EXTENSION OF MULTIPLICATIVE SET FUNCTIONS WITH VALUES IN A BANACH ALGEBRA

András Prékopa (Budapest) (Presented by A. Rényi)

Mathematical Institute of the Hungarian Academy of Sciences

Received: January 26, 1956

Introduction

Let X be a given set, and let \mathcal{R} , \mathcal{S} be some classes of certain subsets of X. We say that \mathcal{R} is a ring if $A + B \in \mathcal{R}$, $A - B \in \mathcal{R}$ whenever $A \in \mathcal{R}$, $B \in \mathcal{R}$. We say that \mathcal{S} is a σ -ring if it is a ring and if for every sequence A_1, A_2, \ldots , where $A_i \in \mathcal{S}$ $(i = 1, 2, \ldots)$, the sum $\sum_{i=1}^{\infty} A_i$ is also contained in \mathcal{S} .

Let \mathcal{B} be a commutative Banach algebra with a unity, i.e. a Banach space, where for all pairs $f \in \mathcal{B}$, $g \in \mathcal{B}$ a product fg = gf is defined such that if $h \in \mathcal{B}$, then (fg)h = f(gh), (f+g)h = fh+gh, $||fg|| \leq ||f|| ||g||$ and there is an $e \in \mathcal{B}$ such that ef = fe = f, ||e|| = 1.

I shall consider set functions f(A) defined on the elements of a ring \mathcal{R} such that the values f(A) lie in \mathcal{B} ; $f(A) \in \mathcal{B}$ for $A \in \mathcal{R}$.

A real-valued set function $\alpha(A)$ defined on \mathcal{R} is called of bounded variation if there is a number K such that for every finite sequence of pairwise disjoint sets A_1, A_2, \ldots, A_r , $A_i \in \mathcal{R}$ $(i = 1, 2, \ldots, r)$, we have

$$\sum_{i=1}^{r} |\alpha(A_i)| \le K$$

Let g_1, g_2, \ldots be a sequence of elements of \mathcal{B} . I say that the infinite product $\prod_{i=1}^{\infty} g_i$ converges if the number of the factors which are equal to 0 is finite and if $g_i \neq 0$ for $i \geq n_0$, then there is a $g_0 \in \mathcal{B}$ such that

$$\lim_{n \to \infty} \left\| g_0 - \prod_{i=n_0}^n g_i \right\| = 0$$

I define the value of the infinite product as g_0 if $n_0 = 1$ and as

$$\prod_{i=1}^{\infty} g_i = \left(\prod_{i=1}^{n_0-1} g_i\right) g_0.$$

if $n_0 > 1$.

A set function f(A) is called multiplicative (completely multiplicative) in \mathcal{R} if for every $A_1 \in \mathcal{R}, A_2 \in \mathcal{R}, A_1A_2 = 0$ $(A_1, A_2, \ldots, A_iA_k = 0$ for $i \neq k, A = \sum_{i=1}^{\infty} A_i \in \mathcal{R}$), the relation

(1)
$$f(A_1 + A_2) = f(A_1)f(A_2) \qquad \left(f(A) = \prod_{i=1}^{\infty} f(A_i)\right)$$

holds. I suppose in this case that f(0) = e.

A real-valued set function $\mu(A)$ is called subadditive (completely subadditive) if for every pair A_1, A_2 of disjoint sets of \mathcal{R} (for every sequence A_1, A_2, \ldots of pairwise disjoint sets of \mathcal{R} , for which $A = \sum_{k=1}^{\infty} A_k \in \mathcal{R}$), we have

$$\mu(A) \le \mu(A_1) + \mu(A_2) \qquad \left(\mu(A) \le \sum_{i=1}^{\infty} \mu(A_i)\right).$$

The purpose of this paper is the extension of a completely multiplicative set function defined on the ring \mathcal{R} and satisfying certain conditions, to a completely multiplicative set function defined on $\mathcal{S}(\mathcal{R})$, which is the smallest σ -ring containing \mathcal{R} . First I prove four lemmas.

§ 1. Lemmas

LEMMA 1 Let μ be a real-valued, non-negative, completely subadditive set function defined on a ring \mathcal{R} . If μ is of bounded variation, then the set function $Var_{\mu}(A)$ $(A \in \mathcal{R})$, i.e. the least upper bound of the sums $\sum_{i=1}^{r} \mu(A_i)$, where $A_i \subseteq A$, $A_i \in \mathcal{R}$ (i = 1, 2, ..., r), $A_i A_k = 0$ for $i \neq k$, is a bounded measure¹ on the ring \mathcal{R} .

