
Studia Math. 16 (1957), pp. 142–155.

ON POISSON AND COMPOSED POISSON
STOCHASTIC SET FUNCTIONS
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Introduction

Several investigations has recently been made concerning Poisson and composed Poisson
stochastic processes. The ordinary Poisson process is conceivable as a sequence of points,
distributed at random on the time axis and this idea can be generalized to more than one-
dimensional spaces. The latter case occurs in making a blood-count, in counting stars,
etc. In [8], [4], [6] and [15] conditions are given ensuring the Poisson character of the
distribution of the number of points in a set A of the one, resp. at least one-dimensional
Euclidean space. In [8], [14], [1] and [13] similar problems are considered for the one-
dimensional Euclidean space and the main purpose is to prove that under some conditions
the random variables ξt2 − ξt1 (t1 < t2) have composed Poisson distributions.

We say that a random variable ξ has a composed Poisson distribution if its characteristic
function f(u) can be written in the form

(1) f(u) = exp
∞∑

k=1

Ck(eiλku − 1),

where C1, C2, . . . are non-negative constants,

∞∑
k=1

Ck <∞

and λ1, λ2, . . . is a sequence of real numbers. It is easy to see that if the set λ0 = 0,
λ1, λ2, . . . forms a semi-group with respect to addition, and if Pk = P (ξ = λk), k =
0, 1, 2, . . ., then

∞∑
k=0

Pk = 1.
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This statement follows from (1), if we take into account that ξ can be written (or ξ can
be represented in another probability space) as

(2) ξ =
∞∑

k=1

λkξk,

where ξ1, ξ2, . . . are mutually independent random variables, having Poisson distributions
with the parameters C1, C2, . . ..

In [3] the problem of random point distribution in an abstract space is considered and
in [12] the notion of a stochastic set function, and especially the notion of a composed
Poisson stochastic set function are introduced.

In the present paper I give the conditions ensuring the Poisson and composed Poisson
character of stochastic set functions or, in other words, of an abstract process, and prove
some theorems concerning their structure.

Let H be an abstract space and R a ring of sets1 consisting of some subsets of H. Let
us suppose that to every element A of R there corresponds a random variable ξ(A) for
which the following conditions hold:

I. If A1, A2, . . . is a sequence of pairwise disjoint sets of R, then the random variables
ξ(A1), ξ(A2), . . . are independent.

II. If A =
∑∞

k=1Ak ∈ R, then P (ξ(A) =
∑∞

k=1 ξ(Ak)) = 1.

A random variable-valued set function ξ(A), satisfying conditions I–II is called a com-
pletely additive stochastic set function. For the sake of brevity we often say only that
conditions I–II are satisfied.

III. The random variables ξ(A), A ∈ R, can only assume the values of a countable set
of real numbers λ0 = 0, λ1, λ2, . . .; this set is independent of the special choice of A
and with respect to conditions I–II we suppose that it is an additive semi-group.

If for the stochastic set function ξ(A), satisfying conditions I–II, a certain additional
condition is fulfilled, for instance, if for every sequence B1, B2, . . . of pairwise disjoint sets
of R the series ∞∑

k=1

ξ(Bk)

converges with probability 1, then ξ(A) can be extended to S(R) (see [12], Theorem 3.2)2.
By the extension of the latter we mean a construction of a stochastic set function ξ∗(A)

1A class of sets R is called a ring of sets if A + B ∈ R, A − B ∈ R, whenever A ∈ R, B ∈ R.
2A ring S is called a σ-ring if for every sequence A1, A2, . . . of S we have

∞∑
k=1

Ak ∈ S.

If R is a ring, then S(R) denotes the smallest σ-ring containing R. If A ∈ R, then AR is the ring
containing those sets B for which B ∈ R, B ⊂ A.
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defined on the elements of S(R) that satisfies on S(R) conditions I–II, and has the
following property:

P (ξ∗(A) = ξ(A)) = 1, if A ∈ R.

We shall suppose that in conditions I–III R is a σ-ring.

In some theorems we shall use the following conditions:

IV. There is a positive number ρ such that |λk| ≥ ρ, k = 1, 2, . . ..

V. There is a sequence of divisions Zn = {A(n)
1 , A

(n)
2 , . . . , A

(n)
kn

} such that the (n+ 1)-st
division is a subdivision of the n-th one, and if h1 ∈ H, h2 ∈ H, h1 �= h2, then there
is an N for which h1 ∈ A

(N)
i , h2 ∈ A(N)

j , where i �= j.

