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Introduction

Let X be a given set, and let R, S be some classes of certain subsets of X. We say that
R is a ring if A + B ∈ R, A−B ∈ R whenever A ∈ R, B ∈ R. We say that S is a σ-ring
if it is a ring and if for every sequence A1, A2, . . ., where Ai ∈ S (i = 1, 2, . . .), the sum∑∞

i=1 Ai is also contained in S.

Let B be a commutative Banach algebra with a unity, i.e. a Banach space, where for all
pairs f ∈ B, g ∈ B a product fg = gf is defined such that if h ∈ B, then (fg)h = f(gh),
(f +g)h = fh+gh, ‖fg‖ ≤ ‖f‖ ‖g‖ and there is an e ∈ B such that ef = fe = f , ‖e‖ = 1.

I shall consider set functions f(A) defined on the elements of a ring R such that the
values f(A) lie in B; f(A) ∈ B for A ∈ R.

A real-valued set function α(A) defined on R is called of bounded variation if there is
a number K such that for every finite sequence of pairwise disjoint sets A1, A2, . . . , Ar,
Ai ∈ R (i = 1, 2, . . . , r), we have

r∑
i=1

|α(Ai)| ≤ K.

Let g1, g2, . . . be a sequence of elements of B. I say that the infinite product
∏∞

i=1 gi

converges if the number of the factors which are equal to 0 is finite and if gi �= 0 for i ≥ n0,
then there is a g0 ∈ B such that

lim
n→∞

∥∥∥∥∥g0 −
n∏

i=n0

gi

∥∥∥∥∥ = 0.
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I define the value of the infinite product as g0 if n0 = 1 and as

∞∏
i=1

gi =

(
n0−1∏
i=1

gi

)
g0.

if n0 > 1.

A set function f(A) is called multiplicative (completely multiplicative) in R if for every
A1 ∈ R, A2 ∈ R, A1A2 = 0 (A1, A2, . . . , AiAk = 0 for i �= k, A =

∑∞
i=1 Ai ∈ R), the

relation

(1) f(A1 + A2) = f(A1)f(A2)

(
f(A) =

∞∏
i=1

f(Ai)

)

holds. I suppose in this case that f(0) = e.

A real-valued set function μ(A) is called subadditive (completely subadditive) if for
every pair A1, A2 of disjoint sets of R (for every sequence A1, A2, . . . of pairwise disjoint
sets of R, for which A =

∑∞
k=1 Ak ∈ R), we have

μ(A) ≤ μ(A1) + μ(A2)

(
μ(A) ≤

∞∑
i=1

μ(Ai)

)
.

The purpose of this paper is the extension of a completely multiplicative set function
defined on the ring R and satisfying certain conditions, to a completely multiplicative set
function defined on S(R), which is the smallest σ-ring containing R. First I prove four
lemmas.

§ 1. Lemmas

Lemma 1 Let μ be a real-valued, non-negative, completely subadditive set function de-
fined on a ring R. If μ is of bounded variation, then the set function Varμ(A) (A ∈ R),
i.e. the least upper bound of the sums

∑r
i=1 μ(Ai), where Ai ⊆ A, Ai ∈ R (i = 1, 2, . . . , r),

AiAk = 0 for i �= k, is a bounded measure1 on the ring R.

Proof. Let B1, B2, . . . be a sequence of pairwise disjoint sets of R, for which B =∑∞
i=1 Bi ∈ R. Let us choose subsets A1, A2, . . . , Ar of B which are elements of R and

Varμ(B) ≤
r∑

i=1

μ(Ai) + ε,

where ε > 0 is a given number. Using the subadditivity of the set function μ, we obtain
that

μ(Ai) ≤
∞∑

k=1

μ(AiBk)

1A real-valued, non-negative set function m, defined on a ring R, is called a measure if for every sequence
B1, B2, . . . of disjoint sets of R, for which B =

∑∞
i=1 Bi ∈ R, we have m(B) =

∑∞
i=1 m(Bi) and m(0) = 0.
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and thus

Varμ(B) ≤
r∑

i=1

∞∑
k=1

μ(AiBk) + ε =
∞∑

k=1

r∑
i=1

μ(AiBk) + ε ≤
∞∑

k=1

Varμ(Bk) + ε.

This inequality is true for all ε > 0, hence we obtain that

Varμ(B) ≤
∞∑

k=1

Varμ(Bk).