PROOF. Let B_1, B_2, \ldots be a sequence of pairwise disjoint sets of \mathcal{R} , for which $B = \sum_{i=1}^{\infty} B_i \in \mathcal{R}$. Let us choose subsets A_1, A_2, \ldots, A_r of B which are elements of \mathcal{R} and

$$\operatorname{Var}_{\mu}(B) \leq \sum_{i=1}^{r} \mu(A_i) + \varepsilon,$$

where $\varepsilon > 0$ is a given number. Using the subadditivity of the set function μ , we obtain that

$$\mu(A_i) \le \sum_{k=1}^{\infty} \mu(A_i B_k)$$

¹A real-valued, non-negative set function m, defined on a ring \mathcal{R} , is called a measure if for every sequence B_1, B_2, \ldots of disjoint sets of \mathcal{R} , for which $B = \sum_{i=1}^{\infty} B_i \in \mathcal{R}$, we have $m(B) = \sum_{i=1}^{\infty} m(B_i)$ and m(0) = 0.

and thus

$$\operatorname{Var}_{\mu}(B) \leq \sum_{i=1}^{r} \sum_{k=1}^{\infty} \mu(A_{i}B_{k}) + \varepsilon = \sum_{k=1}^{\infty} \sum_{i=1}^{r} \mu(A_{i}B_{k}) + \varepsilon \leq \sum_{k=1}^{\infty} \operatorname{Var}_{\mu}(B_{k}) + \varepsilon.$$

This inequality is true for all $\varepsilon > 0$, hence we obtain that

$$\operatorname{Var}_{\mu}(B) \leq \sum_{k=1}^{\infty} \operatorname{Var}_{\mu}(B_k).$$

It is trivial that

$$\operatorname{Var}_{\mu}(B) \ge \sum_{k=1}^{\infty} \operatorname{Var}_{\mu}(B_k)$$

and thus Lemma 1 is proved.

LEMMA 2 Let f_1, f_2, \ldots, f_r and g_1, g_2, \ldots, g_r be such finite sequences of a Banach algebra, for which

$$\left\|\prod_{i=1}^{l} f_i\right\| \le K, \qquad \left\|\prod_{i=l}^{r} g_i\right\| \le K \qquad (l=1,2,\ldots,r).$$

Then

$$\left\| \prod_{i=1}^r f_i - \prod_{i=1}^r g_i \right\| \le K^2 \sum_{i=1}^r \|f_i - g_i\|.$$

PROOF. Starting from the identity

$$\prod_{i=1}^{r} f_i - \prod_{i=1}^{r} g_i = \sum_{i=1}^{r} f_1 \dots f_{i-1} (f_i - g_i) g_{i+1} \dots g_r$$

and taking the norm in both sides, we obtain the required inequality.

LEMMA 3 Let f_1, f_2, \ldots be a sequence of elements of a commutative Banach algebra with a unity. If

$$\sum_{i=1}^{\infty} \|e - f_i\| < \infty,$$

then the infinite product

$$\prod_{i=1}^{\infty} f_i$$

converges to the same element by every ordering of the factors.

PROOF. By the inequality

$$\sum_{i=1}^{\infty} |1 - \|f_i\| | \le \sum_{i=1}^{\infty} \|e - f_i\| < \infty$$

there is an n_0 such that $||f_i|| > 0$ for $i \ge n_0$, and the infinite product of positive numbers

$$\prod_{i=n_0}^{\infty} \|f_i\|$$

is absolutely convergent. Let

$$K = \prod_{i=n_0}^{\infty} (1 + |1 - ||f_i|| |).$$

By Lemma 2, for every pair $m, n \ (m \ge n_0, n \ge n_0)$, we have

$$\left\|\prod_{i=n_0}^m f_i - \prod_{i=n_0}^n f_i\right\| \le K^2 \sum_{i=\min(m,n)+1}^{\max(m,n)} \|e - f_i\|.$$

Taking into account our assumption, it follows that there is an f_0 such that $\lim_{n \to \infty} ||f_0 - \prod_{i=n_0}^n f_i|| = 0$. Let i_1, i_2, \ldots be a rearrangement of the sequence $n_0, n_0 + 1, \ldots$ and let N_n be a number such that the set $n_0, n_0 + 1, \ldots, N_n$ contains the numbers i_1, i_2, \ldots, i_n . If A_n is the following set of integers: $A_n = \{n_0, n_0 + 1, \ldots, N_n\} - \{i_1, i_2, \ldots, i_n\}$, then we have

$$\left\| \prod_{k=1}^{n} f_{i_k} - \prod_{k=n_0}^{N_n} f_k \right\| \le K^2 \sum_{k \in A_n} \|e - f_k\|.$$

This inequality implies the convergence of the product $\prod_{k=1}^{\infty} f_{i_k}$ to the element f_0 ; this proves our assertion.

