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Abstract

Mathematically a natural river system is a rooted directed tree where the orien-
tations of the edges coincide with the directions of the streamflows. Assume that in
some of the river valleys it is possible to build reservoirs the purpose of which will be
to retain the flood, once a year, say. The problem is to find optimal reservoir capac-
ities by minimizing total building cost eventually plus a penalty, where a reliability
type constraint, further lower and upper bounds for the capacities are prescribed. The
solution of the obtained nonlinear programming problem is based on the supporting
hyperplane method of Veinott combined with simulation of multivariate probability
distributions. Numerical illustrations are given.
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1 Formulation of the problem

The problem we are dealing with has various applications. The most immediate among
these is the application for flood control reservoir system design. Hence we shall use terms
corresponding to this in the sequel.
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In the theory of graphs the tree is usually defined as a connected undirected graph
without circuit. When a special vertex has been designated and called the root of the tree
then the tree is a rooted tree.

Taking into account the physical problem we are going to formulate it will be convenient
for us to define rooted directed tree which arises from a rooted tree in such a way that
a direction is assigned to every edge. The directions we assign are inductively given as
follows: starting from the root, select the neighbouring vertices and assign to every edge
thus obtained the direction showing in the direction of the root; then we start from the
neighbouring vertices and do the same etc. This will be our mathematical model for a
natural river system.

Assume that the number of vertices in n + 1 and denote them by a1, . . . , an+1. The
vertex ai will be called an antecedent of the vertex aj if a directed path leads from ai

to aj . If a path of this kind exists, then it is clearly unique. If this path consists of r
edges, then we say that ai is an antecedent of aj of order r. Vertices without antecedents
will be called terminal. Edges starting from terminal vertices will also be called terminal.
Assume that the terminal vertices are a1, . . . , am while an+1 is the root of the tree. We
assume further that there is only one edge going into an+1 and this represents such a part
of the river system where we can build reservoir. If there would be no possibility here for
reservoir building, then we could split up the river system into subsystems and formulate
at least two separate flood control problems. Let an denote that vertex with which the
root is connected.

Assume now that we can build reservoirs is some parts of the river system, represented
by some edges in our graph model, and the only purpose of the reservoirs will be retaining
the flood. This we assume to exist periodically, once a year, say, and to be of a random
character. The water comes from terminal points. We assume that the total water quan-
tities can be separated in such a way that we can quantitatively give that amounts which
can be lead between river banks and also that amounts which have to be retained by the
reservoir system. Throughout the paper we are dealing with the water quantities to be
retained only. When retaining the flood, we accept the following policy: first we start to
fill up those upstream reservoirs which are located on terminal edges. Then, if the flood
cannot be retained by these reservoirs, start to fill up the reservoirs on the next edges by
the overflown quantities and those input quantities which arrive on terminal edges without
reservoir, etc.

To every terminal vertex there corresponds, a random input water quantity. These will
be denoted by x1, . . . , xm. The reservoir capacities to be determined will be denoted by
the symbols Ki. It is convenient to choose the subscript i in such a way that it coincide
with the subscript of that vertex from which the edge, having the reservoir with capacity
Ki, starts.

Let us define the quantities xm+1, . . . , xn+1 recursively as follows:

xj =
∑
i∈Aj

[xi − min(xi,Ki)] +
∑
i∈Bj

xi, j = m + 1, . . . , n + 1, (1.1)
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where Aj (Bj) is the collection of those first order antecedents of the vertex aj which are
connected with aj by an edge with (without) reservoir.

Now the reservoir system is capable to retain the flood if and only if the following
condition holds:

xn+1 = 0

or what is the same, the inequality holds:

xn ≤ Kn. (1.2)

Let us introduce the notation

A =
n+1⋃

j=m+1

Aj.

For the design of the capacities Ki, i ∈ A we formulate the following stochastic program-
ming problem

minimize
∑
i∈A

[ci(Ki) + E(μ)]

subject to
P(xn ≤ Kn) ≥ p,

0 ≤ Ki ≤ Vi, i ∈ A,

(1.3)

where p is a fixed probability, near unity in practice, the Vi, i ∈ A are prescribed numerical
upper bounds for the unknown capacities, E is the symbol of expectation, μ is a random
penalty of the wrong deviation xn − Kn > 0 provided it exists and ci(Ki) is the building
cost of reservoir i. The penalty μ is defined in the following manner

μ =
{

q(κn − Kn), if κn > Kn,
0, otherwise,

where q(z) is a nonnegative nondecreasing function on the halfline z ≥ 0.