It is trivial that

Varμ(B) ≥
∞∑

k=1

Varμ(Bk)

and thus Lemma 1 is proved. �

Lemma 2 Let f1, f2, . . . , fr and g1, g2, . . . , gr be such finite sequences of a Banach al-
gebra, for which ∥∥∥∥∥

l∏
i=1

fi

∥∥∥∥∥ ≤ K,

∥∥∥∥∥
r∏

i=l

gi

∥∥∥∥∥ ≤ K (l = 1, 2, . . . , r).

Then ∥∥∥∥∥
r∏

i=1

fi −
r∏

i=1

gi

∥∥∥∥∥ ≤ K2
r∑

i=1

‖fi − gi‖.

Proof. Starting from the identity

r∏
i=1

fi −
r∏

i=1

gi =
r∑

i=1

f1 . . . fi−1(fi − gi)gi+1 . . . gr

and taking the norm in both sides, we obtain the required inequality. �

Lemma 3 Let f1, f2, . . . be a sequence of elements of a commutative Banach algebra
with a unity. If

∞∑
i=1

‖e − fi‖ < ∞,

then the infinite product
∞∏
i=1

fi

converges to the same element by every ordering of the factors.

Proof. By the inequality

∞∑
i=1

|1 − ‖fi‖ | ≤
∞∑
i=1

‖e − fi‖ < ∞
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there is an n0 such that ‖fi‖ > 0 for i ≥ n0, and the infinite product of positive numbers

∞∏
i=n0

‖fi‖

is absolutely convergent. Let

K =
∞∏

i=n0

(1 + |1 − ‖fi‖ |).

By Lemma 2, for every pair m,n (m ≥ n0, n ≥ n0), we have

∥∥∥∥∥
m∏

i=n0

fi −
n∏

i=n0

fi

∥∥∥∥∥ ≤ K2

max(m,n)∑
i=min(m,n)+1

‖e − fi‖.

Taking into account our assumption, it follows that there is an f0 such that lim
n→∞ ‖f0

−∏n
i=n0

fi

∥∥ = 0. Let i1, i2, . . . be a rearrangement of the sequence n0, n0 + 1, . . . and let
Nn be a number such that the set n0, n0 + 1, . . . , Nn contains the numbers i1, i2, . . . , in.
If An is the following set of integers: An = {n0, n0 + 1, . . . , Nn} − {i1, i2, . . . , in}, then we
have ∥∥∥∥∥∥

n∏
k=1

fik −
Nn∏

k=n0

fk

∥∥∥∥∥∥ ≤ K2
∑

k∈An

‖e − fk‖.

This inequality implies the convergence of the product
∏∞

k=1 fik to the element f0; this
proves our assertion. �

Lemma 4 Let R be a ring and μ(A) a real- and non-negative valued subadditive set
function defined on the elements of R such that the following conditions hold:

a) μ(A) ≤ K, A ∈ R, where K is a constant;

b) if A1, A2, . . . is a sequence of pairwise disjoint sets of the ring R, then

∞∑
k=1

μ(Ak) < ∞.

From these conditions it follows that the set function μ(A) is of bounded variation.

Proof. Let us suppose that μ(A) is not of bounded variation and choose such disjoint
sets of R, B

(1)
1 , B

(1)
2 , . . . , B

(1)
k1

(k1 > 1), for which

k1∑
l=1

μ(B(1)
l ) ≥ 2K.
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Since the set function μ(A) is subadditive, it follows that at least in one of the sets∑k1
l=1 B

(1)
l and

∑k1
l=1 B

(1)
l it is not of bounded variation. Let the set

∑k1
l=1 B

(1)
l have this

property. Then we can find sets of R, B
(1)
k+1, B

(1)
k1+2, . . . , B

(1)
k2

, which are subsets of
∑k1

l=1 B
(1)
l

and
k2∑

l=k1+1

μ(B(1)
l ) ≥ K.

In the same way as before it can be seen that the set function μ is not of bounded variation

at least in one of the sets
∑k2

l=1 B
(1)
l and

∑k2
l=1 B

(1)
l and so on. After a finite number of

steps the chain will terminate; indeed, if μ(A) is not of bounded variation in any of the

sets
∑kr

l=1 B
(1)
l , then from the inequality

kr∑
l=1

μ(B(1)
l ) ≥ (r + 1)K

it would follow that the sequence of disjoint sets, B
(1)
1 , B

(1)
2 , . . . would have the property

∞∑
l=1

μ(B(1)
l ) = ∞,

but this is impossible because of Condition b). Consequently, there is a number n1 among
the numbers k1, k2, . . . such that μ(A) is not of bounded variation in the set

∑n1
l=1 B

(1)
l .

