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1 Introduction

The purpose of the present paper is to give a new proof for the main theorem proved in [3]
and develop further properties of logarithmic concave measures and functions. Having in
mind the applications of our theory to mathematical programming, we restrict ourselves
to functions and measures in finite dimensional Euclidean spaces.

A function f defined on Rn is said to be logarithmic concave if for every pair of vectors
x1, x2 ∈ Rn and for every 0 < λ < 1 we have

(1.1) f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ.

A measure defined on the measurable subsets of Rn is logarithmic concave if for every pair
A, B of convex subsets of Rn and for every 0 < λ < 1, we have the following inequality

(1.2) P (λA+ (1 − λ)B) ≥ (P (A))λ(P (B))1−λ,

where the sign + means Minkowski addition of sets.

If the function f is logarithmic concave in Rn and f �≡ 0 then it can be written as
f(x) = e−Q(x) (x ∈ Rn) where Q(x) is convex in the entire space and the value +∞ is
also allowed for the function Q. The set where f is positive, is convex and f is clearly
continuous in the interior of this set.

The above-mentioned main theorem is repeated below in its original form.

Theorem 1. Let Q be a convex function defined on the entire n-dimensional space.
Suppose that Q(x) ≥ a where a is some real number. Let ψ(z) be a function defined on
the infinite interval [a,∞). Suppose that ψ(z) is nonnegative, nonincreasing, differentiable
and −ψ′(z) is logarithmic concave. Consider the function f(x) = ψ(Q(x)) (x ∈ Rn) and
suppose that it is a probability density i.e.

(1.3)
∫

Rn

f(x) dx = 1.
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Denote by P (C) the integral of f(x) over the measurable subset C of Rn. If A and B are
any two convex sets in Rn and 0 < λ < 1, then the inequality (1.2) holds.

This theorem remains true without the assumption (1.3). In fact the theorem is obvi-
ously true if the integral on the left hand side in (1.3) is an arbitrary nonnegative number.
If this integral equals infinity then first we apply the theorem for the following function

fT (x) = f(x) if ‖x‖ < T and fT (x) = 0 otherwise,

where T is a positive number. The integral of fT is finite over the space Rn hence we have
(1.2) with the measure PT generated by fT . Since

P (C) = lim
T→∞

PT (C)

for every measurable set C ⊂ Rn, the inequality (1.2) is satisfied with the measure gener-
ated by f too.

A second remark concerning Theorem 1 is the following: any function ψ(z) satisfying
the requirements of the theorem is itself logarithmic concave. In fact the finiteness of the
integral of the function ψ(Q(x)) over the space Rn implies that limz→∞ ψ(z) = 0, hence

(1.4) ψ(z) =
∫ ∞

z
[−ψ′(x)] dx (z ≥ a).

Consider the measure defined on the measurable subsets of R1 generated by the loga-
rithmic concave function

g(x) = −ψ′(x) if x ≥ a and g(x) = 0 otherwise.

The logarithmic concavity of this function implies that (see Theorem 3 in [3]) for any
interval A of R1, the following function of the variable z

(1.5)
∫

A+z
g(x) dx (−∞ < z <∞)

is logarithmic concave. Since the functions (1.4) and (1.5) coincide for z ≥ a, if A = [0,∞),
our statement is proved. The function ψ(z) can be written as

ψ(z) = e−s(z) (z ≥ a),

where s(z) is convex and nondecreasing. Any convex and nondecreasing function of a
convex function is also convex hence s(Q(x)) = S(x) is a convex function in Rn and

f(x) = e−S(x) (x ∈ Rn).

In view of these two remarks, Theorem 1 can be reformulated in the following form,
including the case of unbounded measures.

Theorem 2. If the measure P , defined on the measurable subsets of Rn, is generated
by a logarithmic concave function, then the measure P is also logarithmic concave.
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2 Integral inequalities

The proof of Theorem 1 published in [3] is based on the theorem of Brunn and on the
following integral inequality proved also in [3]: if f , g are nonnegative and Borel measurable
functions defined on R1 and

r(t) = sup
x+y=2t

f(x)g(y) (−∞ < t <∞)

then we have

(2.1)
∫ ∞

−∞
r(t) dt ≥

(∫ ∞

−∞
f2(x) dx

) 1
2
(∫ ∞

−∞
g2(y) dy

) 1
2

,

where the value +∞ is also allowed for the integrals.