LEMMA 4 Let \mathcal{R} be a ring and $\mu(A)$ a real- and non-negative valued subadditive set function defined on the elements of \mathcal{R} such that the following conditions hold:

- a) $\mu(A) \leq K, A \in \mathcal{R}$, where K is a constant;
- b) if A_1, A_2, \ldots is a sequence of pairwise disjoint sets of the ring \mathcal{R} , then

$$\sum_{k=1}^{\infty} \mu(A_k) < \infty.$$

From these conditions it follows that the set function $\mu(A)$ is of bounded variation.

PROOF. Let us suppose that $\mu(A)$ is not of bounded variation and choose such disjoint sets of $\mathcal{R}, B_1^{(1)}, B_2^{(1)}, \ldots, B_{k_1}^{(1)}$ $(k_1 > 1)$, for which

$$\sum_{l=1}^{k_1} \mu(B_l^{(1)}) \ge 2K.$$

Since the set function $\mu(A)$ is subadditive, it follows that at least in one of the sets $\sum_{l=1}^{k_1} B_l^{(1)}$ and $\overline{\sum_{l=1}^{k_1} B_l^{(1)}}$ it is not of bounded variation. Let the set $\overline{\sum_{l=1}^{k_1} B_l^{(1)}}$ have this property. Then we can find sets of $\mathcal{R}, B_{k+1}^{(1)}, B_{k_1+2}^{(1)}, \ldots, B_{k_2}^{(1)}$, which are subsets of $\overline{\sum_{l=1}^{k_1} B_l^{(1)}}$ and k_2

$$\sum_{l=k_1+1}^{k_2} \mu(B_l^{(1)}) \ge K.$$

In the same way as before it can be seen that the set function μ is not of bounded variation at least in one of the sets $\sum_{l=1}^{k_2} B_l^{(1)}$ and $\overline{\sum_{l=1}^{k_2} B_l^{(1)}}$ and so on. After a finite number of steps the chain will terminate; indeed, if $\mu(A)$ is not of bounded variation in any of the sets $\overline{\sum_{l=1}^{k_r} B_l^{(1)}}$, then from the inequality

$$\sum_{l=1}^{k_r} \mu(B_l^{(1)}) \ge (r+1)K$$

it would follow that the sequence of disjoint sets, $B_1^{(1)}, B_2^{(1)}, \ldots$ would have the property

$$\sum_{l=1}^{\infty} \mu(B_l^{(1)}) = \infty,$$

but this is impossible because of Condition b). Consequently, there is a number n_1 among the numbers k_1, k_2, \ldots such that $\mu(A)$ is not of bounded variation in the set $\sum_{l=1}^{n_1} B_l^{(1)}$. From the subadditivity of $\mu(A)$ it follows that the variation will be infinite at least in one of the sets $B_1^{(1)}, B_2^{(1)}, \ldots, B_{n_1}^{(1)}$. This may be the set $B_{n_1}^{(1)}$. Then, since

$$\sum_{l=1}^{n_1} \mu(B_l^{(1)}) \ge \sum_{l=1}^{k_1} \mu(B_l^{(1)}) \ge 2K$$

holds, we have in view of Condition a)

$$\sum_{l=1}^{n_1-1} \mu(B_l^{(1)}) \ge K$$

A repetition of the preceding consideration shows that in the set $B_{n_1}^{(1)}$ there are disjoint sets of \mathcal{R} , $B_1^{(2)}, B_2^{(2)}, \ldots, B_{n_2}^{(2)}$, such that the variation is infinite in the set $B_{n_2}^{(2)}$ and

$$\sum_{l=1}^{n_2-1} \mu(B_l^{(2)}) \ge K$$

Carrying on this procedure we may choose a sequence

$$B_1^{(1)}, B_2^{(1)}, \dots, B_{n_1-1}^{(1)}, B_1^{(2)}, B_2^{(2)}, \dots, B_{n_2-1}^{(2)}, \dots$$

of disjoint sets of ${\mathcal R}$ such that

$$\sum_{k=1}^{\infty} \sum_{l=1}^{n_k-1} \mu(B_l^{(k)}) = \infty,$$

but, by Condition b), this is a contradiction. This completes the proof of Lemma 4. \Box

