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Abstract

Probabilistic constraint of the type P (Ax ≤ β) ≥ p is considered and it is proved
that under some conditions the constraining function is quasi-concave. The proba-
bilistic constraint is embedded into a mathematical programming problem of which
the algorithmic solution is also discussed.

1 Introduction

We consider the following function of the variable x:

G(x) = P(Ax ≤ β), (1.1)

where A is an m × n matrix, x is an n-component, β is an m-component vector and it is
supposed that the entries of A as well as the components of β are random variables. The
function (1.1) will be used as a constraining function in a nonlinear programming problem
which we formulate below:

G(x) ≥ p,

Gi(x) ≥ 0, i = 1, . . . , N,

aix ≥ bi, i = 1, . . . ,M,

min f(x).

(1.2)

Here we suppose that a1, . . . ,aM are constant n-component vectors, b1, . . . , bM are con-
stants, the functions G1, . . . , GM are quasi-concave in R

n and f(x) is convex in R
n. Many

practical problems lead to the stochastic programming decision problem (1.2). Among
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them we mention the nutrition problem in which case the nutrient contents of the foods
are random and the ore buying problem in which case the ferrum contents of the ores are
random and in both cases (1.2) is a reasonable decision principle. Regarding the joint dis-
tribution of the entries of A and the components of β, two special cases will be considered.
In the first one we suppose that this distribution is normal satisfying further restrictive
conditions while in the second one lognormal or some more general distribution is in-
volved. The reason why we deal with these conditions is of mathematical nature: we can
prove in these cases the quasi-concavity1 of the constraining function in the probabilistic
constraint.

In Section 2 we prove three theorems and in Section 3 the algorithmic solution of
Problem (1.2) is discussed.

The theorems of Section 2 are based on the following theorems of the author proved in
[2] resp. [3].

Theorem 1 Let f(x) be a probability density function in the n-dimensional Euclidean
space R

n and suppose that it is logarithmic concave i.e. it has the form

f(x) = e−Q(x), x ∈ R
n, (1.3)

where Q(x) is a convex function in the entire space. Let further A, B be two convex subsets
of R

n and 0 < λ < 1. Denoting by P(C) the integral of f(x) over the measurable subset
C of R

n, we have
P(λA + (1 − λ)B) ≥ [P(A)]λ[P(B)]1−λ. (1.4)

(The constant multiple of a set and the Minkowski sum of two sets are defined by
kC = {kc | c ∈ C} resp. C + D = {c + d | c ∈ C, d ∈ D}, where k is a real number.)

Theorem 1 implies that if A is a convex subset of R
n then P(A + x) is a logarithmic

concave function in the entire space. If we take in particular A = {t | t ≤ 0}, then we see
that the probability distribution function F (x) belonging to the density function f(x) is
logarithmic concave in the entire space, since P(A + x) = F (x).

A probability measure P in R
n is said to be logarithmic concave if for every pair A, B

of convex subsets of R
n and for every 0 < λ < 1, the inequality (1.4) is satisfied (see [2]).

Theorem 2 Let gi(x,y), i = 1, . . . , r be convave functions in R
m+n where x is an

n-component and y is an m-component vector. Let ξ be an m-component random vector
having a logarithmic concave probability distribution. Then the function of the variable x:

P(gi(x, ξ) ≥ 0, i = 1, . . . , r) (1.5)

is logarithmic concave in the space R
n.

The formulation of Theorem 2 is slightly different from that given in [3]. Its proof is
the same as the proof of the original version only a trivial modification is necessary.

1A function F (x) defined on a convex set K is said to be quasi-concave if for every pair x1,x2 ∈ K we
have F (λx1 + (1 − λ)x2) ≥ min(F (x1), F (x2)). It is easy to see that a necessary and sufficient condition
for this is that the set {x | x ∈ K, F (x) ≥ b} is convex for every real b.
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2 Quasi-concavity theorems concerning the function (1.1)

Let ξ1, . . . , ξn denote the columns of the matrix A and introduce the notation ξn+1 = −β.

