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Introduction

Let ξt be a stochastic process with independent increments. Suppose that ξt is integer-
valued and its sample functions are continuous to the left and have a finite number of
discontinuities with probability 1. It can be proved (see [3], Theorem 6) that if νk is the
number of discontinuities of ξt of magnitude k in the time interval I = [a, b], then the
random variables νk (k = ±1,±2, . . .) are independent.1

This assertion implies, for example, that a homogeneous composed Poisson process ξt

may be considered as a superposition of independent ordinary Poisson processes, i.e. can
be represented in the form

ξt =
∞∑

k=1

kξ
(k)
t ,

where ξ
(k)
t is an ordinary homogeneous Poisson process, and the processes ξ

(k)
t are inde-

pendent (see [4]). For a more general form of this statement see [3].

In § 1 of the present paper we prove a general theorem on the asymptotic independence
of certain sums of random variables.

In § 2 deals with the application of our independence theorem leading to a theorem
somewhat stronger than that formulated above. Further applications will be given in a
forthcoming paper2 of the first named author.

1In [3] the above theorem is formulated more generally.
2On stochastic set functions. II, Acta Math. Acad. Sci. Hung., 8 (1957), 337–374.
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§ 1. The independence theorem

We start from a double sequence of random variables

ξn1, ξn2, . . . , ξnkn (n = 1, 2, . . .)

and suppose always that ξn1, ξn2, . . . , ξnk
are independent for every n = 1, 2, . . .. Let us

consider r Borel measurable real functions f1(x), f2(x), . . . , fr(x) for which the sets defined
by fk(x) �= 0 are disjoint, or expressed in another way, for which the following relations
hold:

(1) fj(x)fk(x) = 0 for j �= k (j, k = 1, 2, . . . , r).

Let us denote by ϕ
(n)
lk (u) the characteristic function of the random variable fl(ξnk), further

let us put

ζ
(n)
l =

kn∑
k=1

fl(ξnk) (l = 1, 2, . . . , r; n = 1, 2, . . .).

In order to simplify the understanding of the phenomenon which is described by our
theorem, we formulate it first for a special case.

Theorem 1.a Let us suppose that the following conditions hold:

a) The real, Borel measurable functions fl(x) (l = 1, 2, . . . , r) are integer-valued and
satisfy (1).

b) For every l (1 ≤ l ≤ r) the random variables

fl(ξn1), fl(ξn2), . . . , fl(ξnkn)

are infinitesimal, i.e.
lim

n→∞ sup
1≤k≤kn

P(fl(ξnk) �= 0) = 0.

c.) For every l (1 ≤ l ≤ r) the limiting distribution of the random variables ζ
(n)
l exists:

(2) Fi(xi) = lim
n→∞P(ζ(n)

i < xi) (1 ≤ i ≤ r),

at every point of continuity of Fi(x).

Under these conditions the random variables ζ
(n)
1 , ζ

(n)
2 , . . . , ζ

(n)
r are asymptotically in-

dependent, i.e.

(3) lim
n→∞P(ζ(n)

1 < x1, ζ
(n)
2 < x2, . . . , ζ

(n)
r < xr) = F1(x1)F2(x2) . . . Fr(xr)

if xi is a continuity point of Fi(x) (i = 1, 2, . . . , r).
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Proof. Let us consider the characteristic function of the joint distribution of the
random variables ζ

(n)
l (l = 1, 2, . . . , r). Taking the relation (1) into account it can easily

be seen by comparing the coefficients on both sides that the r-dimensional characteristic
function of ζ

(n)
1 , . . . , ζ

(n)
r is the following:∑

j1,j2,...,jr

P(ζ(n)
1 = j1, . . . , ζ

(n)
r = jr)ei(u1j1+···+urjr)

=
kn∏

k=1

{
1 +

∑
s

P(f1(ξnk) = s)(eiu1s − 1) + · · · +
∑

s

P(fr(ξnk) = s)(eiurs − 1)

}
.(4)

It follows from (4) that (denoting by M(χ) the expectation of χ)

(5) M(ei(ζ
(n)
1 u1+···+ζ

(n)
r ur)) =

kn∏
k=1

{
1 +

(
ϕ

(n)
1k (u1) − 1

)
+ · · · +

(
ϕ

(n)
rk (ur) − 1

)}
.