§ 2. Extension of completely multiplicative set functions

THEOREM 1 Let f(A) be a completely multiplicative set function, defined on the ring \mathcal{R} , for which $||f(A)|| \leq 1$ $(A \in \mathcal{R})$. If for every sequence A_1, A_2, \ldots of disjoint sets of \mathcal{R} the relation

(2)
$$\sum_{k=1}^{\infty} \|e - f(A_k)\| < \infty$$

holds, then there is one and only one completely multiplicative set function $f^*(A)$, defined on the σ -ring $\mathcal{S}(\mathcal{R})$, for which $f^*(A) = f(A)$ if $(A \in \mathcal{R})$.

If A_1, A_2, \ldots is a convergent sequence of sets of $\mathcal{S}(\mathcal{R})$, $\lim_{k \to \infty} A_k = A$, then

$$\lim_{k \to \infty} f^*(A_k) = f^*(A).$$

PROOF. Let A_1, A_2, \ldots be a sequence of disjoint sets of \mathcal{R} , for which $A = \sum_{i=1}^{\infty} A_i \in \mathcal{R}$. From the inequality

$$\begin{aligned} \|e - f(A_1 + \dots + A_{n+1})\| &= \|e - f(A_1 + \dots + A_n)f(A_{n+1})\| \\ &= \|e - f(A_{n+1}) + f(A_{n+1}) - f(A_1 + \dots + A_n)f(A_n + 1)\| \\ &\leq \|e - f(A_{n+1})\| + \|f(A_{n+1})\| \cdot \|e - f(A_1 + \dots + A_n)\| \\ &\leq \|e - f(A_{n+1})\| + \|e - f(A_1 + \dots + A_n)\| \end{aligned}$$

it follows that

(3)
$$\left\| e - f\left(\sum_{k=1}^{n+1} A_k\right) \right\| \le \sum_{k=1}^{n+1} \|e - f(A_k)\|.$$

Thus the conditions in Lemma 4 for the set function ||e - f(A)|| are fulfilled, hence ||e - f(A)|| is of bounded variation. Taking the limit $n \to \infty$ in the relation (3), we obtain

(4)
$$||e - f(A)|| \le \sum_{i=1}^{\infty} ||e - f(A_i)||.$$

Hence $\mu(A) = ||e - f(A)||$ is a completely subadditive set function. By Lemma 1 Var $_{\mu}(A)$ is a bounded measure on \mathcal{R} . Let m(A) $(A \in \mathcal{S}(\mathcal{R}))$ denote the extended measure of Var $_{\mu}(A)$ to the σ -ring $\mathcal{S}(\mathcal{R})$.

Let us form a sequence of rings in the following manner: $\mathcal{R}_0 = \mathcal{R}$, \mathcal{R}_1 is the ring of the sets which are limits of some convergent sequences of \mathcal{R}_0 and if \mathcal{R}_{ν} is defined for all $\nu < \nu_0 < \omega_1$, then \mathcal{R}_{ν_0} is the ring of the sets which are limits of some convergent sequences of the ring $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$. Clearly, $\sum_r \mathcal{R}_{\nu} = \mathcal{S}(\mathcal{R})$.

In the sequel we shall use the following remark: If E is a sequence of sets of \mathcal{R} such that $\lim_{n \to \infty} E_n = 0$, then from the inequality

$$\|e - f(E_n)\| \le m(E_n)$$

we obtain that

$$\lim_{n \to \infty} f(E_n) = e.$$

Let A_n be a convergent sequence of sets of \mathcal{R}_0 . In this case

$$\lim_{m,n\to\infty} (A_n - A_m) = \lim_{m,n\to\infty} (A_m - A_n) = 0,$$

hence

$$\begin{split} \|f(A_n) - f(A_m)\| &\leq \|f(A_n) - f(A_n A_m)\| + \|f(A_m) - f(A_n A_m)\| \\ &= \|f(A_n A_m) f(A_n - A_m) - f(A_n A_m)\| \\ &+ \|f(A_n A_m) f(A_m - A_n) - f(A_n A_m)\| \\ &\leq \|f(A_n A_m)\| \cdot \|e - f(A_n - A_m)\| \\ &+ \|f(A_n A_m)\| \cdot \|e - f(A_m - A_n)\| \\ &\leq \|e - f(A_n - A_m)\| + \|e - f(A_m - A_n)\| \to 0 \quad \text{if} \quad m, n \to \infty. \end{split}$$