In section 1 some definitions and lemmas are formulated.

In section 2 conditions are given under which the random variables ξ(A) have composed
Poisson distributions. In section 3 some structural theorems are proved concerning a
composed Poisson stochastic set function. In section 4 theorems are proved concerning
random point distributions.

1 Preliminary lemmas

Definition 1 Let R be a ring of sets and α(A) a real-valued set function on the
elements of R. If for every pair A1, A2 of disjoint sets of R (for every sequence A1, A2, . . .
of disjoint sets of R, for which

A =
∞∑

k=1

Ak

is an element of R) the relation

(3) α(A) ≤ α(A1) + α(A2)

(
α(A) ≤

∞∑
k=1

α(Ak)

)

holds, then the set function α(A) will be called subadditive (completely subadditive).

Definition 2 A set function α(A) defined on R is said to be of bounded variation if
there is a number K such that for every finite sequence A1, A2, . . . , Ar of pairwise disjoint
sets of R the relation

(4)
r∑

i=1

|α(Ai)| ≤ K

holds. If Ai ⊂ A ∈ R, i = 1, 2, . . ., then the smallest K for which relation (4) holds will
be denoted by Varα(A).
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The following two lemmas, the fist of which is almost trivial, are proved in [11]:

Lemma 1 Let α(A) be a real-valued, non-negative, completely subadditive set function
of bounded variation defined on the elements of a ring of sets R. Then the set function
Varα(A) is a bounded measure3 on R.

Lemma 2 Let α(A) be a real-valued, non-negative and subadditive set function, defined
on the elements of a ring of sets R. If there is a number C such that α(A) ≤ C, for A ∈ R

and for every sequence B1, B2, . . . of pairwise disjoint sets of R the condition

∞∑
i=1

α(Bi) <∞

is fulfilled, then the set function α(A) is of bounded variation.

Though the following notions and theorems are special cases of known general notions
and theorems (see e.g. [2], Chapter 8), nevertheless, for the reader’s convenience we repeat
them separately.

Definition 3 Let α(A) be a set function defined on the elements of a ring of sets R.
We say that the total of the set function α(A) exists in the set B ∈ R, if we can find a
number β(B) such that for every ε > 0 there exists a division of the set B into pairwise
disjoint sets A1, A2, . . . , Ar of R for which∣∣∣∣∣

r∑
i=1

α(Ai) − β(B)

∣∣∣∣∣ < ε(5)

and also ∣∣∣∣∣
r∑

i=1

li∑
k=1

α(Aik) − β(B)

∣∣∣∣∣ < ε,(6)

where Z = {Aik, k = 1, 2, . . . , li; i = 1, 2, . . . , r} is an arbitrary subdivision into pairwise
disjoint sets of the ring R of the division Z′ = {Ai, i = 1, 2, . . . , r}.

The number β(B) will be called the total of α(A) on the set B and will be denoted in
the following manner:

β(B) =
∫

B
α(dA).

It is easy to see that the total – if it exists – is always uniquely determined.

The following lemmas can be proved in a simple manner:
3A finite-valued, non-negative set function m(A), defined on a ring of sets R, is called a measure if

for every sequence B1, B2, . . . of disjoint sets of R, for which B =
∑∞

k=1 Bk ∈ R, the relation m(B) =∑∞
k=1 m(Bk) holds and m(0) = 0.
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Lemma 3 If α(A) is a set function defined on the elements of a ring of sets R and
its totals on B1 ∈ R and on B2 ∈ R exist, where B1B2 = 0, then its total exists also on
B1 +B2 and ∫

B1+B2

α(dA) =
∫

B1

α(dA) +
∫

B2

α(dA).

Lemma 4 If α1(A) and α2(A) are two set functions defined on the elements of a ring
of sets R and the totals of both exist in B ∈ R, then the total of α1(A)+α2(A) exists also
on B ∈ R and ∫

B
(α1(dA) + α2(dA)) =

∫
B
α1(dA) +

∫
B
α2(dA).

Lemma 5 If α(A) is a subadditive set function of bounded variation defined on the
elements of a ring of sets R, then the total of α(A) exists for every B ∈ R and∫

B
α(dA) = Varα(B).

