:
v1) The stochastic set function £(A4) (A € S) is atomless.

Condition «aq) implies that if o € H, then {h} € S. In fact, every set {h} can be
obtained as a limit of a non-decreasing sequence of sets of §. Thus every realization can
be decomposed as a sum of a continuous and a purely discontinuous part. We shall show
in § 3 that under general conditions the continuous part must be identically a constant
number-valued set function with probability 1. This is perhaps the most interesting result
of this chapter.

§ 2. Qualitative discussion of the discontinuities

If ¢ is a completely additive set function defined on the o-ring & and for an h € H we
have p({h}) # 0, then we call h a discontinuity point relative to y. The number p({h})
will be called the magnitude of the discontinuity.

Let I be a one-dimensional interval with a positive distance from the point 0 and define
the functions xo(/, A), x1(/, A) of the sample elements as follows: xo(/, A) is the number
and xi(/,A) the sum of those discontinuities in the set A the magnitudes of which lie in
the interval I. First of all we prove a theorem relative to this functions.

THEOREM 3.1. If Iy, ..., I. are disjoint intervals with positive distances from 0, then
Xo(I1, A), ..., xoIr, A) and similarly x1(I1, A4), ..., x1(I,, A) are independent random vari-
ables.

In the general case when Iy,..., 1. are arbitrary disjoint intervals, the assertion re-
mains true for x1(l, A),...,x1(I, A) and holds also for xo(I1,A),...,xo(I.,A) if the
realizations belonging to 1 have a finite number of discontinuities.

PRrOOF. Here and in the sequel we shall frequently use the following remark:

There exists a sequence of subdivisions 3, = {Byl)7 . 7Bl(:1)} of the set A such that
3n C 3n+1, Condition «q) holds and finally the random variables

(3.2) g(B@) ,g(B,gj)) (n=1,2,...)

are infinitesimal. In fact, the proof of Theorem 3.2 shows that the last property can be
fulfilled with a sequence 3/.. Then, if 3/ satisfies 1), the superposition of 3/ and 3" satisfies
both requirements.

First we consider the case when the intervals I have positive distances from 0. Let us
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define the functions

0, | 1 if =z€&l,
v if zel o

(3.4) V(@) :{ 0 if x¢ fi
and consider the sums

kn kn
(35) =30 (e(B), A=W ((BY). =10

k=1 k=1
Condition aq) implies
(3.6) Jim. o = xo(ls, A), Tim_ W= a1, A),

hence xo(/s, 4), x1(Is, A) (s =1,...,r) are random variables.

The assertion relative to the independence will be proved by the aid of Theorem 1b
of [21]. Let us consider the double sequence (3.4) of independent random variables and
apply the functions fl(o)(av)7 ces ,f,(o)(w) (and fl(l)(av)7 ces ,f,(l)(x), resp.) to its members.
Clearly

P@f@=0  (1P@rt@=0) it ik

Now we shall verify the fulfilment of the conditions of Theorem 1b of [21]. Relation (3.6)
implies d). Condition b) follows immediately by choosing 7 so that 7 < §, where ¢ is the
minimal distance of the intervals I; (s =1,...,r) from the point 0. As for Condition c),
there exists a i > 0 such that

FO) < Kle| (s=1,....r),
moreover clearly

FP () < ] (s=1...,7),

(5) ) < P (e (s1)] > £) o

1<k<kn

c()>2) < s P ((80)] ) o

1<k<kn
if n — oo.

The remaining part of the theorem can be proved by the aid of the precedings by
substituting for those intervals I, which have the point 0 inside or as a limit point, intervals
having a distance € from 0 and then taking the limit ¢ — 0. This completes the proof. [

Let I be an interval with a positive distance from 0. From the proof of Theorem 3.1 it
is clear that if Ay,..., A,, are disjoint sets of §, then the random variables xo(/, A1), ...,

17



Xo(I, An) (and x1(4,A1),...,x1(/, Ap), resp.) are independent (cf. the relations (3.5)
and (3.6)). If Ay, Ag, ... is a sequence of disjoint sets of S, then in view of ;)

(3.7) Xo(I, A) = xo(T, Ag),
k=1

(3.8) xi(l,4) = f:M(LAk%
k=1

where A = 777, Ay. The relations (3.7) and (3.8) hold not only with probability 1 but
they are satisfied in the ordinary sense if w € €.