Thus the sequence $f(A_n)$ is convergent. Let us define the set function f_1 as follows: if $A \in \mathcal{R}_1, A = \lim_{n \to \infty} A_n$ where $A_n \in \mathcal{R}_0$ (n = 1, 2, ...), then

$$f_1(A) = \lim_{n \to \infty} f(A_n).$$

We prove that $f_1(A)$ is uniquely determined. Let $A_n \in \mathcal{R}_0, A'_n \in \mathcal{R}_0 \ (n = 1, 2, ...)$ be two sequences such that

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} A'_n = A$$

Clearly,

$$A_n = A_n A'_n + (A_n - A'_n), \qquad A'_n = A_n A'_n + (A'_n - A_n),$$

$$f(A_n) = f(A_n A'_n) f(A_n - A'_n), \qquad f(A'_n) = f(A_n A'_n) f(A'_n - A_n).$$

Since $A_n A'_n \to A$ and

$$\lim_{n \to \infty} f(A_n - A'_n) = \lim_{n \to \infty} f(A'_n - A_n) = e,$$

it follows that the sequence $f(A_n A_n^\prime)$ converges and

$$\lim_{n \to \infty} f(A_n) = \lim_{n \to \infty} f(A'_n) = \lim_{n \to \infty} f(A_n A'_n).$$

The uniqueness of the set function f_1 implies that $f_1(A) = f(A)$ for $A \in \mathcal{R}_0$.

 $f_1(A)$ is a multiplicative set function on \mathcal{R}_1 . In fact, if A and B are disjoint sets of \mathcal{R}_1 , $A = \lim_{n \to \infty} A_n$, $B = \lim_{n \to \infty} B_n$, $A_n \in \mathcal{R}_0$, $B_n \in \mathcal{R}_0$ (n = 1, 2, ...), then since f(A) is a multiplicative set function on \mathcal{R}_0 , we have

$$f_1(A+B) = \lim_{n \to \infty} f(A_n + (B_n - A_n)) = \lim_{n \to \infty} f(A_n) f(B_n - A_n) = f_1(A) f_1(B).$$

We prove that $f_1(A)$ is a completely multiplicative set function on \mathcal{R}_1 . First we prove that if $\mu_1(A) = ||e - f_1(A)||$, $A \in \mathcal{R}_1$ and if $B \in \mathcal{R}_1$, then $\operatorname{Var}_{\mu_1}(B) \leq m(B)$. In fact, if B_1, B_2, \ldots, B_r are disjoint sets of \mathcal{R}_1 for which $B_i \subseteq B$ $(i = 1, 2, \ldots, r)$ and $B_1^{(n)}, B_2^{(n)}, \ldots, B_r^{(n)}$ are sequences of sets of R_0 for which $B_i = \lim_{n \to \infty} B_i^{(n)}$ $(i = 1, 2, \ldots, r)$, $B_i^{(n)} B_k^{(n)} = 0$ for $i \neq k, n = 1, 2, \ldots$, then

$$\sum_{i=1}^{r} \|e - f(B_i^{(n)})\| \le m\left(\sum_{i=1}^{r} B_i^{(n)}\right) \qquad (n = 1, 2, \ldots).$$

If $n \to \infty$, we obtain

$$\sum_{i=1}^{r} \|e - f_1(B_i)\| \le m\left(\sum_{i=1}^{r} B_i\right) \le m(B),$$

which proves the assertion.

If B_1, B_2, \ldots is a sequence of disjoint sets of $\mathcal{R}_1, B = \sum_{k=1}^{\infty} B_k \in \mathcal{R}_1$, then from the inequality

$$\sum_{k=1}^{\infty} \|e - f_1(B_k)\| \le m(B)$$

it follows the convergence of the infinite product $\prod_{k=1}^{\infty} f_1(B_k)$. As $f_1(B)$ is multiplicative on \mathcal{R}_1 , if $C_n = \sum_{k=n}^{\infty} B_k$, we obtain

$$\left\| f_1(B) - \prod_{k=1}^n f_1(B_k) \right\| = \left\| \left(\prod_{k=1}^n f_1(B_k) \right) f_1(C_{n+1}) - \prod_{k=1}^n f_1(B_k) \right\|$$

$$\leq \left\| e - f_1(C_{n+1}) \right\| \leq m(C_{n+1}) \to 0 \text{ if } n \to \infty,$$

hence $f_1(B)$ is a completely multiplicative set function on the ring \mathcal{R}_1 .