2 Composed Poisson stochastic set functions

In this section we shall give conditions under which a completely additive stochastic set
function will be of composed Poisson type. The method by which the theorems stated
below are proved, is based essentially on two facts ensured by our conditions: the set
function 1−P0(A) is of bounded variation and Var1−P0(A) is a bounded, atomless measure
on R. First we prove a general theorem, and in special cases we shall verify the fulfilment
of the conditions introduced here.

Theorem 1 Let us suppose that the stochastic set function ξ(A), defined on the ele-
ments of the σ-ring R, satisfying conditions I, II, III. Suppose furthermore that the fol-
lowing conditions are fulfilled:

VI. Var1−P0(H) <∞.

VII. If A ∈ R and 1 − P0(A) > 0, then there exist such sets A1 ∈ AR, A2 ∈ AR,
A1A2 = 0, that 1 − P0(A1) > 0, 1 − P0(A2) > 0.

Under these conditions the logarithm of f(u,B) can be written for every B ∈ R in the
form

(7) logf(u,B) =
∞∑

k=1

Ck(B)(eiλku − 1),

where

(8) Ck(B) =
∫

B
Pk(dA), k = 1, 2, . . . ;
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moreover ∫
B

(1 − P0(dA))

exists also and

(9)
∫

B
(1 − P0(dA)) =

∞∑
k=1

Ck(B) <∞.

The set functions (8) and (9) are bounded, atomless measures on the σ-ring R.

Proof. Let D1,D2, . . . be a sequence of pairwise disjoint sets of R and

D =
∞∑

k=1

Dk.

Condition II implies that

1 − P0(D) ≤
∞∑

k=1

(1 − P0(Dk)).

It follows hence and from Condition VI that the conditions in Lemma 1 are fulfilled for
α(A) = 1−P0(A). Thus Var1−P0(A) is a bounded measure on R. The measure Var1−P0(A)
is also atomless. Let us suppose the contrary and denote by E ∈ R an atom. Then there
exists a set D ∈ ER such that 1 − P0(D) > 0. Clearly D is also an atom and thus for
every D′ ∈ DR we have either Var1−P0(D

′) = Var1−P0(D) > 0 or Var1−P0(D
′) = 0.

According to Condition VII there exist such sets D1 ∈ DR, D2 ∈ DR, D1D2 = 0, that

0 < 1 − P0(D1) ≤ Var1−P0(D1), 0 < 1 − P0(D2) ≤ Var1−P0(D2).

Thus if D′ = D1, we must have Var1−P0(D1) = Var1−P0(D) > 0, but this is impossible
as Var1−P0(D2) > 0 and

Var1−P0(D1) + Var1−P0(D2) ≤ Var1−P0(D).

Using the intermediate value theorem of atomless completely additive set functions (cf.
[7], p. 51, Theorem 5.6.1), we can choose for every ε a decomposition Z′ = {A1, A2, . . . , Ar}
of the set B into pairwise disjoint sets of R, where

(10) Var1−P0(Ak) ≤ ε, k = 1, 2, . . . , r.

Since

f(u,B) =
r∏

k=1

f(u,Ak)
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and for every A ∈ R

|1 − f(u,A)| ≤ 2(1 − P0(A)),

we find that if ε ≤ 1
4
, then

(11) |f(u,B)| =
r∏

k=1

|f(u,Ak)| ≥ 1
2r
.

Hence log f(u,B) exists. Taking into account the definition of f(u,B),

(12) f(u,B) =
∞∑

k=0

Pk(B)eiλku,

we conclude that f(u,B) and by (11) also log f(u,B) are almost periodic functions.

Let C0(B), C1(B), . . . denote the Fourier-coefficients of logf(u,B). Applying the Taylor
expansion of the function log z, we find that∣∣∣∣∣log f(u,B) −

r∑
i=1

(f(u,Ak) − 1)

∣∣∣∣∣(13)

≤
r∑

i=1

|f(u,Ai) − 1|2 ≤ 4
r∑

i=1

(1 − P0(Ai))2

≤ 4 max
1≤i≤r

(1 − P0(Ai))
r∑

i=1

(1 − P0(Ai)) ≤ K max
1≤i≤r

Var1−P0(Ai) ≤ Kε.