Conditions a), b) and c) imply that the limits

(6) Φl(ul) = lim
n→∞

kn∑
k=1

(ϕ(n)
lk (ul) − 1) (l = 1, 2, . . . , r)

exist (see [1], § 24, Theorem 1) and eΦl(ul) is the characteristic function of the limiting
distribution Fl(xl) (l = 1, 2, . . . , r). Moreover, by Condition b) we have

(7) lim
n→∞

kn∑
k=1

|1 − ϕ
(n)
lk (ul)|2 = 0 (l = 1, 2, . . . , r).

According to (6) and (7) the sequence (5) converges to the r-dimensional characteristic
function

eΦ1(u1) . . . eΦr(ur)

and thus relation (3) holds.

A heuristic argument in favour of Theorem 1.a can be given as follows: Our suppo-
sitions a), b) and c) imply that in general only a small number of terms of the sum
ζ

(n)
l =

∑kn
k=1 fl(ξnk) are different from 0 for each l. Supposition (1) ensures that the sums

ζ
(n)
l (l = 1, 2, . . . , r) will always depend on disjoint subsets of the independent random

variables ξn1, ξn2, . . . , ξnkn ; of course, these sets are random, and therefore the sums ζ
(n)
l

are not independent, only almost independent. Nevertheless in the limit their dependence
disappears.

The suppositions of Theorem 1.a may be replaced by a set of more special suppositions
which, however, have the advantage that no supposition restricts at the same time the
choice of the random variables ξnk and the choice of the functions fl(x), as there are two
distinct groups of suppositions, further the convergence of the distribution of ζ

(n)
l is not

postulated, but is a consequence of the suppositions. This weaker form of Theorem 1.a is
expressed by the following
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Corollary Let ξn1, ξn2, . . . , ξnkn denote a double sequence of independent non-negative
integer-valued random variables which are infinitesimal, i.e.

lim
n→∞ max

1≤k≤kn

P(ξnk �= 0) = 0.

Let E1, E2, . . . , Er denote disjoint subsets of the set of positive integers and let us
suppose that fl(k) (l = 1, 2, . . . , r; k = 0, 1, . . .) are non-negative integer-valued functions
such that fl(0) = 0 and fl(k) = 0 if k /∈ El. Let us put pnks = P(ξnk = s), Cns =

∑kn
k=0 pnks

and suppose that there exists a convergent series of non-negative numbers
∑∞

s=1 Cs such
that

lim
n→∞

∞∑
s=1

|Cns − Cs| = 0.

It follows that putting

ζ
(n)
l =

kn∑
k=1

fl(ξnk) (l = 1, 2, . . . , r; n = 1, 2, . . .)

we have

lim
n→∞P(ζ(n)

1 < x1, ζ
(n)
2 < x2, . . . , ζ

(n)
r < xr) = F1(x1)F2(x2) . . . Fr(xr),

where the distribution function Fk(x) has the generating function

exp
∞∑

s=1

Cs(zfk(s) − 1).

To prove that this Corollary really follows from Theorem 1.a, we have to apply Theo-
rem 3 of the paper [2].

Now we turn to the general case in which the first part of Condition a) of Theorem 1.a
is dropped. Our statement is expressed by

Theorem 1.b Let us suppose that the following conditions hold:

a) The Borel measurable real functions fl(x) (l = 1, 2, . . . , r) satisfy (1).

b) For every l (1 ≤ l ≤ r)

lim
n→∞

kn∑
k=1

|ϕ(n)
lk (ul) − 1|2 = 0.3

3It can be seen that if Conditions c) and d) hold, then Condition b) holds also if for some τ > 0

lim
n→∞

kn∑
k=1

|α(n)
lk |2 = 0,

where

α
(n)
lk =

∫
|x|<τ

xdF
(n)
lk (x), F

(n)
lk (x) = P(fl(ξnk) < x).
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c) For every l (1 ≤ l ≤ r) the random variables

fl(ξn1), fl(ξn2), . . . , fl(ξnkn)

are infinitesimal, i.e. for every ε > 0

lim
n→∞ sup

1≤k≤kn

P(|fl(ξnk)| > ε) = 0.

d) For every l (1 ≤ l ≤ r) the limiting distribution of the random variables ζ
(n)
l exists.

Under these conditions the random variables ζ
(n)
1 , ζ

(n)
2 , . . . , ζ

(n)
r are asymptotically inde-

pendent, i.e. relation (2) holds.

Proof. First we observe that (5) holds without the restriction that the fl(x) are
integer-valued. This can be shown as follows: By virtue of the independence of the
variables ξnk we obtain

(8) M

(
ei
∑r

l=1 ulζ
(n)
l

)
=

kn∏
k=1

M

(
ei
∑r

l=1 ulfl(ξnk)
)

.