Such as for \mathcal{R}_0 , we can prove also for \mathcal{R}_1 that the set function $\mu_1(A) = ||e - f_1(A)||$ $(A \in \mathcal{R}_1)$ is completely subadditive and of bounded variation. By Lemma 1, $\operatorname{Var}_{\mu_1}(A)$ is a bounded measure on \mathcal{R}_1 . We have seen that if $A \in \mathcal{R}_0 \subseteq \mathcal{R}_1$, then

$$\operatorname{Var}_{\mu_1}(A) \le m(A).$$

On the other hand, since $\mathcal{R}_0 \subseteq \mathcal{R}_1$, we have

$$\operatorname{Var}_{\mu}(A) \leq \operatorname{Var}_{\mu_1}(A) \quad \text{for} \quad A \in \mathcal{R}_0$$

Thus

$$\operatorname{Var}_{\mu_1}(A) = m(A) \quad \text{if} \quad A \in \mathcal{R}_0$$

and since the extension of a bounded measure is uniquely determined, we obtain

$$\operatorname{Var}_{\mu_1}(A) = m(A) \quad \text{if} \quad A \in \mathcal{R}_1.$$

Let us suppose that for every ordinal number ν for which $\nu < \nu_0 < \omega_1$, a completely multiplicative set function $f_{\nu}(A)$ $(A \in \mathcal{R}_{\nu})$ is defined satisfying

$$f_{\nu}(A) = f_{\nu'}(A)$$
 if $A \in \mathcal{R}_{\nu'}, \quad \nu' < \nu$

and

$$\operatorname{Var}_{\mu_{\nu}}(A) = m(A) \quad \text{where} \quad \mu_{\nu} = \|e - f_{\nu}(A)\|, \qquad A \in \mathcal{R}_{\nu}.$$

Let us define a set function g_{ν_0} on the ring $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$ as follows:

$$g_{\nu_0}(A) = f_{\nu}(A)$$
 if $A \in \mathcal{R}_{\nu}, \quad \nu < \nu_0.$

Obviously, g_{ν_0} is a multiplicative set function. We shall prove that it is also completely multiplicative. In fact, if A_1, A_2, \ldots is a sequence of disjoint sets of the ring $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$, $A = \sum_{k=1}^{\infty} A_k \in \sum_{\nu < \nu_0} \mathcal{R}_{\nu}$, then

$$\sum_{k=1}^{\infty} \|e - g_{\nu_0}(A_k)\| \le m(A),$$

hence the infinite product $\prod_{k=1}^{\infty} g_{\nu_0}(A_k)$ converges. Since

$$g_{\nu_0}(A) = \left(\prod_{k=1}^n g_{\nu_0}(A_k)\right) g_{\nu_0}\left(\sum_{k=n+1}^\infty A_k\right),$$

it follows that

$$\left\| g_{\nu_0}(A) - \prod_{k=1}^n g_{\nu_0}(A_k) \right\| \le \left\| e - g_{\nu_0} \left(\sum_{k=n+1}^\infty A_k \right) \right\|$$
$$\le m \left(\sum_{k=n+1}^\infty A_k \right) \to 0 \quad \text{if} \quad n \to \infty$$

whence

$$g_{\nu_0}(A) = \prod_{k=1}^{\infty} g_{\nu_0}(A_k).$$

Such as we have constructed the set function f_1 we can construct the set function f_{ν_0} defined on \mathcal{R}_{ν_0} with the aid of the set function g_{ν_0} defined on $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$ and it is easy to see that f_{ν_0} has the properties what we have supposed in the transfinite induction.

Let us define the set function $f^*(A)$ $(A \in \mathcal{S}(\mathcal{R}))$ in the following manner:

$$f^*(A) = f_{\nu}(A)$$
 if $A \in \mathcal{R}_{\nu}$.