From the subadditivity of μ(A) it follows that the variation will be infinite at least in one
of the sets B

(1)
1 , B

(1)
2 , . . . , B

(1)
n1 . This may be the set B

(1)
n1 . Then, since

n1∑
l=1

μ(B(1)
l ) ≥

k1∑
l=1

μ(B(1)
l ) ≥ 2K

holds, we have in view of Condition a)
n1−1∑
l=1

μ(B(1)
l ) ≥ K.

A repetition of the preceding consideration shows that in the set B
(1)
n1 there are disjoint

sets of R, B
(2)
1 , B

(2)
2 , . . . , B

(2)
n2 , such that the variation is infinite in the set B

(2)
n2 and

n2−1∑
l=1

μ(B(2)
l ) ≥ K.

Carrying on this procedure we may choose a sequence

B
(1)
1 , B

(1)
2 , . . . , B

(1)
n1−1, B

(2)
1 , B

(2)
2 , . . . , B

(2)
n2−1, . . .

of disjoint sets of R such that
∞∑

k=1

nk−1∑
l=1

μ(B(k)
l ) = ∞,

but, by Condition b), this is a contradiction. This completes the proof of Lemma 4. �
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§ 2. Extension of completely multiplicative set functions

Theorem 1 Let f(A) be a completely multiplicative set function, defined on the ring
R, for which ‖f(A)‖ ≤ 1 (A ∈ R). If for every sequence A1, A2, . . . of disjoint sets of R
the relation

(2)
∞∑

k=1

‖e − f(Ak)‖ < ∞

holds, then there is one and only one completely multiplicative set function f∗(A), defined
on the σ-ring S(R), for which f∗(A) = f(A) if (A ∈ R).

If A1, A2, . . . is a convergent sequence of sets of S(R), lim
k→∞

Ak = A, then

lim
k→∞

f∗(Ak) = f∗(A).

Proof. Let A1, A2, . . . be a sequence of disjoint sets of R, for which A =
∑∞

i=1 Ai ∈ R.
From the inequality

‖e − f(A1 + · · · + An+1)‖ = ‖e − f(A1 + · · · + An)f(An+1)‖
= ‖e − f(An+1) + f(An+1) − f(A1 + · · · + An)f(An + 1)‖
≤ ‖e − f(An+1)‖ + ‖f(An+1)‖ · ‖e − f(A1 + · · · + An)‖
≤ ‖e − f(An+1)‖ + ‖e − f(A1 + · · · + An)‖

it follows that

(3)

∥∥∥∥∥e − f

(
n+1∑
k=1

Ak

)∥∥∥∥∥ ≤
n+1∑
k=1

‖e − f(Ak)‖.

Thus the conditions in Lemma 4 for the set function ‖e − f(A)‖ are fulfilled, hence ‖e −
f(A)‖ is of bounded variation. Taking the limit n → ∞ in the relation (3), we obtain

(4) ‖e − f(A)‖ ≤
∞∑
i=1

‖e − f(Ai)‖.

Hence μ(A) = ‖e−f(A)‖ is a completely subadditive set function. By Lemma 1 Varμ(A) is
a bounded measure on R. Let m(A) (A ∈ S(R)) denote the extended measure of Varμ(A)
to the σ-ring S(R).

Let us form a sequence of rings in the following manner: R0 = R, R1 is the ring of
the sets which are limits of some convergent sequences of R0 and if Rν is defined for all
ν < ν0 < ω1, then Rν0 is the ring of the sets which are limits of some convergent sequences
of the ring

∑
ν<ν0

Rν . Clearly,
∑

r Rν = S(R).

In the sequel we shall use the following remark: If E is a sequence of sets of R such
that lim

n→∞En = 0, then from the inequality

‖e − f(En)‖ ≤ m(En)
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we obtain that
lim

n→∞ f(En) = e.

Let An be a convergent sequence of sets of R0. In this case

lim
m,n→∞(An − Am) = lim

m,n→∞(Am − An) = 0,

hence

‖f(An) − f(Am)‖ ≤ ‖f(An) − f(AnAm)‖ + ‖f(Am) − f(AnAm)‖
= ‖f(AnAm)f(An − Am) − f(AnAm)‖

+ ‖f(AnAm)f(Am − An) − f(AnAm)‖
≤ ‖f(AnAm)‖ · ‖e − f(An − Am)‖

+ ‖f(AnAm)‖ · ‖e − f(Am − An)‖
≤ ‖e − f(An − Am)‖ + ‖e − f(Am − An)‖ → 0 if m,n → ∞.