L. Leindler generalized this inequality in the following manner [2]. Let f1, . . . , fk be
nonnegative and Borel measurable functions defined on R1 and define the function r(t)
(t ∈ R1) by the equality

r(t) = sup
λ1x1+···+λkxk=t

f1(x1) . . . fk(xk),

where λ1, . . . , λk are positive constants satisfying the equality λ1 + · · ·+λk = 1. Then the
function r(t) (t ∈ R1) is also Borel measurable and we have the following inequality

(2.2)
∫ ∞

−∞
r(t) dt ≥

(∫ ∞

−∞
f

1
λ1
1 (x1) dx1

)λ1

. . .

(∫ ∞

−∞
f

1
λk
k (xk) dxk

)λk

.

Now we generalize the inequality (2.2) for functions of n variables. This generalisation
is formulated in the following

Theorem 3. Let f1, . . . , fk be nonnegative and Borel measurable functions defined on
Rn and let

r(t) = sup
λ1x1+···+λkxk=t

f1(x1) . . . fk(xk) (t ∈ Rn),

where λ1, . . . , λk are positive constants satisfying the equality λ1 + · · ·+ λk = 1. Then the
function r(t) (t ∈ Rn) is also Borel measurable and we have the following inequality:

(2.3)
∫

Rn

r(t) dt ≥
(∫

Rn

f
1

λ1
1 (x1) dx1

)λ1

. . .

(∫
Rn

f
1

λk
k (xk) dxk

)λk

.

Proof. The proof of the measurability of the function r(t) (t ∈ R(n)) goes in an
entirely similar way as in the case of n = 1, k = 2 (see the proof of Theorem 1 in [3]).

We prove (2.3) by induction. Suppose that it holds for n−1 and prove that it holds for
n. Let x1i, x2i, . . . , xki, ti (i = 1, . . . , n) denote the components of the vectors x1, . . . ,xk,
t, respectively. Fixing the second, . . ., nth components so that

(2.4) ti = λ1x1i + λ2x2i + · · · + λkxki (i = 2, . . . , n),
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it follows that

r(t1, t2, . . . , tn) ≥ sup
λ1x11+λ2x21+···+λkxk1=t1

f1(x11, x12, . . . , x1n) · · · fk(xk1, xk2, . . . , xkn).

By the application of the inequality (2.2) it follows from here that∫ ∞

−∞
r(t1, t2, . . . , tn) dt1

≥
(∫ ∞

−∞
f

1
λ1
1 (x11, x12, . . . , x1n) dx11

)λ1

· · ·
(∫ ∞

−∞
f

1
λk
k (xk1, xk2, . . . , xkn) dxk1

)λk

.

Taking into account (2.4) we can write further that

∫ ∞

−∞
r(t1, t2, . . . , tn) dt1 ≥ sup

λ1x12+...+λkxk2=t2

...
λ1x1n+...+λkxkn=tn

(∫ ∞

−∞
f

1
λ1
1 (x11, x12, . . . , x1n) dx11

)λ1

(2.5)

· · ·
(∫ ∞

−∞
f

1
λk
k (xk1 , xk2, . . . , xkn) dxk1

)λk

.

Now we apply the inductive assumption that the inequality (2.3) holds for functions of
n− 1 variables. This implies that the integral on the right hand side of (2.5) with respect
to t2, . . . , tn is greater than or equal to the following product(∫ ∞

−∞
. . .

∫ ∞

−∞
f

1
λ1
1 (x11, . . . , x1n) dx11 . . . dx1n

)λ1

(2.6)

· · ·
(∫ ∞

−∞
. . .

∫ ∞

−∞
f

1
λk
k (xk1, . . . , xkn) dxk1 . . . dxkn

)λk

.

Looking at (2.5) we immediately see that the integral of r(t) over the space Ru is greater
than or equal to the product standing in (2.6). Thus the theorem is proved. �

Remark. In what follows we need only that special case of the integral inequality (2.3)
where k = 2 and the functions f1, f2 are logarithmic concave. The proof of this special
case is very easy on the basis of the integral inequality (2.1). Below we give a sketch of
this proof. We may restrict ourselves to the case of n = 1 since Theorem 3 shows that the
generalization for the case of n > 1 is simple. Let N = 2m where m is a positive integer
and let i+ j = N . By a subsequent application of (2.1) we get∫ ∞

−∞
sup

1
N

(x1+···+xN )=t

f
N
i

1 (x1) . . . f
N
i

1 (xi)f
N
j

2 (xi+1) . . . f
N
j

2 (xN ) dt

≥
(∫ ∞

−∞
f

N
i

1 (x) dx
) i

N
(∫

−∞
f

N
j

2 (x) dx
) j

N

.
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The logarithmic concavity of f1 and f2 implies that the integrand on the left hand side is
smaller than or equal to the following function

sup
i
N

u+ j
N

v=t

f1(u)f2(v) (−∞ < t <∞)

thus we have (2.2) for k = 2 and λ = i
N , 1 − λ = j

N . The assertion for arbitrary
λ(0 < λ < 1) follows from here by a continuity argument.