Theorem 3 Suppose that the altogether m(n + 1) components of the random vectors
ξ1, . . . , ξn+1 have a joint normal distribution where the cross-covariance matrices of ξi

and ξj are constant multiples of a fixed covariance matrix C i.e.

E[(ξi − μi)(ξj − μj)
′] = sijC, i, j = 1, . . . , n + 1, (2.1)

where
μi = E(ξi), i = 1, . . . , n + 1. (2.2)

Then the set of x vectors satisfying

P(Ax ≤ β) ≥ p (2.3)

is convex provided p ≥ 1/2.

Proof. Consider the covariance matrix of Ax− βxn+1 which is equal to the following

E

⎡
⎣(n+1∑

i=1

ξixi −
n+1∑
i=1

μixi

)(
n+1∑
i=1

ξixi −
n+1∑
i=1

μixi

)′⎤⎦ =
n+1∑
i,j=1

sijxixjC = z′SzC, (2.4)

where z′ = (x′, xn+1) and S is the matrix with entries sij. If all elements of C are zero,
then the vectors ξ1, . . . ξn+1 are constants with probability 1 and the statement of the
theorem holds trivially. If there is at least one nonzero element in C, then there is at least
one positive element in its main diagonal. This implies that z′Sz ≥ 0 for every z since (2.4)
is a covariance matrix hence all elements in its main diagonal are nonnegative. Thus S is
a positive semidefinite matrix. We may suppose that both C and S are positive definite
matrices because otherwise we can use a perturbation of the type C + εIm, S + εIn+1,
where Im and In+1 are unit matrices of the size m×m and (n + 1)× (n + 1), respectively,
prove the theorem for these positive definite matrices and then take the limit ε → 0.

Let xn+1 = 1 everywhere in the sequel. We have

P(Ax ≤ β) = P

⎛
⎜⎜⎜⎜⎜⎝

n+1∑
i=1

(ξi − μi)xi

(z′Sz)
1
2

≤ −

n+1∑
i=1

μixi

(z′Sz)
1
2

⎞
⎟⎟⎟⎟⎟⎠ . (2.5)

Introduce the notation

L(z) = −
n+1∑
i=1

μixi
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and denote Li(z) the ith component of L(z) for i = 1, . . . ,m. If cik denote the elements
of C then (2.5) can be rewritten as

P(Ax ≤ β) = Φ

(
L1(z)

(c11z′Sz)
1
2

, . . . ,
Lm(z)

(cmmz′Sz)
1
2

;R

)
, (2.6)

where R is the correlation matrix belonging to the covariance matrix C. For every i
(i = 1, . . . ,m) we have

Φ

(
Li(z)

(ciiz′Sz)
1
2

)
≥ Φ

(
L1(z)

(c11z′Sz)
1
2

, . . . ,
Lm(z)

(cmmz′Sz)
1
2

;R

)
. (2.7)

Thus if the right hand side of (2.7) is greater than or equal to p (≥ 1/2) then we conclude
Li(z) ≥ 0, i = 1, ...,m. It is well-known that (z′Sz)

1
2 is a convex function in the entire

space R
n+1. Hence it follows that for every z1, z2,

L
(

1
2
z1 +

1
2
z2

)
[(

1
2
z1 +

1
2
z2

)′
S

(
1
2
z1 +

1
2
z2

)] 1
2

≥ λ
L(z1)

(z′1Sz1)
1
2

+ (1 − λ)
L(z2)

(z′2Sz2)
1
2

, (2.8)

where

λ =
(z′1Sz1)

1
2

(z′1Sz1)
1
2 + (z′2Sz2)

1
2

.