Variants of Problem (1.3) may also be of great practical interest. E.g. instead of
retaining the flood by the total system of reservoirs we may prescribe the same for a
number of subsystems and thus instead of the single inequality xn ≤ Kn we may have
a collection of such inequalities. Then either we prescribe a lower bound for the joint
occurrance of these inequalities or use separate probabilistic constraints.

If we impose a positive lower bound Si on Ki, then by introducing the new variable
Li = Ki − Si, the problem can be reduced to the form (1.3). Instead of xn+1 = 0 we may
only require that xn+1 ≤ S where S is the maximum streamflow which does not cause
damage downstream from the root vertex of the directed tree representing the natural
hydrological system. This means that instead of xn ≤ Kn we have to write xn ≤ Kn + S.
From here we see that the new problem can be reduced to Problem (1.3) by prescribing
the lower bound S for the capacity of reservoir n. We have to be careful to write q(z) = 0
for 0 ≤ z ≤ S in this case.
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The use of the joint probability distribution of the random variables x1, . . . , xm is
fundamental in our reservoir system design methodology. Simple argument concerning
simple system shows that the reservoir capacities satisfying a prescribed reliability level
strongly depend on the joint probabilistic behaviour of the input water quantities.

2 Mathematical properties of the reservoir system design
model

First we recall some mathematical concepts and theorems what we need in the sequel.

A nonnegative function f defined on R
k is said to be logarithmic concave (logconcave)

if for every x, y ∈ R
k and 0 < λ < 1 we have the inequality

f(λx + (1 − λ)y) ≥ [f(x)]λ[f(y)]1−λ. (2.1)

If instead of (2.1) we have

f(λx + (1 − λ)y) ≥ min[f(x), f(y)] (2.2)

then f is said to be quasi-concave. In the latter case f need not be a nonnegative function.
(2.1) obviously implies (2.2).

A probability measure defined on the measurable subsets of the space R
k is said to be

logarithmic concave (logconcave) if for every pair A, B of convex subsets of R
k and every

0 < λ < 1 we have the inequality

P (λA + (1 − λ)B) ≥ [P (A)]λ[P (B)]1−λ. (2.3)

If instead of (2.3) we have

P (λA + (1 − λ)B) ≥ min[P (A), P (B)], (2.4)

then P is called a quasi-concave probability measure.

Theorem 1. [5, 7]. If the probability measure P is absolutely continuous and is gener-
ated by a logconcave probability density function, then P is a logconcave probability mea-
sure.

Theorem 2. [2]. If the probability measure P is absolutely continuous, and is generated
by the probability density f for which f−1/k is a convex function in the entire space R

k,
then P is a quasi-concave probability measure.

Theorem 3. [8]. If a random vector y has a logconcave (quasi-concave) probability
distribution in R

q and x = Ay + b, where A is a constant k× q matrix and b is a constant
k-component vector, then x has a logconcave (quasi-concave) probability distribution.

The proof is given for the logconcave distribution but the case of a quasiconcave prob-
ability distribution needs only trivial modification.
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Theorem 4. [6]. Let g1(K, y), . . . , gr(K, y) be concave functions of all variables con-
tained in the vectors K, y, where K ∈ R

k and y ∈ R
q. Assume that y is a random vector

having logconcave (quasi-concave) probability distribution. Then

h(K) = P(gi(K, y) ≥ 0, i = 1, . . . , r)

is a logconcave (quasi-concave) function of the variable K ∈ R
k.

The most common example for logconcave probability distribution is the normal distri-
bution. The nondegenerated normal distribution defined in R

k has the following density
function:

f(z) =
[

1
(det C)(2π)n

]1/2

exp
{
−1

2
(z − t)′C−1(z − t)

}
, z ∈ R

k,

where C is a positive definite matrix, equal to the covariance matrix and t is a real constant
vector equal to the expectation vector of the vector valued random variable, f is clearly a
logconcave point function hence by Theorem 1 the corresponding probability distribution
is logconcave.