3 New proof and sharpening of Theorem 2

On the basis of Theorem 4 the proof of Theorem 2 is very simple. To do this let us define
the functions f1, f2, f3 as follows:

f1(x) = f(x) if x ∈ A and f1(x) = 0 otherwise,
f2(x) = f(x) if x ∈ B and f2(x) = 0 otherwise,
f3(x) = f(x) if x ∈ λA+ (1 − λ)B and f3(x) = 0 otherwise.

The logarithmic concavity of the function f implies that for every t we have

f3(t) ≥ sup
λx+(1−λ)y=t

(f1(x))λ(f2(y))1−λ.

Hence, applying Theorem 4, we obtain∫
λA+(1−λ)B

f(t) dt =
∫

Rn

f3(t) dt ≥
(∫

Rn

f1(x) dx
)λ (∫

Rn

f2(y) dy
)1−λ

=
(∫

A
f(x) dx

)λ (∫
B
f(y) dy

)1−λ

,

which is the required inequality.

Theorem 4. Let P be a measure defined on the measurable subsets of Rn and generated
by the logarithmic concave function f . Let A, B be two convex subsets of Rn with the
property that 0 < P (A) < ∞, 0 < P (B) < ∞. Suppose that for every λ (0 < λ < 1)
the sets A and B can be decomposed as A = A1 ∪ A2, B = B1 ∪ B2, where A1 ∩ A2 = ∅,
B1 ∩B2 = ∅ so that the following conditions are satisfied.

a) A1, B1 are bounded closed convex sets, A2, B2 are convex sets.

b) The following relations hold

[λA1 + (1 − λ)B1] ∪ [λA2 + (1 − λ)B2] = λA+ (1 − λ)B,(3.1)
[λA1 + (1 − λ)B1] ∩ [λA2 + (1 − λ)B2] = ∅,(3.2)
[λA1 + (1 − λ)B1] ∩A1 = ∅,(3.3)
[λA1 + (1 − λ)B1] ∩B1 = ∅.(3.4)
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c) For the measures of the decomposing sets the following relations hold

P (A1) > 0, P (B1) > 0,(3.5)
P (A2)
P (A1)

=
P (B2)
P (B1)

.(3.6)

d) f is strictly logarithmic concave in the convex hull of A1∪B1 i.e. the strict inequality
holds in (1.1) whenever x1, x2 are elements of the convex hull of A1 ∪B1 and x1 �= x2.

Under these conditions for every λ (0 < λ < 1) we have

P (λA+ (1 − λ)B) > (P (A))λ(P (B))1−λ.

Proof. Let λ be a number satisfying 0 < λ < 1 and consider the subdivisions of the
sets A, B belonging to this λ. Since A1, B1 are disjoint closed convex sets and f is strictly
logarithmic concave in the convex hull of A1 ∪B1, (3.3) and (3.4) imply that

(3.7) f(t) > sup
λx+(1−λ)y=t
x∈A1, y∈B1

(f(x))λ(f(y))1−λ.

Let f1(x) = f(x) if x ∈ A1 and f1(x) = 0 otherwise, f2(y) = f(y) if y ∈ B1 and f2(y) = 0
otherwise. Then for every t ∈ λA1 + (1 − λ)B1 we have by (3.7):

(3.8) f(t) > sup
λx+(1−λ)y=t

(f1(x))λ(f2(y))1−λ.

If t /∈ λA1 + (1 − λ)B1 then the right hand side in (3.8) equals 0. Hence it follows that

P (λA1 + (1 − λ)B1) =
∫

λA1+(1−λ)B1

f(t) dt

(3.9)

>

∫
λA1+(1−λ)B1

sup
λx+(1−λ)y=t

(f1(x))λ(f2(y))1−λ dt

=
∫

Rn

sup
λx+(1−λ)y=t

(f1(x))λ(f2(y))1−λ dt

≥
(∫

Rn

f1(x) dx
)λ (∫

Rn

f2(y) dy
)1−λ

= (P (A1))λ(P (B1))1−λ.

Continuing the reasoning it follows from (3.1) and (3.2), (3.9) and Theorem 2 that for
every λ (0 < λ < 1)

P (λA+ (1 − λ)B) = P (λA1 + (1 − λ)B1) + P (λA2 + (1 − λ)B2)

> (P (A1))λ(P (B1))1−λ + (P (A2))λ(P (B2))1−λ.
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Taking into account (3.5) we can write

(P (A))λ(P (B))1−λ = (P (A1))λ(P (B1))1−λ + (P (A2))λ(P (B2))1−λ.