The probability density function of any nondegenerated normal distribution is logarithmic
concave in the entire space. Hence it follows that

log Φ
(

v1c
− 1

2
11 , . . . , vmc

− 1
2

mm;R
)

is concave in the variables v1, . . . , vm. Thus if the value of the function (2.6) is greater
than or equal to p (≥ 1/2) for z = z1 and also for z = z2, then the value of (2.6) will
be greater than or equal to p (≥ 1/2) at the point determined by the right hand side of
(2.8). Since Φ is monotonically increasing in all variables it follows from (2.8) that (2.6) is
greater than or equal to p (≥ 1/2) at the point determined by the left hand side of (2.8).
This proves the theorem. �

Theorem 4 Let Ai denote the i-th row of A and βi denote the i-th component of β,
i = 1, . . . ,m. Suppose that the random row vectors of n + 1 components

(Ai − βi), i = 1, . . . m (2.9)

are independent, normally distributed and their covariance matrices are constant multiples
of a fixed covariance matrix C. Then the set of x vectors on which the function (1.1) is
greater than or equal to p, is convex provided p ≥ 1/2.
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Proof. We may suppose that C is positive definite. We also suppose that the covari-
ance matrix of (2.9) equals s2

i C with si > 0, i = 1, . . . ,m. Let A
(0)
i , bi be the expectation

of Ai and βi, respectively, i = 1, . . . ,m and introduce the notation:

Li(z) =
1
si

(
−A

(0)
i , bi

)
z, i = 1, . . . ,m where z′ = (x1, . . . , xn, 1).

Then we have

P(Ax ≤ β) =
m∏

i=1

P((Ai,−βi)z ≤ 0) =
m∏

i=1

P

(
(Ai − A

(0)
i ,−βi + bi)z

si(z′Cz)
1
2

≤ (−A
(0)
i , bi)z

si(z′Cz)
1
2

)

=
m∏

i=1

Φ

(
Li(z)

(z′Cz)
1
2

)
= Φ

(
L1(z)

(z′Cz)
1
2

, . . . ,
Lm(z)

(z′Cz)
1
2

; Im

)
≥ p,

where Im is the m × m unit matrix. From here the proof goes in the same way as the
proof of Theorem 3.

Let aij , i = 1, . . . ,m; j = 1, . . . , n denote the elements of the matrix A and for the
sake of simplicity suppose that the columns of A are numbered so that those come first
which contain random variables. Let r be the number of these columns and introduce the
following notations:

• J denotes the set of those ordered pairs (i, j) for which aij is random variable,
1 ≤ i ≤ m, 1 ≤ j ≤ r;

• Ji denotes the set of those subscripts j, for which (i, j) ∈ J , where 1 ≤ i ≤ m;

• Ki denotes the set {1, . . . , r} − Ji;

• L denotes the set of those subscripts i, for which βi is a random variable, where
1 ≤ i ≤ m;

• T denotes the set {1, . . . ,m} − L.

Now we prove the following

Theorem 5 Suppose that the random variables aij , (i, j) ∈ J are positive with proba-
bility 1 and the constants aij , 1 ≤ i ≤ m, 1 ≤ j ≤ r, (i, j) /∈ J are nonnegative. Suppose
further that the joint distribution of the random variables

αij , (i, j) ∈ J, βi, i ∈ L

is a logarithmic concave probability distribution, where αij = log aij, (i, j) ∈ J . Under
these conditions the function

h(x1, . . . , xr, xr+1, . . . , xn) = G(ex1 , . . . , exr , xr+1, . . . , xn) (2.10)

is logarithmic concave in the entire space R
n, where G(x) is the function defined by (1.1).
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Proof. Consider the following functions

gi = −
∑
j∈Ji

euij+xj −
∑
j∈Ki

aije
xj −

n∑
j=r+1

aijxj + vi, i ∈ L,

gi = −
∑
j∈Ji

euij+xj −
∑
j∈Ki

aije
xj −

n∑
j=r+1

aijxj + bi, i ∈ T.