Thus for fixed I, xo(/, A) and x1 (I, A) are completely additive (stochastic) set functions
having completely additive realizations with probability 1.

The same holds for x1(I, A) without any restriction on the interval I and also for
Xo (I, A) if almost all realizations have a finite number of discontinuities. We formulate
the foregoing statements in the form of a theorem.

THEOREM 3.2. For every fized interval I, x1(I,A) (A € §) is a completely additive
set function.

Xo(I,A) (A €S) is also a completely additive set function if I has a positive distance
from 0 or almost all realizations of the set function £(A) (A € S) have a finite number of
discontinuilies.

If w € Qq is fized, then the corresponding sample function of x1(I, A) (and under the
above condition that of xo(I, A)) is completely additive.

§ 3. The probability distributions of the random variables
f(A), XO(Ia A)? Xl(Ia A)

Now we fix the set A, the interval I and determine the probability distributions of the
random variables £(A), x;(I, A) (¢ = 1,2). Concerning them we prove three theorems and
finally formulate an interesting conclusion (Theorem 3.6). Let us consider first £(A).

THEOREM 3.3. If A € S, then the canonical form of log f(t, A) is given by

(3.9) log f(t,A) = i'y(A)t—l—/

(e — 1) dM (z, A) + / (e — 1) dN (z, A),
(_0070)

(0,00)

where v(A), M(z, A), N(x, A) have the properties formulated in Theorem 2.3, but besides
these also

(3.10) / |ac|dM(ac,A)—|—/ 2 dN (2, A) < co.
[-1,0) (0,1]

18



ProoF. Let 3, = {B@,..

that ;) is fulfilled and the random variables in the double sequence (3.2) are infinitesimal.

. ,B,(:l)} be a sequence of subdivisions of the set A such

On account of the complete additivity of the realizations the non-decreasing sequence

of the random variables i
¢ (5]

=2

k=1
has a finite limit. But for every A we have

— ig (B").
k=1

9) and (3.10) hold.

hence by Theorem 1 of [24], (3.
The other statements were proved in Theorem 2.3. (|

Now we consider the random variable xo(/, A) and prove that it depends on a Poisson
distribution. This is expressed more precisely by

THEOREM 3.4. For every A € § and every interval I with a positive distance from the
point 0 the random variable xo(I, A) depends on a Poisson distribution with the expectation

?A))(a? | UI:FQ,

M(b+0,A a, A if I=]a,b],

ME A) - )(aiOA) )if]:Em?, (b<0),
MB+0,4)— M(a+0,4) if I=((ab

Ba1) MOl AN= 4 v b 1)~ N(a, 4) i 1=1a,b),
N0 N 7 =l [
N (b, A) — N(a+0, A) if T=(a,b) :
N(b+0,4)— N(a+0,4) i I=(a,b]

Relation (3.11) holds also when a = —oo or b = oo. (In this case only the third, forth,
fifth and seventh rows have a meaning and M(—oo, A) = N (400, A) =0.)

Proor. We prove (3.11) for I = [a,b), a > 0, supposing that a and b are points of
continuity of N(z, A). The case b < 0 can be treated similarly and the other assertions
follow from these by limit processes.

Let 3, = {Byl)7 ey B,(:l)} be a sequence of subdivisions of the set A with the property
that §;) is fulfilled, the random variables

¢ (B@) L (B,g:>)

are infinitesimal and finally®

(n=1,2,...)

kn

Jim 32 (7 (0.57) = o 57))

k=1

= N(b,A) — N(a, A).

8Cf. the proof of Theorem 2.4

19



This last property can be prescribed by Theorem 2.4.

Let us define the random variables

(3.12) ¢ (B,i”)) = { 0 it g(3,§”>) ‘1.

Since

¢ (B,g”)) gK‘g (B,gm)\ (k=1,... ky n=12...),

where K is a constant, the random variables in the double sequence
¢ (B@) e (B,gy) (n=1,2,...)
are infinitesimal. Obviously

(e (81) = (0 807) - (0 8).

hence the characteristic function of &’ (B,gn)) equals

L (F (6,B0) = F (a,B(")) (e = 1).