Let A
(n)
lk denote the event consisting in that fl(ξnk) �= 0. Then we have4

(9) M

(
ei
∑r

l=1 ulfl(ξnk)
)

=
r∑

ν=1

(
M

(
ei
∑r

l=1 ulfl(ξnk)

∣∣∣∣A(n)
νk

)
− 1
)

P(A(n)
νk ) + 1.

As the event A
(n)
νk implies fl(ξnk) = 0 for l �= ν, we have

(10) M

(
ei
∑r

l=1 ulfl(ξnk)

∣∣∣∣A(n)
νk

)
= M(eiuνfν(ξnk) | A

(n)
νk ).

On the other hand,

(11) [M(eiuνfν(ξnk) | A
(n)
νk ) − 1]P(Aνk) = ϕ

(n)
νk (uν) − 1.

Thus (5) follows from (8)–(11).

Condition d) implies the existence of

(12) Ψl(ul) = lim
n→∞

kn∏
k=1

ϕ
(n)
lk (ul) (l = 1, 2, . . . , r).

As Ψl(ul) is the characteristic function of an infinitely divisible distribution (see [1], § 24,
Theorem 2), we have

Ψl(ul) �= 0 (l = 1, 2, . . . , r)
4
M(η | A) denotes the conditional expectation of η under the condition A.
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(see [1], § 17, Theorem 1). It follows hence and from (12) that if |ϕ(n)
lk (ul) − 1| ≤ 1

2
, then

∣∣∣∣∣log Ψl(ul) −
kn∑

k=1

(ϕ(n)
lk (ul) − 1)

∣∣∣∣∣
≤
∣∣∣∣∣log Ψl(ul) −

kn∏
k=1

ϕ
(n)
lk (ul)

∣∣∣∣∣+
kn∑

k=1

|ϕ(n)
lk (ul) − 1|2 (l = 1, 2, . . . , r).(13)

The member on the right-hand side of (13) tends to 0, hence

(14) Φl(ul) = log Ψl(ul) = lim
n→∞

kn∑
k=1

(ϕ(n)
lk (ul) − 1) (l = 1, 2, . . . , r).

By (5) (14) and Condition b) it follows finally

lim
n→∞ M(ei(ζ

(n)
1 u1+...+ζ

(n)
r ur)) =

r∏
l=1

eΦl(ul).

Thus Theorem 1.b is proved. �

§ 2. Application to stochastic processes

In this § we consider a stochastic process with independent increments ξt. For the sake of
simplicity we suppose that ξt is defined in the time interval [0, 1]. We suppose furthermore
that the sample functions of ξt are continuous to the left for 0 ≤ t ≤ 1, with probability
1. Let ν(I) denote the random variable giving the number of discontinuities of ξt of
magnitudes h ∈ 1. We prove the following

Theorem 2 If the process ξt is weakly continuous, i.e. for every ε > 0

(15) lim
Δt→0

P(|ξt+Δt − ξt| ≥ ε) = 0

uniformly in t and I1, I2, . . . , Ir are pairwise disjoint intervals with positive distances from
the point 0, then the random variables

ν(I1), ν(I2), . . . , ν(Ir)

are independent.

Proof. Let fl(x) denote the characteristic function (in the sense of set theory) of the
interval Il. We define the random variables

(16) ηn,k+1 = ξ k+1
n

− ξ k
n

(k = 0, 1, 2, . . . , n − 1).
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Obviously,

(17) P

(
ν(Il) = lim

n→∞

n∑
k=1

fl(ηn,k)

)
= 1,

hence Condition c) of Theorem 1.a is satisfied. Since

P(fl(ηn,k+1) �= 0) ≤ P

(∣∣∣ξ k+1
n

− ξ k
n

∣∣∣ ≥ δ
)

,

where δ is the minimal distance of the intervals Il from the point 0, the random variables

fl(ηn,1), fl(ηn,2), . . . , fl(ηn,n)

are infinitesimal for every l. As Condition a) is obviously satisfied, the relations (2) and
(17) imply our assertion. �

If instead of the intervals I1, I2, . . . , Ir we choose pairwise disjoint Borel measurable
sets with positive distances from the point 0, then Theorem 2 holds obviously without any
change. By choosing for fl(x) other functions, further results can be obtained this way.
For related results see [5].

References

[1] Gnedenko, B. V. and A. N. Kolmogorov (1949). Predel’nüe raszpredelenija dlja
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