 $f^*(A)$ is a completely multiplicative set function. In fact, if A_1, A_2, \ldots is a sequence of disjoint sets of the σ -ring $\mathcal{S}(\mathcal{R}) = \sum_{\nu} \mathcal{R}_{\nu}$ and $A_k \in \mathcal{R}_{\nu_k}$ $(k = 1, 2, \ldots)$, then there is

a $\nu' < \omega_1$ such that $\nu_k < \nu'$ (k = 1, 2, ...). It follows that $A_k \in \mathcal{R}_{\nu'}$ (k = 1, 2, ...), $\sum_{k=1}^{\infty} A_k \in \mathcal{R}_{\nu'}$, hence

$$f^*\left(\sum_{k=1}^{\infty} A_k\right) = f_{\nu'}\left(\sum_{k=1}^{\infty} A_k\right) = \prod_{k=1}^{\infty} f_{\nu'}(A_k) = \prod_{k=1}^{\infty} f^*(A_k)$$

By the same way we can prove that if A_n is a convergent sequence of sets of $\mathcal{S}(\mathcal{R})$, $\lim_{n\to\infty} A_n = A$, then

$$\lim_{n \to \infty} f^*(A_n) = f^*(A).$$

PROOF OF THE UNIQUENESS OF THE EXTENSION. Let f^{**} be a completely multiplicative set function defined on the σ -ring $\mathcal{S}(\mathcal{R})$. First we remark that if A_1, A_2, \ldots is a non-decreasing sequence of sets of $\mathcal{S}(\mathcal{R})$, $\lim_{n \to \infty} A_n = A$, then

$$f^{**}(A) = \left(\prod_{k=1}^{\infty} f^{**}(A_{k+1} - A_k)\right) f^{**}(A_1) = f^{**}(A_1) \lim_{n \to \infty} \prod_{k=1}^{n-1} f^{**}(A_{k+1} - A_k),$$

hence

(5)
$$f^{**}(A) = \lim_{n \to \infty} f^{**}(A_n).$$

Let us suppose that the set functions f^* , f^{**} coincide on the ring $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$,

$$f^*(A) = f^{**}(A)$$
 if $A \in \sum_{\nu < \nu_0} \mathcal{R}_{\nu}$.

We shall prove that f^* and f^{**} coincide on the ring \mathcal{R}_{ν} , too.

Let B_1, B_2, \ldots be a non-increasing sequence of sets of $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$, $\lim_{n \to \infty} B_n = B$. The sets functions f^* , f^{**} are completely multiplicative, hence

$$f^*(B_n) = f^*(B) \prod_{k=n}^{\infty} f^*(B_k - B_{k+1}),$$

$$f^{**}(B_n) = f^{**}(B) \prod_{k=n}^{\infty} f^{**}(B_k - B_{k+1}).$$

Taking into account our assumption, we obtain

$$f^*(B_n - B) = \prod_{k=n}^{\infty} f^*(B_k - B_{k+1}) = \prod_{k=n}^{\infty} f^{**}(B_k - B_{k+1}),$$
$$f^*(B_n) = f^{**}(B_n),$$

hence

$$f^*(B)f^*(B_n - B) = f^{**}(B)f^*(B_n - B).$$

Since $\lim_{n \to \infty} f^*(B_n - B) = e$, it follows that $f^*(B) = f^{**}(B)$.

Let C_1, C_2, \ldots be a convergent sequence of sets of $\sum_{\nu < \nu_0} \mathcal{R}_{\nu}$, $\lim_{n \to \infty} C_n = C$. Let

$$A_n = C_n C_{n+1} \dots, A_{r,n} = C_n C_{n+1} \dots C_{n+r}$$
 $(r, n = 1, 2, \dots)$

Obviously, $A_{r,n} \in \sum_{\nu < \nu_0} \mathcal{R}_{\nu}, A_{r,n} \subseteq C_n, A_{r,n} \supseteq A_{r+1,n}$. Hence we conclude

(6)
$$f^{**}(C_n) = f^{**}(C_n - A_{r,n})f^{**}(A_{r,n}) = f^*(C_n - A_{r,n})f^{**}(A_{r,n}).$$

Since $\lim_{r \to \infty} A_{r,n} = A_n$ and for every fixed *n* the sequence $A_{1,n}, A_{2,n}, A_{3,n} \dots$ is non-increasing, we have

(7)
$$\lim_{r \to \infty} f^{**}(A_{r,n}) = \lim_{r \to \infty} f^{*}(A_{r,n}) = f^{*}(A_n) = f^{**}(A_n).$$

On the other hand, we know that

(8)
$$\lim_{r \to \infty} f^*(C_n - A_{r,n}) = f^*(C_n - A_n),$$

hence by (6), (7) and (8) we can write

(9)
$$f^{**}(C_n) = f^*(C_n - A_n)f^{**}(A_n).$$

The sequence A_1, A_2, \ldots is non-decreasing, $\lim_{n \to \infty} A_n = C$, hence by (5) we obtain