Multiplying both sides of (13) by e−iλku/2T , integrating from −T to T , and taking the
limit T → ∞, we obtain∣∣∣∣∣Ck(B) −

r∑
i=1

Pk(Ai)

∣∣∣∣∣ ≤ Kε, if k = 1, 2, . . . ,

(14) ∣∣∣∣∣C0(B) −
r∑

i=1

(P0(Ai) − 1)

∣∣∣∣∣ ≤ Kε, if k = 0.

It follows from (10) and (13) that (14) is true even if we replace the division Z′ =
{A1, A2, . . . , Ar} by any of its subdivisions, whence

Ck(B) =
∫

B
Pk(dA), k = 1, 2, . . . ,

C0(B) =
∫

B
(P0(dA) − 1).

(15)

Relations (10) and (13) imply also

log f(u,B) =
∫

B
(f(u,dA) − 1)4.

4This means that this equality holds for the real and imaginary parts separately.
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The almost periodic function f(u,B) − C0(B) has non-negative Fourier coefficients.
Hence ([5], p. 64–65)

∞∑
k=1

Ck(B) <∞.

Thus

f(u,B) −C0(B) =
∞∑

k=1

Ck(B)eiλku.

For u = 0 we obtain

−C0(B) =
∞∑

k=1

Ck(B),

whence

f(u,B) =
∞∑

k=1

Ck(B)(eiλku − 1).

We have proved relations (7), (8) and (9) in Theorem 1. Now we shall prove the
remaining assertions relative to the set functions C0(A) and Ck(A), k = 1, 2, . . .. By
Lemma 5, Var1−P0(A) = −C0(A), whence −C0(A) is an atomless measure on R. Since,
for every A ∈ R, Pk(A) ≤ 1 − P0(A), k = 1, 2, . . ., it follows that

(16) Ck(A) ≤ −C0(A), A ∈ R.

By Lemma 3 the set function Ck(A) is additive. It follows hence and from relation (16)
that Ck(A) is also completely additive on R. Relation (16) implies also that Ck(A) is an
atomless measure on R. Thus Theorem 1 is proved. �

In the following theorem we replace Condition VI by another one, which is fulfilled in
all the interesting practical cases.

Theorem 2 Let us suppose that for the stochastic set function ξ(A) conditions I, II,
III, IV and VII are fulfilled. Then all the assertions in Theorem 1 hold.

Proof. We have only to show that Var1−P0(H) < ∞. We shall carry out the proof
by using Lemma 2. The set function 1 − P0(A), A ∈ R, is bounded, non-negative and
subadditive, since if A = A1 + A2, A1 ∈ R, A2 ∈ R, A1A2 = 0, then the event ξ(A) �= 0
implies that at least one of ξ(A1) �= 0, ξ(A2) �= 0 holds. Let B1, B2, . . . be a sequence of
pairwise disjoint sets of R. According to condition II (R being a σ-ring) the series

∞∑
k=1

ξ(Bk)

converges with probability 1, whence, by the three series theorem of Kolmogorov (cf. [9],
§ 5),

∞∑
k=1

(1 − P0(Bk)) =
∞∑

k=1

P (|ξ(Bk)| ≥ ρ) <∞.
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Thus all the conditions of Lemma 2 are fulfilled, and this completes the proof of The-
orem 2. �

3 Structural properties of abstract composed Poisson

stochastic set functions

In this section we suppose the fulfilment of Conditions I, II, III, V, VI, VII5. Moreover,
we assume that for fixed ω ∈ Ω6 the number-valued set functions7 ξ(ω,A), A ∈ R, are
completely additive set functions. Let νk(B), B ∈ R, denote the number of points h ∈ H
to which correspond discontinuities of magniture λk. We are going to prove some theorems
concerning the random variables νk(B).

Theorem 3 For every B ∈ R the random variables νk(B), k = 1, 2, . . ., have Poisson
distributions with the expectations Ck(B), k = 1, 2, . . ..

Proof. As can be seen from the proof of Theorem 1, there exists a sequence of divisions
Zn = {A(n)

1 , A
(n)
2 , . . . , A

(n)
ln

} of the set B into pairwise disjoint sets of R such that

(17) Var1−P0(A
(n)
l ) ≤ c/n, l = 1, 2, . . . , ln; n = 1, 2, . . . ,

where c = Var1−P0(B) and

(18) lim
n→∞

ln∑
l=1

Pk(A
(n)
l ) =

∫
B
Pk(dA) = Ck(B).