On the other hand

(3.13) Tim - (F (b, B,(j)) _F (a, B,ﬁ”)))2 — 0,

hence for every ¢

i T {1+ (o 807) = 1 (0 507)) - )
k=1
(3.14) = exp {nh—g)lo f: (F (b, Blgn)) - F (a, B,gn))) (eit - 1)}

k=1

= exp{(N (b, A) — N(a, A))(e” -1}

Taking into account that

n—0oo

kn

lim 3¢ (BY) = xo(7, 4),
k=1

our theorem follows.

Now we determine the characteristic function of the random variable x1 (7, A).

THEOREM 3.5. For every set A € § and every interval I we have

(3.15) M (et A = exp { /X (e — 1) dM (z, A) + /

(e — 1) dN (, A)} )
X'T
where X' denotes the real line without the point 0.

7
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PrOOF. For simplicity we suppose that I lies on the positive half-axis. The general case
does not require any new arguments. We suppose even that I = [a,b), and the function
N(z, A) is continuous at the points a, b. Clearly

n—1

(3.16)  vi(l,A) = lim Z(a+b_7“k) Xo([a+b_“k,a+b—a(k+1)] 7A)7

n—00
k=0

hence for every ¢

n—1
it (LAY _ 1 i(at =2kt b—a B b—a
M (e ) nlggoeXP{E e (N(“+—n (k+1) ) = N {a+—k

k=0

— oxp {/[a,m(el " _1)dN(a, A)}.

For an arbitrary interval I the proof can be carried out by a limit procedure and the
theorem follows.

If we denote the sum of discontinuities in the set A € § by ((A), then according to
Theorem 3.5

(3.17) M (W = exp { /( (e — 1) dM (x, A) + /

(0,00)

(e — 1) dN (, A)} .

—c0,0)
Let 7(A) denote the difference £(A) — ((A) and prove the independence of the random
variables ((A) and n(A).

Define the functions
z if |o] <e,
fe(x) =

0 otherwise,

0 if 2| < e, (=>0),
ge(x) = :
z if x| > e
and choose a sequence of subdivisions 3, = {Byl)7 . ,B,(:l)} of the set A so that it has
the property ;) and the random variables
(%) ¢ (B@) Y (B,gy) (n=1,2,...)

are infinitesimal. Denoting by I. the set of real numbers (—o0, ) 4 (¢, 00), we get

B 3 (£ (7)) = vir
k=1

lim " (¢(B7)) = &) = xale, ).
k=1
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Now we apply Theorem 1b of [21] to the double sequence (**) and the functions f.(z),
g:(x). We have only to verify Condition c) of this theorem (cf. [21], p. 322). If 7 < &, then

[ o (o (6 (B)) <) =0 b=k =1

On the other hand, by Theorem 3.8 of [19], there is a constant K, such that

3 () & "
kz:; /|x|<7- zd,P (fs (5 (Bkn )) < 96) = kz:; ‘/|x|<7xdF (957Bk” ) < K.

Hence and from the relation

lim sup

/|x|<7 e B,(j))‘ =0

the fulfilment of Condition c) follows.

Thus x1(/e, A) and £(A) — x1(/I., A) are independent for every ¢ > 0. By taking the
limit £ — 0 we conclude that ((A) and 7(A) are also independent.

In view of the equality
§(A) = ¢(A) +n(4)

and of Theorem 3.3 (the sum of the integrals on the right-hand side of (3.9) is the char-
acteristic function of {(A)) we must have

Hence we get the following

THEOREM 3.6. The completely additive set function £ equals the sum of a completely
additive set function ¢ having (completely additive and) purely discontinuous realizations
with probability 1 and a completely additive set function n the random variables of which
are constant with probability 1 (cf. (3.17)).

If the o-ring S has a countable basis,” then there exists a set Qg C Qy with P(Qp) =
1 and a number-valued completely additive set function v(A) (A € S) such that every
realization of £(A) — v (A) (A € S) belonging to Qg is purely discontinuous.