Thus the sequence f(An) is convergent. Let us define the set function f1 as follows: if
A ∈ R1, A = lim

n→∞An where An ∈ R0 (n = 1, 2, . . .), then

f1(A) = lim
n→∞ f(An).

We prove that f1(A) is uniquely determined. Let An ∈ R0, A′
n ∈ R0 (n = 1, 2, . . .) be

two sequences such that
lim

n→∞An = lim
n→∞A′

n = A.

Clearly,

An = AnA′
n + (An − A′

n), A′
n = AnA′

n + (A′
n − An),

f(An) = f(AnA′
n)f(An − A′

n), f(A′
n) = f(AnA′

n)f(A′
n − An).

Since AnA′
n → A and

lim
n→∞ f(An − A′

n) = lim
n→∞ f(A′

n − An) = e,

it follows that the sequence f(AnA′
n) converges and

lim
n→∞ f(An) = lim

n→∞ f(A′
n) = lim

n→∞ f(AnA′
n).

The uniqueness of the set function f1 implies that f1(A) = f(A) for A ∈ R0.

f1(A) is a multiplicative set function on R1. In fact, if A and B are disjoint sets of
R1, A = lim

n→∞An, B = lim
n→∞Bn, An ∈ R0, Bn ∈ R0 (n = 1, 2, . . .), then since f(A) is a

multiplicative set function on R0, we have

f1(A + B) = lim
n→∞ f(An + (Bn − An)) = lim

n→∞ f(An)f(Bn − An) = f1(A)f1(B).
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We prove that f1(A) is a completely multiplicative set function on R1. First we prove
that if μ1(A) = ‖e − f1(A)‖, A ∈ R1 and if B ∈ R1, then Varμ1(B) ≤ m(B). In
fact, if B1, B2, . . . , Br are disjoint sets of R1 for which Bi ⊆ B (i = 1, 2, . . . , r) and
B

(n)
1 , B

(n)
2 , . . . , B

(n)
r are sequences of sets of R0 for which Bi = lim

n→∞B
(n)
i (i = 1, 2, . . . , r),

B
(n)
i B

(n)
k = 0 for i �= k, n = 1, 2, . . . , then

r∑
i=1

‖e − f(B(n)
i )‖ ≤ m

(
r∑

i=1

B
(n)
i

)
(n = 1, 2, . . .).

If n → ∞, we obtain

r∑
i=1

‖e − f1(Bi)‖ ≤ m

(
r∑

i=1

Bi

)
≤ m(B),

which proves the assertion.

If B1, B2, . . . is a sequence of disjoint sets of R1, B =
∑∞

k=1 Bk ∈ R1, then from the
inequality

∞∑
k=1

‖e − f1(Bk)‖ ≤ m(B)

it follows the convergence of the infinite product
∏∞

k=1 f1(Bk). As f1(B) is multiplicative
on R1, if Cn =

∑∞
k=n Bk, we obtain∥∥∥∥∥f1(B) −

n∏
k=1

f1(Bk)

∥∥∥∥∥ =

∥∥∥∥∥
(

n∏
k=1

f1(Bk)

)
f1(Cn+1) −

n∏
k=1

f1(Bk)

∥∥∥∥∥
≤ ‖e − f1(Cn+1)‖ ≤ m(Cn+1) → 0 if n → ∞,

hence f1(B) is a completely multiplicative set function on the ring R1.

Such as for R0, we can prove also for R1 that the set function μ1(A) = ‖e − f1(A)‖
(A ∈ R1) is completely subadditive and of bounded variation. By Lemma 1, Varμ1(A) is
a bounded measure on R1. We have seen that if A ∈ R0 ⊆ R1, then

Varμ1(A) ≤ m(A).

On the other hand, since R0 ⊆ R1, we have

Varμ(A) ≤ Varμ1(A) for A ∈ R0.

Thus
Varμ1(A) = m(A) if A ∈ R0,

and since the extension of a bounded measure is uniquely determined, we obtain

Varμ1(A) = m(A) if A ∈ R1.
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Let us suppose that for every ordinal number ν for which ν < ν0 < ω1, a completely
multiplicative set function fν(A) (A ∈ Rν) is defined satisfying

fν(A) = fν′(A) if A ∈ Rν′ , ν ′ < ν

and
Varμν (A) = m(A) where μν = ‖e − fν(A)‖, A ∈ Rν .