We may suppose that at the same time Zn has the property described in Condition V.
Let us define the random variables

μk(A
(n)
l ) =

{
1, if ξ(A(n)

l ) = λk,

0, if ξ(A(n)
l ) �= λk.

Let χk(u,A
(n)
l ) and ψk(u,B) denote the characteristic functions of μk(A

(n)
l ) and νk(B),

respectively. Clearly

χk(u,A
(n)
l ) = 1 + (eiu − 1)Pk(A(n)

l ),

ψk(u,B) = lim
n→∞

ln∏
l=1

χk(u,A
(n)
l ).

(19)

5We observe that (as it is proved in Theorem 2) conditions I, II, III and IV imply the fulfilment of VI.
6Ω denotes the space of elementary events.
7These set functions will be called sample functions.
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Taking into account (17) we get∣∣∣∣∣
ln∏

l=1

[1 + (eiu − 1)Pk(A(n)
l )] − exp

(
ln∑

l=1

(eiu − 1)Pk(A(n)
l )

)∣∣∣∣∣
≤

ln∑
l=1

|1 + (eiu − 1)Pk(A(n)
l ) − exp((eiu − 1)Pk(A(n)

l ))|

≤
ln∑

l=1

|eiu − 1|2P 2
k (A(n)

l ) ≤ 4c2

n

if n is large enough. It follows hence and from relations (18), (19) that ψk(u,B) =
exp(Ck(B)(eiu − 1)). �

Theorem 4 For every B ∈ R, the random variables ν1(B), ν2(B), . . . are independent.

Proof.
8 We prove that for every fixed s the variables ν1(B), ν2(B), . . . , νs(B) are

independent. Let Zn = {A(n)
1 , A

(n)
2 . . . . , A

(n)
ln

} be a sequence of divisions of the set B,
having the property described in Condition V and satisfying the relations

lim
n→∞

ln∑
l=1

Pk(A
(n)
l ) =

∫
B
Pk(dA) = Ck(B), k = 1, 2, . . . , s,

(20)
Var1−P0(A

(n)
l ) ≤ c/n, l = 1, 2, . . . , ln; n = 1, 2, . . . ,

where c = Var1−P0(B).

Clearly

P (ν1(B) = j1, ν2(B) = j2, . . . , νs(B) = js) = lim
n→∞P

(n)
j1,j2,...,js

= lim
n→∞P

(
ln∑

l=1

μ1(A
(n)
l ) = j1,

ln∑
l=1

μ2(A
(n)
l ) = j2, . . . ,

ln∑
l=1

μs(A
(n)
l ) = js

)
.(21)

On the other hand, comparing the coefficients of

exp(i(j1u1 + j2u2 + · · · + jsus))
8The idea of this proof was proposed by A. Rényi.
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it is easy to see that the multidimensional characteristic function of the distribution on
the right-hand side of (21) has the form∑

j1,j2,...,js

P
(n)
j1,j2,...,js

ei(j1u1+j2u2+···+jsus)

=
ln∏

l=1

{P1(A
(n)
l )eiu1 + P2(A

(n)
l )eiu2 + · · · + Ps(A

(n)
l )eius

+1 − P1(A
(n)
l ) + 1 − P2(A

(n)
l ) + · · · + 1 − Ps(A

(n)
l )}

=
ls∏

l=1

{1 + P1(A
(n)
l )(eiu1 − 1) + P2(A

(n)
l )(eiu2 − 1) + · · · + Ps(A

(n)
l )(eius − 1)}.(22)

Taking into account (20) and (21), we obtain from (22)∑
j1,j2,...,js

P (ν1(B) = j1, ν2(B) = j2, . . . , νs(B) = js)ei(j1u1+j2u2+···+jsus)

= exp(C1(B)(eiu1 − 1) + C2(B)(eiu2 − 1) + · · · + Cs(B)(eius − 1)).

As exp(Ck(B)(eiu−1)) is the characteristic function of νk(B) (k = 1, 2, . . .), our theorem
is proved. �

Obviously, νk(B) is a completely additive stochastic set function on R, or, in other
terms, conditions I–II hold. We have seen that they side are of Poisson type. Finally we
prove

Theorem 5 If B1, B2, . . . is an arbitrary sequence of sets of R, then the random vari-
ables ν1(B1), ν2(B2), . . . are independent and if B ∈ R, then

(23) ξ(B) =
∞∑

k=1

λkνk(B),

where the sum of mutually independent random variables on the right-hand side converges
with probability 1 regardless of the order of summation.