A further example will be dealt with in the sequel is a special multivariate gamma
distribution introduced in [10]. This is the probability distribution of the random vector
x where

x = Ay,

the random vector y has independent, standard gamma distributed components and A
is a matrix of 0 and 1 entries. A continuous probability distribution is called standard
gamma distribution if it has the following type of probability density:

1
Γ(ϑ)

zϑ−1e−z, if z > 0

and zero if z ≤ 0; ϑ is a positive constant. If ϑ ≥ 1, then this density function is
logconcave. Assuming this property to hold for the components of y first we realize that y
has a logconcave distribution (the independence of the components implies that the joint
density is the product of the densities of the components) and by Theorem 3 we derive
that x has a logconcave distribution.

If some of the components of y have parameters smaller than 1, then the probability
distribution of x may fail to be logconcave. However, the joint probability distribution
function of the components of x is always a logconcave (point) function. We need somewhat
more, therefore we prove:

Theorem 5. If the random vector y has independent, standard gamma distributed
components and A1 is a matrix with nonnegative entries such that the product A1y can
be formed, then the probability distribution function of the random vector A1y, i.e. the
function

P(A1y ≤ z)

is logconcave in z in the entire space.
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Proof. Let yi be a component of y and denote by ϑi the parameter of its probability
distribution. If ϑi ≥ 1, then we leave yi in its original form. If on the other hand ϑi < 1,
then we write

yi = (yϑi
i )1/ϑi (2.5)

and observe that yϑi
i has the following probability density function

d
dz

P(yϑi
i < z) =

d
dz

P(yi < z1/ϑi)

=
d
dz

∫ z1/ϑi

0

1
Γ(ϑi)

tϑi−1e−t dt

=
1

Γ(ϑi + 1)
exp{−z1/ϑi} (2.6)

for z > 0 and zero for z ≤ 0. Since (2.6) is a logconcave probability density and by
(2.5) the random variable yi is a convex function of the random variable yϑi

i having this
logconcave density, Theorem 4 implies that

P(A1y ≤ z) = P(z − A1y ≥ 0)

is a logconcave function of the variable z. This completes the proof of Theorem 5. �

Theorem 6. Let y be a random vector having positive valued components and assume
that the logarithms of the components have a joint normal distribution. Assume that A1

is a matrix with nonnegative entries such that the product A1y can be formed. Then the
joint probability distribution of the components of A1y is a logconcave (point) function in
the entire space.

Proof. The proof is similar to the proof of Theorem 5. We only have to write

yi = elog yi

for every component yi of y and repeat the argument applied in the previous proof.

The Gumbel distribution is a favoured distribution to describe the probabilistic be-
haviour of random extrema. The one-dimensional probability distribution function of a
Gumbel distribution has the form

exp{−λe−μz}, −∞ < z < +∞,

where λ > 0, μ > 0 are constants. Taking the derivative we obtain a logconcave (point)
function hence this distribution is logconcave. �

In our numerical examples the multivariate normal and the multivariate gamma dis-
tributions will be used.
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Theorem 7. Every xj, j ≥ m + 1 is a convex function of those variables among
x1, . . . , xm which belong to vertices antecedent relative to aj and of all Ki variables which
belong to edges connecting two vertices at least one of which is antecedent relative to aj . In
particular, if x is the vector of components x1, . . . , xm and K is the vector of components
Ki, i ∈ A, then

g(K,x) = Kn − xn

is a concave function of x and K.

Proof. First we remark that the following equality holds:

xi − min(xi,Ki) = max(0, xi − Ki). (2.7)

Substituting this into (1.1), a simple induction shows the validity of the theorem. We
only have to refer to the fact that the maximum of two convex functions is again a convex
function. This proves the theorem. �

Theorem 8. If x1, . . . , xm have a logconcave (quasi-concave) joint distribution, then
the probability

h(K) = P(g(K,x) ≥ 0) (2.8)

is a logconcave (quasi-concave) function of the variable K.

Proof. Theorem 8 is an immediate consequence of Theorem 4 and Theorem 7. �

Theorem 9. If x has a nondegenerated normal distribution, then the function h(K)
has continuous gradient at every K. If x has the above mentioned multivariate gamma
distribution i.e. x = Ay where A and y satisfy the mentioned assumptions, then h(K) has
continuous gradient except at most for the points where at least one component of K is
zero.