Let us define a set function gν0 on the ring
∑

ν<ν0
Rν as follows:

gν0(A) = fν(A) if A ∈ Rν , ν < ν0.

Obviously, gν0 is a multiplicative set function. We shall prove that it is also completely
multiplicative. In fact, if A1, A2, . . . is a sequence of disjoint sets of the ring

∑
ν<ν0

Rν ,
A =

∑∞
k=1 Ak ∈∑ν<ν0

Rν , then

∞∑
k=1

‖e − gν0(Ak)‖ ≤ m(A),

hence the infinite product
∏∞

k=1 gν0(Ak) converges. Since

gν0(A) =

(
n∏

k=1

gν0(Ak)

)
gν0

( ∞∑
k=n+1

Ak

)
,

it follows that ∥∥∥∥∥gν0(A) −
n∏

k=1

gν0(Ak)

∥∥∥∥∥ ≤
∥∥∥∥∥e − gν0

( ∞∑
k=n+1

Ak

)∥∥∥∥∥
≤ m

( ∞∑
k=n+1

Ak

)
→ 0 if n → ∞

whence

gν0(A) =
∞∏

k=1

gν0(Ak).

Such as we have constructed the set function f1 we can construct the set function fν0

defined on Rν0 with the aid of the set function gν0 defined on
∑

ν<ν0
Rν and it is easy to

see that fν0 has the properties what we have supposed in the transfinite induction.

Let us define the set function f∗(A) (A ∈ S(R)) in the following manner:

f∗(A) = fν(A) if A ∈ Rν .

f∗(A) is a completely multiplicative set function. In fact, if A1, A2, . . . is a sequence of
disjoint sets of the σ-ring S(R) =

∑
ν Rν and Ak ∈ Rνk

(k = 1, 2, . . .), then there is
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a ν ′ < ω1 such that νk < ν ′ (k = 1, 2, . . .). It follows that Ak ∈ Rν′ (k = 1, 2, . . .),∑∞
k=1 Ak ∈ Rν′ , hence

f∗
( ∞∑

k=1

Ak

)
= fν′

( ∞∑
k=1

Ak

)
=

∞∏
k=1

fν′(Ak) =
∞∏

k=1

f∗(Ak).

By the same way we can prove that if An is a convergent sequence of sets of S(R),
lim

n→∞An = A, then

lim
n→∞ f∗(An) = f∗(A).

Proof of the uniqueness of the extension. Let f∗∗ be a completely multi-
plicative set function defined on the σ-ring S(R). First we remark that if A1, A2, . . . is a
non-decreasing sequence of sets of S(R), lim

n→∞An = A, then

f∗∗(A) =

( ∞∏
k=1

f∗∗(Ak+1 − Ak)

)
f∗∗(A1) = f∗∗(A1) lim

n→∞

n−1∏
k=1

f∗∗(Ak+1 − Ak),

hence

(5) f∗∗(A) = lim
n→∞ f∗∗(An).

Let us suppose that the set functions f∗, f∗∗ coincide on the ring
∑

ν<ν0
Rν ,

f∗(A) = f∗∗(A) if A ∈
∑
ν<ν0

Rν .

We shall prove that f∗ and f∗∗ coincide on the ring Rν , too.

Let B1, B2, . . . be a non-increasing sequence of sets of
∑

ν<ν0
Rν , lim

n→∞Bn = B. The
sets functions f∗, f∗∗ are completely multiplicative, hence

f∗(Bn) = f∗(B)
∞∏

k=n

f∗(Bk − Bk+1),

f∗∗(Bn) = f∗∗(B)
∞∏

k=n

f∗∗(Bk − Bk+1).

Taking into account our assumption, we obtain

f∗(Bn − B) =
∞∏

k=n

f∗(Bk − Bk+1) =
∞∏

k=n

f∗∗(Bk − Bk+1),

f∗(Bn) = f∗∗(Bn),

hence
f∗(B)f∗(Bn − B) = f∗∗(B)f∗(Bn − B).
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Since lim
n→∞ f∗(Bn − B) = e, it follows that f∗(B) = f∗∗(B).

Let C1, C2, . . . be a convergent sequence of sets of
∑

ν<ν0
Rν , lim

n→∞Cn = C. Let

An = CnCn+1 . . . , Ar,n = CnCn+1 . . . Cn+r (r, n = 1, 2, . . .).