(10)
$$\lim_{n \to \infty} f^{**}(A_n) = f^{**}(C)$$

We know furthermore that

(11)
$$\lim_{n \to \infty} f^{**}(C_n) = \lim_{n \to \infty} f^*(C_n) = f^*(C), \quad \lim_{n \to \infty} f^*(C_n - A_n) = e.$$

Taking the limit $n \to \infty$ in the relation (9), (10) and (11) imply

$$f^*(C) = f^{**}(C).$$

By the principle of transfinite induction it follows that the set functions f^* , f^{**} coincide on the σ -ring $\mathcal{S}(\mathcal{R}) = \sum_{\nu} \mathcal{R}_{\nu}$. Thus Theorem 1 is proved.

THEOREM 2 Let \mathcal{R} be a ring and f(A) a completely multiplicative set function, defined on the ring \mathcal{R} , for which $f(A) \in \mathcal{B}$, $A \in \mathcal{R}$. Let us further suppose that there is a bounded, completely additive, real-valued set function $\varphi(A)$, defined on the ring \mathcal{R} , for which

(12)
$$||f(A)|| \le 2^{\varphi(A)} \qquad (A \in \mathcal{R}),$$

and that for every sequence A_k of disjoint sets of \mathcal{R} we have

$$\sum_{k=1}^{\infty} \|e - f(A_k)\| < \infty.$$

In this case there is a uniquely determined completely multiplicative set function $f^*(A)$, defined on the σ -ring $S(\mathcal{R})$, for which $f^*(A) = f(A)$ if $A \in \mathcal{R}$; for every convergent sequence A_1, A_2, \ldots of the σ -ring $S(\mathcal{R})$ we have

$$\lim_{k \to \infty} f^*(A_k) = f^*(A)$$

where $A = \lim_{k \to \infty} A_k$.

PROOF. Let us consider the set function $g(A) = 2^{-\varphi(A)} f(A)$. I prove that g(A) satisfies the conditions of Theorem 1. By (12), $||g(A)|| \leq 1$. Furthermore

(13)
$$\begin{aligned} \|e - g(A)\| &= \|e - e2^{-\varphi(A)} + e2^{-\varphi(A)} - 2^{-\varphi(A)}f(A)\| \\ &\leq |1 - 2^{-\varphi(A)}| + \|e - f(A)\|2^{-\varphi(A)} \\ &\leq K(|\varphi(A)| + \|e - f(A)\|), \end{aligned}$$

where K is a positive constant, hence if A_1, A_2, \ldots is a sequence of disjoint sets of \mathcal{R} , then by (13) we have

$$\sum_{k=1}^{\infty} \|e - g(A_k)\| \le K\left(\sum_{k=1}^{\infty} |\varphi(A_k)| + \sum_{k=1}^{\infty} \|e - f(A_k)\|\right) < \infty.$$

Let $g^*(A)$ and $\varphi^*(A)$ denote the extended set functions corresponding to the set functions g(A) and $\varphi(A)$, respectively. Clearly, the set function

$$f^*(A) = 2^{\varphi^*(A)} g^*(A) \qquad (A \in \mathcal{S}(\mathcal{R}))$$

is completely multiplicative and $f^*(A) = f(A)$ for $A \in \mathcal{R}$. If A_1, A_2, \ldots is a sequence of sets of $\mathcal{S}(\mathcal{R})$, $\lim_{k \to \infty} A_k = A$, then by Theorem 1 we have

$$\lim_{k \to \infty} g^*(A_k) = g^*(A)$$

whence

$$\lim_{k \to \infty} f^*(A_k) = f^*(A).$$

Thus Theorem 2 is proved.

REMARK If for every $A \in \mathcal{R}$ the inequality $0 < \delta_1 \leq ||f(A)|| \leq \delta_2$ holds, where δ_1, δ_2 are constants, and if

(14)
$$||f(A)f(B)|| = ||f(A)|| \, ||f(B)||,$$

where $A \in \mathcal{R}$, $B \in \mathcal{R}$, AB = 0, then for the set function f(A) the condition (12) of Theorem 2 is fulfilled. In fact, for $\varphi(A) = \log_2 ||f(A)||$ the relation (12) holds. For instance, (14) holds in the Banach algebra of the complex numbers.

Finally, I express my thanks to Á. CSÁSZÁR for his valuable remarks.