Thus the theorem is proved. �
One of the most important application of Theorem 5 is expressed by the following

Theorem 5. Let f be a logarithmic concave probability density in Rn. Denote by F
the probability distribution function belonging to the density f . If f is positive and strictly
logarithmic concave in an open convex set D then F is also strictly logarithmic concave in
the set D.

Proof. Let u, v be elements of the interior of the set D and suppose that u �= v. By
the definition of the function F we can write that

F (u) = P (A), where A = {x | x ≤ u},
(3.10)

F (v) = P (B), where B = {x | x ≤ v}.

Given a λ (0 < λ < 1), the following equality is obviously true

(3.11) F (λu + (1 − λ)v) = P (λA+ (1 − λ)B).

Let us define the sets A1, B1, A2, B2 in the following way

A1 =

{
x | x ≤ u,

n∑
i=1

xi ≥
n∑

i=1

ui − ε

}
, B1 =

{
x | x ≤ v,

n∑
i=1

xi ≥
n∑

i=1

vi − δ

}
,

A2 = A−A1, B2 = B −B1,

where ε and δ are fixed positive numbers. Obviously P (A1) > 0, P (B1) > 0.

Conditions (3.1) and (3.2) are satisfied for every positive ε, δ while conditions (3.3),
(3.4) are satisfied for sufficiently small positive numbers ε, δ. This statement follows from
the following equalities:

λA1 + (1 − λ)B1 =

{
x | x ≤ λu + (1 − λ)v,

n∑
i=1

xi

≥
n∑

i=1

(λui + (1 − λ)vi) − λε− (1 − λ)δ

}
,

λA2 + (1 − λ)B2 =

{
x | x ≤ λu + (1 − λ)v,

n∑
i=1

xi

<
n∑

i=1

(λui + (1 − λ)vi) − λε− (1 − λ)δ

}
.
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Let us fix an ε0 and a δ0 having this property. Then if (3.6) holds true, we are ready.

If on the other hand (3.6) is not satisfied, then since P (A1) is continuous in ε, P (B1)
is continuous in δ and

lim
ε→0

P (A1) = lim
δ→0

P (B1) = 0,

we can find positive numbers ε1, δ1 such that ε1 ≤ ε0, δ1 ≤ δ0 and (3.6) is satisfied with
these. Thus in view of (3.10) and (3.11) our theorem follows from Theorem 4. �

4 Further properties of logarithmic concave functions

In this section we mention three theorems concerning logarithmic concave functions. The
proofs are based on the integral inequality (2.3).

Theorem 6. Let f(x,y) be a function of n+m variables where x is an n-component
and y is an m-component vector. Suppose that f is logarithmic concave in Rn+m and let
A be a convex subset of Rm. Then the function of the variable x:∫

A
f(x,y) dy

is logarithmic in the entire space Rn.

Proof. Let x1,x2 ∈ Rn and 0 < λ < 1. Define the functions f1(y), f2(y), f3(y) as
follows:

f1(y) = f(x1,y) if y ∈ A, and f1(y) = 0 otherwise,
f2(y) = f(x2,y) if y ∈ A, and f2(y) = 0 otherwise,
f3(y) = f(λx1 + (1 − λ)x2,y) if y ∈ A, and f3(y) = 0 otherwise.

Since f is logarithmic concave in Rn+m and A is a convex set in Rm, we have

f3(y) ≥ sup
λu+(1−λ)v=y

(f1(u))λ(f2(v))1−λ.

Hence by Theorem 3 it follows that∫
A
f(λx1 + (1 − λ)x2,y) dy =

∫
Rm

f3(y) dy

≥
(∫

Rm

f1(u) du
)λ (∫

Rm

f2(v) dv
)1−λ

=
(∫

A
f(x1,y) dy

)λ (∫
A
f(x2,y) dy

)1−λ

Thus the theorem is proved. �
Theorem 7. Let f , g be logarithmic concave functions defined in the space Rn. Then

the convolution of these functions i.e.∫
Rn

f(x− y)g(y) dy

is also logarithmic concave in the entire space Rn.
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Proof. The theorem is a consequence of Theorem 7. In fact the function f(x−y)g(y)
is a logarithmic concave function of the 2n variables contained in the vectors x and y.
Applying Theorem 6 for this function and for the convex set A = Rn, we obtain the
assertion of Theorem 7.

For the case n = 1 the assertion was proved by Ibragimov [1] in 1956. The follow-
ing theorem is an immediate consequence of Theorem 6. It is mentioned separately for
completeness. �

Theorem 8. If f is a logarithmic concave multivariate probability density, then all
marginal densities are also logarithmic concave.
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Erratum: In the line above formula (2.3) write Lebesgue for Borel.
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