Obviously, Ar,n ∈∑ν<ν0
Rν , Ar,n ⊆ Cn, Ar,n ⊇ Ar+1,n. Hence we conclude

(6) f∗∗(Cn) = f∗∗(Cn − Ar,n)f∗∗(Ar,n) = f∗(Cn − Ar,n)f∗∗(Ar,n).

Since lim
r→∞Ar,n = An and for every fixed n the sequence A1,n, A2,n, A3,n . . . is non-increasing,

we have

(7) lim
r→∞ f∗∗(Ar,n) = lim

r→∞ f∗(Ar,n) = f∗(An) = f∗∗(An).

On the other hand, we know that

(8) lim
r→∞ f∗(Cn − Ar,n) = f∗(Cn − An),

hence by (6), (7) and (8) we can write

(9) f∗∗(Cn) = f∗(Cn − An)f∗∗(An).

The sequence A1, A2, . . . is non-decreasing, lim
n→∞An = C, hence by (5) we obtain

(10) lim
n→∞ f∗∗(An) = f∗∗(C).

We know furthermore that

(11) lim
n→∞ f∗∗(Cn) = lim

n→∞ f∗(Cn) = f∗(C), lim
n→∞ f∗(Cn − An) = e.

Taking the limit n → ∞ in the relation (9), (10) and (11) imply

f∗(C) = f∗∗(C).

By the principle of transfinite induction it follows that the set functions f∗, f∗∗ coincide
on the σ-ring S(R) =

∑
ν Rν . Thus Theorem 1 is proved. �

Theorem 2 Let R be a ring and f(A) a completely multiplicative set function, defined
on the ring R, for which f(A) ∈ B, A ∈ R. Let us further suppose that there is a bounded,
completely additive, real-valued set function ϕ(A), defined on the ring R, for which

(12) ‖f(A)‖ ≤ 2ϕ(A) (A ∈ R),

and that for every sequence Ak of disjoint sets of R we have

∞∑
k=1

‖e − f(Ak)‖ < ∞.
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In this case there is a uniquely determined completely multiplicative set function f∗(A),
defined on the σ-ring S(R), for which f∗(A) = f(A) if A ∈ R; for every convergent
sequence A1, A2, . . . of the σ-ring S(R) we have

lim
k→∞

f∗(Ak) = f∗(A)

where A = lim
k→∞

Ak.

Proof. Let us consider the set function g(A) = 2−ϕ(A)f(A). I prove that g(A) satisfies
the conditions of Theorem 1. By (12), ‖g(A)‖ ≤ 1. Furthermore

‖e − g(A)‖ = ‖e − e2−ϕ(A) + e2−ϕ(A) − 2−ϕ(A)f(A)‖
≤ |1 − 2−ϕ(A)| + ‖e − f(A)‖2−ϕ(A)

≤ K(|ϕ(A)| + ‖e − f(A)‖),(13)

where K is a positive constant, hence if A1, A2, . . . is a sequence of disjoint sets of R, then
by (13) we have

∞∑
k=1

‖e − g(Ak)‖ ≤ K

( ∞∑
k=1

|ϕ(Ak)| +
∞∑

k=1

‖e − f(Ak)‖
)

< ∞.

Let g∗(A) and ϕ∗(A) denote the extended set functions corresponding to the set functions
g(A) and ϕ(A), respectively. Clearly, the set function

f∗(A) = 2ϕ∗(A)g∗(A) (A ∈ S(R))

is completely multiplicative and f∗(A) = f(A) for A ∈ R. If A1, A2, . . . is a sequence of
sets of S(R), lim

k→∞
Ak = A, then by Theorem 1 we have

lim
k→∞

g∗(Ak) = g∗(A)

whence
lim

k→∞
f∗(Ak) = f∗(A).

Thus Theorem 2 is proved. �

Remark If for every A ∈ R the inequality 0 < δ1 ≤ ‖f(A)‖ ≤ δ2 holds, where δ1, δ2

are constants, and if

(14) ‖f(A)f(B)‖ = ‖f(A)‖ ‖f(B)‖,
where A ∈ R, B ∈ R, AB = 0, then for the set function f(A) the condition (12) of
Theorem 2 is fulfilled. In fact, for ϕ(A) = log2‖f(A)‖ the relation (12) holds. For
instance, (14) holds in the Banach algebra of the complex numbers.

Finally, I express my thanks to Á. Császár for his valuable remarks.
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