Proof. The condition xn ≤ Kn can be expressed in terms of linear inequalities so that
a number of partial sums of the random variables x1, . . . , xm are smaller then or equal to
some partial sums of the variables Ki, i ∈ A. This system of inequalities arises in such
a way that we substitute (2.7) into (1.1) and split up subsequently all inequalities of the
type max(a, b) ≤ c into the inequalities a ≤ c, b ≤ c. The linear transform of x thus
obtained has a matrix which we denote by B. This clearly has nonzero rows and every
pair of its rows is a pair of linearly independent vectors.

Consider now first the case of the multivariate normal distribution. Since x has a
nondegenerated normal distribution, it follows that any two components of Bx are linearly
independent i.e. the absolute value of their correlation coefficient is smaller than 1. It
is well-known that in this case the joint probability distribution function has continuous
gradient in the entire space. Since the probability (2.8) can be expressed so that we put
conveniently chosen partial sums of the components of K into the arguments of the joint
distribution function of Bx, our assertion follows.
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In case of the multivariate gamma distribution the argumentation is very similar. Since
we cannot guarantee the differentiability of the joint distribution function of Bx only at
such points where at least one of the components is zero, it follows that if all components
of K are positive then the function (2.8) has continuous gradient at the point K. This
proves the theorem. �

Theorem 10. If the function q is convex, then the penalty term E(μ) in problem (1.3) is
convex no matter what kind of probability distribution x has. If q has continuous derivative
and x has a normal joint distribution, then E(μ) has continuous gradient at every K. If
x has the multivariate gamma distribution described above, then E(μ) has a continuous
gradient except at most for such K vectors where at least one component is zero, provided
q has continuous derivative.

Proof. The theorem can be proved easily on the basis of Theorem (3.1) in [9]. �
The building costs ci(Ki) are frequently convex in the practice, thus we see that there

are conditions, general enough, under which (1.3) is a convex programming problem.

3 Solution of problem (1.3)

For the solution of problem (1.3) we use the supporting hyperplane method of Veinott

[11]. First we summarize this method, then show how it applies to our problem. The
following nonlinear programming problem will be considered

minimize h0(x),
subject to
hi(x) ≥ 0, i = 1, . . . , s.

(3.1)

Assume that the following conditions hold:

Condition 1. There exists a bounded convex polyhedron K1 such that

{x | hi(x) ≥ 0, i = 1, . . . , s} ⊂ K1.

Condition 2. The functions −h0, h1, . . . , hs are quasi-concave and have continuous
gradient of K1.

Condition 3. There exists a z1 such that hi(z1) > 0, i = 1, . . . , s.

The procedure consists of two phases.

Phase I. Find a vector z1 satisfying Condition 3.

Phase II. We perform subsequent iterations where the rth iteration consists of the
following two steps.
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Step 1. Solve the problem
minimize h0(x),
subject to
x ∈ Kr,

where Kr is a bounded convex polyhedron. Let xr be an optimal solution to this
problem. If hi(xr) ≥ 0, i = 1, . . . , s, then xr is an optimal solution to Problem (3.1).
Otherwise go to Step 2.

Step 2. Let λr be the largest λ (0 ≤ λ ≤ 1) for which the following inequality holds

hi(z1 + λ(xr − z1)) ≥ 0, i = 1, . . . , s.

This one-dimensional problem can be solved e.g. by Fibonacci search. Let

yr = z1 + λr(xr − z1).

If h0(yr)−h0(xr) ≤ ε, then yr is an approximate solution of Problem (3.1). Otherwise
select a subscript for which the equality hir(yr) = 0 holds. Let

Kr+1 = {x | x ∈ Kr, ∇hir(y
r)(x − yr) ≥ 0}

and go to Step 1, using r + 1 instead of r.

Figure 1 illustrates one iteration of the above procedure.

Veinott has shown that if instead of a fixed vector we use the following sequence

zr+1 = zr + β(yr − zr), r = 1, 2, . . . (3.2)

in the subsequent iterations where 0 < β < 1 is a fixed number, then his method reduces
to the modified feasible direction method of Zoutendijk.