(2.11)

These are all supposed to be functions of the variables

uij , (i, j) ∈ J ; xj , 1 ≤ j ≤ n; vi, i ∈ L,

though not every variable appears explicitely in every function. The functions g1, . . . , gm

are clearly concave in the entire space. Substituting uij by αij for every (i, j) ∈ J and
vi by βi for every i ∈ L, instead of the functions g1, . . . , gm we obtain random variables
which we denote by γ1, . . . , γm, respectively. By Theorem 2, the function

P(γ1 ≥ 0, . . . , γm ≥ 0)

is a logarithmic concave function of the variables x1, . . . , xn. On the other hand we have
obviously

P(γ1 ≥ 0, . . . , γm ≥ 0) = G(ex1 , . . . , exr , xr+1, . . . , xn),

thus the proof of the theorem is complete. �

3 Algorithmic solution of Problem 1.2

In this section we deal with the algorithmic solution of Problem (1.2) under the conditions
of Theorem 3, Theorem 4 and Theorem 5, respectively. Consider the case of Theorem 3.
We suppose that C and S are positive definite matrices. The other cases can be treated
in a similar way. We suppose further that C is a correlation matrix i.e. its diagonal
elements are equal to 1. The random vectors ξ1, . . . , ξn+1 can always be defined so that
the constraint Ax ≤ β remains equivalent and this condition holds. Using the notation
L(z) introduced in Section 2, we can write

G(x) = P(Ax ≤ β) = P

(
n+1∑
i=1

(ξi − μi)xi ≤ L(z)

)
(3.1)

= P

(
1

(z′Sz)
1
2

n+1∑
i=1

(ξi − μi)xi ≤ 1

(z′Sz)
1
2

L(z)

)
= Φ

(
1

(z′Sz)
1
2

L(z);C

)
,

where Φ(y;C) denotes the probability distribution of the m-dimensional normal distri-
bution with N(0, 1) marginal distributions and correlation matrix C. It is well-known
that

∂Φ(y,C)
∂yi

= Φ

(
yi − cjiyi

1 − c2
ji

, j = 1, . . . , i − 1, i + 1, . . . ,m; Ci

)
ϕ(yi), (3.2)
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where
ϕ(y) =

1√
2π

e−
y2

2 , −∞ < y < ∞ (3.3)

and Ci is an (m − 1) × (m − 1) correlation matrix with the entries

cjk − cjicki√
1 − c2

ji

√
1 − c2

ki

, j, k = 1, . . . , i − 1, i + 1, . . . ,m. (3.4)

With the aid of (3.1)–(3.3) the gradient of the function g(x) can be obtained by an ele-
mentary calculation.

If a nonlinear programming procedure solves the problem with quasi-concave con-
straints and convex objective function is to be minimized, it can be applied to solve
our problem. Such a method is the method of feasible directions (see [6]) the convergence
proof of which for the case mentioned above is given in [4] and in a more detailed form in
[5].

The case of Theorem 4 does not present new difficulty. In fact we see in the proof of
Theorem 4 that the function P(Ax ≤ β) has the same form as the function standing on
the right hand side in (3.1).

In the case of Theorem 5 we substitute xi by exi everywhere in Problem (1.1) for
i = 1, . . . , r. Then the first constraining function becomes logarithmic concave in all
variables. It may happen that the other constraining functions are concave while the
objective function is convex after this substitution. If this is the case and the original
problem contained constraints of the form

xi > Di, i = 1, . . . , r, (3.5)

where Di, i = 1, . . . , r are positive constants, then we can solve the problem by convex
programming procedures e.g. by the SUMT method (see [1]) which seems to be very
suitable due to the logarithmic concavity of the first constraining function. In fact using
the logarithmic penalty function, the unconstrained problems are convex problems. The
values of the probabilities can be obtained by simulation. If instead of (3.5) we had
nonnegativity constraints for x1, . . . , xr in the original problem then using the constraints
(3.5) instead of the constraints x1 ≥ 0, . . . , xr ≥ 0 in the original problem, by a suitable
selection for the constants Di, i = 1, . . . , r we can come arbitrarily near the original
optimum value.
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