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1 Introduction

Consider the determinant with random entries

(1.1) Δn =

∣∣∣∣∣∣∣∣

ξ11 ξ12 . . . ξ12

ξ21 ξ22 . . . ξ2n

. . . . . . . . . . . . . .
ξn1 ξn2 . . . ξnn

∣∣∣∣∣∣∣∣
,

where we suppose that the random variables ξik, i, k = 1, . . . , n are independent and
identically distributed. (The reader will observe that certain conditions can be weakened
without violating the validity of our subsequent statements.) We shall assume later on
the existence of the moments of the ξik’s of order as high as it will be necessary. We are
now interested in finding the moments E(Δ2k

n ), k = 1, 2, . . .. The odd order moments of
Δn are clearly equal to 0 as Δn has a symmetrical distribution with respect to 0. In fact
interchanging two rows in Δn we obtain −Δn and this latter has the same probability
distribution as Δn. Suppose that E(ξik) = 0, E(ξ2

ik) = 1, i, k = 1, . . . , n. Then it is well
known that1 (first remarked in [4])

(1.2) D
2(Δn) = E(Δ2

n) = n!.

The fourth moment of Δn was obtained by Nyquist, Rice and Riordan [6] and the
formula is the following

(1.3) E(Δ4
n) =

(n!)2

2

n∑
i=0

(n − i + 1)(n − i + 2)
i!

(m4 − 3)i,

where
m4 = E(ξ4

ik), i, k = 1, . . . , n.

In an earlier paper Turán and Szekeres [1] (see also [2], [3]) investigated the sum of
squares and the sum of the fourth powers of all determinants with entries −1, 1. Applying

1
E(ξ) denotes the expectation and D(ξ) the dispersion of the random variable ξ.
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non-probabilistic arguments they obtained the formula (1.2) for the arithmetic mean of
all squares and a recursion formula for the arithmetic mean of the fourth powers. This
recursion formula was not solved, however, but it is a special case of the recursion formula
proved later in [6] for E(Δ4

n) which lead to (1.3). We can therefore obtain from (1.3) the
explicit formula for the arithmetic mean of all fourth powers of the determinants with
entries −1, 1 if we substitute m4 = 1 in (1.3).

There is only one type of probability distributions as the distribution of the ξik’s for
which all moments of Δn are known and this is the standard normal distribution. In this
case we have

(1.4) E(Δ2k
n ) = n!

(n + 2)!
2!

(n + 4)!
4!

. . .
(n + 2k − 2)!

(2k − 2)!
.

This result can be obtained in a well known way from the Wishart distribution (see e.g.
[7]). Other proof is published in [6]. In a summary of a lecture Forsyth and Tukey
[5] gave without proof a formula for the 2k-th moment of the content of n random unit
vectors uniformly distributed on the surface of the unit sphere in the n-dimensional space.
Formula (1.4) can simply be obtained from this and vice versa. The proof was never
published. We shall give a direct proof for that without using any deeper tools as this
case seems to be of particular interest.

2 Reformulation of the Problem. Moments of Permanents.

New Proof of an Earlier Result

Together with the random determinant

Δn =
∑

(i1,i2,...,in)

±ξ1i1, ξ2i2 . . . ξnin

we shall investigate the random permanent

Pn =
∑

(i1,i2,...,in)

ξ1i1, ξ2i2 . . . ξnin

of the same random matrix. We assume that the random variables ξij are symmetrically
distributed with respect to 0. Let us introduce the notation m2k = E(ξ2k

ij ). The prob-
lem of finding the 2k-th moment of the random variable Pn can be reformulated in the
following way. Consider all tables of 2k rows and n columns one row of which consists
of a permutation of the elements 1, 2, . . . , n. The number of all such tables is (n!)2k. A
table is called regular if every number in every column has an even multiplicity. We assign
a weight to each column and define the weight of a regular table as the product of the
weights of the columns. The weight of a column is defined as

mj1
2 mj2

4 . . . mjk
2k, m2 = 1,

where 2j1+4j2+· · ·+2kjk = 2k and j1 is the number of different numbers with multiplicity
2, j2 is the number of different numbers with multiplicity 4 in that column etc. If at least
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one column contains a number with an odd multiplicity then the weight of the table is 0
by definition. The sum of the weights of the tables is equal to E(P 2k

n ).

Let us now give a positive or a negative sign to each table according that the sum of
inversions contained in the different rows is an even or an odd number. The sum of the
signed weights is equal to E(Δ2k

n ).

The above assertions follow immediately from the definition of the permanent and the
determinant taking into account the independence of the random variables ξik, i, k =
1, . . . , n. We observe that Pn has also a symmetrical distribution with respect to 0. Now
we prove the following

Theorem 1 E(P 2
n) = E(Δ2

n), E(P 4
n) = E(Δ4

n), n = 1, 2, . . . ,

E(P 2k
n ) = E(Δ2k

n ), for n = 1, 2, ; k = 1, 2, . . . ,

but if P(ξij = 0) �= 1 then

E(P 2k
n ) �= E(Δ2k

n ) for k ≥ 3; n ≥ 3.