ProOOF. We have only to prove the second assertion. If Ay, Ay, ... is a basis of § and
Q) is the set of those w’s for which

(3.18) n(w, Ar) = 7(An),

then we define €y as

Qo = 0, 00QR0C)

°I.e. there exists a sequence Aj, As, ... of sets of S such that the smallest o-ring containing these sets

is S.
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Let w € Q. In view of

n(w, Ar) = v(Ak) (k=1,2,...)

we must have also
n(w; A) = 7(A)
for an arbitrary set A € §. Since P () = 1, the proof is complete. O

§ 4. General characterization of the set function £(A)

Let X. denote the set (—o0,¢) + (£, 00) and consider the product spaces X x H, X. x H.
We denote by R and R. the rings consisting of finite sums of the type

Y xA and Y1 x A,

respectively, where Y C X and Y; C X, are intervals and A € S. Consider the stochastic
set functions x1 and xo defined on the o-rings S(R) and S(R.), respectively, as follows.
If for an w € 1 (Qy denotes the same set as in § 3), the points of discontinuity of the

realization are hy, ho, ..., and their magnitudes are in the same order z, 2o, ..., then let
(3.19) xiBy= > @ (BESR)),

(l’k,hk)EB
(3.20) Xo(By= Y. 1 (BeS(R.).

(l’k,hk)EB

On the set Q — ©; we may define the functions of the sample elements (3.19)—(3.20)
arbitrarily. We shall prove

THEOREM 3.7. For every B € S(R) and B € S(R.) the functions x1(B) and xo(B)
are random variables, respectively. To disjoint sets By, By, ... of S(R) and S(R.) there
belong independent random variables x1(B1), x1(Bz), ... and xo(B1), xo(Bz), . .., respec-
tively, and if B =" ;| By, then

(3.21) B =SB and  ve(B) =3 xo(Be),
k=1 k=1
respectively.

Proor. The fulfilment of the relations (3.21) is obvious. Let 90 denote the class
of those sets B of S(R) and S(R.) for which x1(B) and xo(B) are random variables,

respectively. If By, By, ... is a monotone sequence of sets of 9 and B = lim,,_,, B,, then
(3.21) implies

lim x1(B,) = x1(B) and lim xo(Bn) = xo(B),

n—0oo n—0oo
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respectively, for w € €2;. Hence B € 91 and MM is a monotone class of sets. But obviously,
R C oM and R. C M, hence by Theorem B of [11], p. 27 we have S(R) = M and
S(R.) = M, respectively.

It remains to prove the assertion relative to the independence. We show that it holds
for disjoint sets belonging to R and R., respectively. Let us consider the system of sets

Bi,..., B, defined by

(3.22) Bk = Ik X Ak,
where A, € S (k=1,...,r)and I1,..., 1, are intervals in the spaces X and X., respec-
tively.

The sets Ay and the intervals I, (k=1,...,r) can be represented as sums of disjoint
sets Cp,...,Cy (Cr € S; k=1,...,M) and intervals Jy, ..., Jy, respectively. Consider
the NM sets

JIXCh '7J1><CM7
(3.23)
IN X Chyeeoy Iy X Cyp
The sets By, ..., B, can be represented as sums of disjoint groups of the sets (3.23), hence

it suffices to prove the independence of the random variables

(3.24) oo and
XI(JN X Cl)v s 7X1(JN X CM) XO(JN X 01)7 s 7X0(JN X CM)7

respectively. But according to Theorem 3.1 in every column of (3.24) the random variables
are independent. On the other hand, the vectors

Ygi) =0,y xa(Un, Ch))s

)Z(OZ) = (Xo(J17Ci)7 R 7X0(JN7Ci))7

are constructed by the aid of the random variables {£(C), C' € C;S8} and the sets
C1,...,Cy are disjoint, hence the vectors (3.25) (if ¢ runs over 1,..., M) must be inde-
pendent.

(3.25)

Thus x1(B) and yo(B) are completely additive stochastic set functions on the rings
R and R., respectively. The extension of both set functions is obviously possible. The
extended set functions must coincide with y1(B) (B € S(R)) and xo(B) (B € S(R.)),
respectively, hence taking into account that the extension process leads to a completely
additive set function, the theorem follows.

Finally, we give an integral representation of the random variables {(A) (A € S). If
A € S is a fixed set and we introduce the notation

1Y) =xa (Y x A4),
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where Y C X, (¢ > 0) is a Borel set, then Y;(Y) is a completely additive set function
defined on the o-ring of the Borel sets of the space X.. Thus {(A) — v(A) equals the
improper integral

(3.26) SA) =y () =lim [y (@Y).

For every fixed Y the random variable \;(Y) depends on a Poisson distribution. Thus
we can formulate:

Fvery completely additive set function £(A) (A € S) satisfying the requirements ay),
B1) and 1) of § 1, can be represented as the limit (3.26) of stochastic integrals (cf. [20])
taken relative to completely additive set functions of Poisson type.
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