Kr+1

z1 Kr

yr

xr

Figure 1: An iterative step in the supporting hyperplane method.

When solving Problem (1.3) we choose

K1 = {K | 0 ≤ Ki ≤ Vi, i ∈ A}.
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We check whether P(xn < Kn) > p is satisfied in case of Ki = Vi, i ∈ A. This implies
the fulfilment of Condition 3 and the vector of components Ki = Vi, i ∈ A is selected
to play the role of z1. Thus only Phase II has to be performed. The internal point was
selected according to relation (3.2) with β = 0.5. Unfortunately the sequence zr, r =
1, 2, . . . converged very fast to a boundary point of the set determined by the probabilistic
constraint and the procedure stopped before having obtained a good approximation of the
optimal solution. Therefore we used the modified relation

zr+1 = zr +
1

r + 1
(yr − zr), r = 1, 2, . . .

which improved the method.

The values of the function P(xn ≤ Kn) were obtained by simulation. Since simulation
causes numerical inaccuracy, the following cautions were used.

(a) in the course of the one-dimensional optimization we were seeking that λ for which
the inequality

P(xn ≤ Kn) − p ≥ 0.01

holds and the search procedure was stopped in case of an error smaller than 0.005. By this
caution the procedure became somewhat slower but we prevented the new cut from cutting
down feasible points from the constraining set of Problem (1.3). Primarily the inaccurate
evaluation of the gradient causes such a danger. The one-dimensional optimization was a
simple interval bisection.

(b) Partial derivatives of the function P(xn ≤ Kn) were computed numerically by the
use of simulation corresponding to the values Ki + 0.1 and Ki − 0.1 for every i ∈ A and
the same random numbers were used to compute one gradient value.

The number of samples used for the simulation was 1000 when computing function
values and 2000 when computing the derivatives of the probabilistic constraining function.

In case of the multivariate normal distribution the random numbers were generated by
the use of a fast algorithm available on the UNIVAC 1108 computer of SCICON Ltd. on
which the computations were performed. The method is due to Marsaglia and Bray [3].
The multi-gamma distributed random numbers were generated by the use of algorithm GT
of Ahrens and Dieter (see Section 3 in [1]). All programs were written in FORTRAN
except for the program generating uniformly distributed random numbers and this latter
was written in assembly language.

4 Numerical examples

Consider the river system topology given by Figure 2, where the possible reservoir sites
are also indicated. The variables defined by (1.1) are the following (x1, x2, x3, x4, x5 are
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K1 K2

K3

x4 x8

x5

K9

x3

Figure 2: Example for river system topology and possible reservoir sites. Streamflow
directions are indicated only on edges without reservoir.

the terminal inputs):

x6 = x1 − min(x1,K1) + x2 − min(x2,K2),
x7 = x3 − min(x3,K3) + x6,

x8 = x4 + x7,

x9 = x8 − min(x8,K8) + x5,

x10 = x9 − min(x9,K9).

Thus in terms of terminal variables and capacities, relation (1.2) is the following in this
special case

x9 = x1 − min(x1,K1) + x2 − min(x2,K2) + x3 − min(x3,K3) + x4

− min[x1 − min(x1,K1) + x2 − min(x2,K2) + x3

− min(x3,K3) + x4,K8] + x5 ≤ K9.

We shall not use penalty in our examples i.e. choose the penalty function equal to zero.
Furthermore, we choose a linear cost function. In practice the cost functions are usu-
ally nonlinear. The method described in Section 3 allows the numerical solution of such
problems too. Since in this paper we concentrate on the use of joint probabilities in our op-
timization problem, the above-mentioned simplifications are permissible in the illustrative
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Table 1: Numerical results

Type of Correlation Probability Objective Computing
distribution matrix level K1 K2 K3 K8 K9 function time∗