Proof. If the sets B1, B2, . . . are identical or disjoint, then ν1(B1), ν2(B2), . . . are in-
dependent. In the general case we consider the first s sets and form the disjoint sets
Bi1 . . . BirBir+1 . . . Bis . The number of these sets is 2s. Since the random variables
νk(Bi1 . . . BirBir+1 . . . Bis) are independent, where k runs through the set of the positive
integers 1, 2, . . . , s, and i1, i2, . . . , ir proceeds through all the combinations of r elements
of 1, 2, . . . , s, and furthermore the variables ν1(B1), ν2(B2), . . . , νs(Bs) can be represented
as sums of disjoint sets of the variables mentioned above, our first assertion holds.

The convergence of the series in (23) is a consequence of formula (7), since

ψk(λku,B) = exp(Ck(B)(eiλku − 1))
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is the characteristic function of the random variable λkνk(B); moreover, the infinite prod-
uct

f(u,B) =
∞∏

k=1

ψk(λku,B)

converges absolutely and is also a characteristic function (see for instance [4]. p. 115,
Theorem 2.7). �

Remark Since the expectation of νk(B) is equal to Ck(B), relation (9) implies that
the sample functions have finite numbers of discontinuities with probability 1.

4 Application to random point distributions and the Pois-
son stochastic set function

In this section we specialize the set {λk}. We suppose that {λk} is identical with the set
of the non-negative integers and thus the situation can be described as follows: we throw
a finite number of points at random on the set H so that the numbers of random points
in disjoint sets belonging to R are independent. If ξ(A), A ∈ R, denotes the number of
points in the set A, then conditions I–IV naturally hold. Thus we obtain

Theorem 6 If for the set function ξ(A), A ∈ R, defined by a random point distribution
Condition VII holds, then for every B ∈ R

(24) log f(u,B) =
∞∑

k=1

Ck(B)(eiku − 1),

where the set functions Ck(B) have all the properties described in Theorem 1.

Proof. Our statement immediately follows from Theorem 2. �
Hence we can obtain conditions ensuring the Poisson character of a random point

distribution. This is expressed in

Theorem 7 If R is a σ-algebra and for the set function ξ(A), A ∈ R, defined by a
random point distribution, condition VII and one of the following three conditions hold,∫

H
P1(dA) =

∫
H

(1 − P0(dA)),(a)

VarP1(H) = Var1−P0(H),(b) ∫
H
Pk(dA) = 0 for k = 2, 3, . . . ,(c)

then the random variables ξ(B), B ∈ R, have Poisson distributions with the parameters∫
B P1(dA), B ∈ R.
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Proof. If for a random point distribution Condition VII holds, then (a), (b) and
(c) are equivalent. In fact P1(A) and 1 − P0(A) are subadditive set functions, whence
by Lemma 5, (a) and (b) are equivalent. The equivalence of (a) and (c) is ensured by
relations (8) and (9). Thus it is sufficient to consider (c). Our statement follows at once
from Theorem 3 if we observe that (c) includes

Ck(B) =
∫

B
Pk(dA) = 0 for k = 2, 3, . . . , B ∈ R.

If in the random point distribution there are only single points, i.e. if we have νk(B) =
0, k = 2, 3, . . ., for every B ∈ R, then we hope to obtain Poisson distributions for the
variables ξ(B), B ∈ R. However, we need for our proof condition V concerning the space
H. The proof of that condition being unnecessary or a counterexample would be desirable.
Our result is contained in �

Theorem 8 If in a random point distribution there are only single points, and fur-
thermore if Conditions V and VII are fulfilled, then for every B ∈ R

(25) P (ξ(B) = k) =
λk(B)
k!

e−λ(B), k = 0, 1, 2, . . . ,

where λ(B) = C1(B) is the average number of points lying in B and

(26) λ(B) =
∫

B
P1(dA).

Proof. Since νk(B) = 0 for k = 2, 3, . . ., by Theorem 3 we have Ck(B) = M(νk(B)) =
0 for k = 2, 3, . . ..

Applying Theorem 6 and taking into account the result in Theorem 1 concerning the
connection of C1(B) and P1(A), we obtain the statements of Theorem 8. �
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