R1

p = 0.8 0.807 1 1 1.356 1.412 5.591 00:52:657

Multivariate p = 0.9 0.751 1 1 1.976 1.398 6.289 00:35:688
gamma

R3

p = 0.8 1 1 1 1.539 1.193 5.494 00:16:785

p = 0.9 1 1 1 1.268 1.848 6.348 00:11:343

R1

p = 0.8 0.796 1 1 1.591 1.383 5.816 01:03:444

p = 0.9 0.998 1 1 1.885 1.524 6.505 00:25:126
Multivariate

R2

p = 0.8 0.906 1 1 1.351 1.371 5.551 00:58:078

normal p = 0.9 0.833 1 1 1.239 1.830 6.214 00:51:426

R3

p = 0.8 1 1 1 1.226 1.431 5.547 00:43:461

p = 0.9 1 1 1 1.650 1.374 5.953 00:57:478

∗Time in minutes/seconds/milliseconds.

examples. Our problem is the following:

minimize (0.4K1 + 0.5K2 + 0.6K3 + 1.2K8 + 1.8K9),
subject to
P(x9 ≤ K9) ≥ p, 0 ≤ K1 ≤ 1,
0 ≤ K2 ≤ 1, 0 ≤ K3 ≤ 1,
0 ≤ K8 ≤ 2, 0 ≤ K9 ≤ 3,

where p will be chosen 0.8 and 0.9 in the following examples. Altogether 10 numerical
examples are presented in Table 1. The following correlation matrices are used containing
correlations of the random variables x1, x2, x3, x4, x5:

R1 =

⎛
⎜⎜⎜⎜⎝

1.0 0.0 0.6 0.4 0.0
0.0 1.0 0.5 0.3 0.3
0.6 0.5 1.0 0.7 0.6
0.4 0.3 0.7 1.0 0.4
0.0 0.3 0.6 0.4 1.0

⎞
⎟⎟⎟⎟⎠ ,

R2 =

⎛
⎜⎜⎜⎜⎝

1.0 −0.5 0.0 0.3 −0.5
−0.5 1.0 −0.8 0.0 0.2

0.0 −0.8 1.0 0.0 0.3
0.3 0.0 0.0 1.0 0.0

−0.5 0.2 0.3 0.0 1.0

⎞
⎟⎟⎟⎟⎠ ,

R3 = E,

where E is the 5× 5 unit matrix. The expectations and standard deviations are the same
in all examples. They are (expressed in a certain unit) shown in Table 2.
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Table 2:

Expectations Standard deviations

x1 0.8 0.2
x2 1.5 0.3
x3 1.2 0.6
x4 0.5 0.4
x5 0.7 0.3

For the case of the multigamma distribution we use the representation technique de-
scribed in [10]. Of course only the case of R1 has to be considered because R2 contains
negative entries too and the case of R3 is trivial. For the case of R1 we obtain the repre-
sentation:

x1 =
1
20

(y1 + y2 + y3), x2 =
3
50

(y4 + y5 + y6 + y7),

x3 =
3
10

(y1 + y4 + y5 + y8 + y9 + y10 + y11),

x4 =
8
25

(y2 + y6 + y8 + y9 + y12),

x5 =
9
70

(y4 + y8 + y10 + y13),

where y1, . . . , y13 have standard gamma distributions with the following parameters:

ϑ1 = 0.576 ϑ6 = 0.225 ϑ10 = 0.050
ϑ2 = 0.160 ϑ7 = 23.875 ϑ11 = 2.055
ϑ3 = 15.264 ϑ8 = 0.140 ϑ12 = 0.758
ϑ4 = 0.315 ϑ9 = 0.280 ϑ13 = 4.940
ϑ5 = 0.585

For the sake of completeness we give the system of inequalities containing partial sums
of x1, x2, x3, x4, x5 and K1, K2, K3, K8, K9 which are together equivalent to the single
inequality x9 ≤ K9:

x5 ≤ K9,
x4 + x5 ≤ K8 + K9,

x1 + x4 + x5 ≤ K1 + K8 + K9,
x2 + x4 + x5 ≤ K2 + K8 + K9,

x3 + x4 + x5 ≤ K3 + K8 + K9,
x1 + x2 + x4 + x5 ≤ K1 + K2 + K8 + K9,
x1 + x3 + x4 + x5 ≤ K1 + K3 + K8 + K9,

x2 + x3 + x4 + x5 ≤ K2 + K3 + K8 + K9,
x1 + x2 + x3 + x4 + x5 ≤ K1 + K2 + K3 + K8 + K9.
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The optimal solutions, optimal objective function values and computing times are con-
tained in Table 1.
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