Proof. The validity of the first equality is trivial. When proving the second one
we give at the same time a proof for the formula (1.3). We shall make use of the above
reformulation of the moment-problem and consider all 4× n tables where each number in
each column has an even multiplicity. Any multiplicity can be now just either 2 or 4. We
may fix the permutation of the first row as 1 2 3 . . . n and at the end multiply the result
by n!

Consider together the first and the second rows:

1 2 3 . . . n,
j1 j2 j3 . . . jn.

This is conceivable as one permutation. Let i1, i2, . . . , in denote the number of cycles of
lengths 1, 2, . . . , n, respectively. The 4 × n table is regular if and only if in the third and
fourth rows below each cycle with the same numbers in the same ordering is repeated
what stands in the first and second rows but there are two possibilities. Below from the
considered cycle the third row may contain the above standing part i.e. the first row while
the fourth row contains the corresponding part of the second row or conversely.

These two possibilities can be used independently of each other below each cycle of
the permutation defined by the first two rows. To illustrate the situation consider the
first three numbers of the first and second rows, and suppose that they form the following
cycle:

1 2 3
2 3 1.

Now in the first column we must have one more 1 and one more 2 to obtain a regular table.
This can be done so that 1 stands in the third row and 2 in the fourths or conversely. This
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choice uniquely determines the other two elements in the third row and also in the fourth
row. Therefore we have

either 1 2 3 or 1 2 3
2 3 1 2 3 1
1 2 3 2 3 1
2 3 1 1 2 3.

Having this structure of the 4 × n regular tables we show that every such table has a
positive sign. Applying a permutation for the n columns so that elements in the cycles
in the first two rows be connected and stand after each other, a regular table keeps the
weight and the sign. In this new table from the point of view of the weight and sign it is
immaterial whether the elements inside a cycle in the second row are repeated in the third
or in the fourth row. In fact a cycle of an odd length has an even number of transpositions
and a cycle of an even length has an odd number of transpositions therefore the internal
number of transpositions remains the same. The external number of transpositions also
remains the same thus the new table is not sensitive for such a change from the point
of view of signed weight. But if the whole first row is placed in the third and the whole
second row is placed in the fourth row then the table is clearly positive. This proves the
second assertion of the theorem.

To prove that E(P 2k
n ) �= E(Δ2k

n ) if m2 �= 0, n ≥ 3, k ≥ 3, it is enough to show that
there are tables with negative weights. If n = 3 and k = 3 then the signed weight of the
table

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

is −m9
2 < 0. For arbitrary n ≥ 3 and k ≥ 3 it suffices to supply the above table by

adding 4 5 6 . . . n to each row in the same permutation and adding as many new rows as
it is necessary containing the same permutations. The obtained table is surely negative.
Finally it is easy to see that

E(P 2k
n ) = E(Δ2k

n ) for n = 1, 2; k = 1, 2, . . . .

To derive formula (1.3) we remark that the columns of a regular table can be subdivided
into three categories. The first category contains columns which have four times the same
number. The second one contains columns which have the same numbers in the first
and second rows also in the third and fourth rows but these numbers are different. The
remaining columns belong to cycles of length at least 2 of the first two rows and these
columns form the third category. In order to obtain the number of tables (which is the
sum of weights in this case) all columns of which belong to the third category we mention
that if d(n, k) is the number of permutations consisting of k cycles with lengths at least 2
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then it is well known that (see e.g. [8])

dn(t) =
n∑

k=0

d(n, k)tk =
n∑

k=0

(
n

k

)
t(t + 1) . . . (t + n − k − 1)(−t)k.

As each cycle can be repeated either in the third or in the fourth row, dn(2) gives the
number of tables having columns belonging just into the third category.

If a table consists of columns of the second kind then the first two rows are identical
and also the third and fourth rows. As there is no column containing four times the same
number, the number of all 4 × n tables is the sum of weights and it is dn(1). Thus

E(Δ4
n) = n!

∑
i1+i2+i3=n

n!
i1!i2!i3!

di1(1)di2(2)m
i3
4

=
(n!)2

2

n∑
k=0

(n − k + 1)(n − k + 2)
k!

(m4 − 3)k.

We remark that the numbers d(n, k) are associated Stirling numbers of the first kind.

3 The Case of the Standard Normal Distribution

We suppose that the ξij’s in (1.1) have standard normal distribution and give a proof for
the formula (1.4). For this purpose first we prove the following

Lemma. Let ζ1, . . . , ζk be n-dimensional independent random vectors with indepen-
dent components having standard normal distribution. The k-dimensional content of the
parallelotope determined by these vectors is the product of two independent random vari-
ables one of which has a χ-distribution with n− k + 1 degrees of freedom and the other is
distributed as the k − 1-dimensional content of k − 1 independent random vectors having
independent and standard normally distributed components.

Proof. Let Δ(k)
n denote the content of the k random vectors. Then

Δ(k)
n = αkΔ(k−1)

n ,

where Δ(k−1)
n is the k − 1-dimensional content of the parallelotope determined by ξ1, . . .,

ξk−1 and αk is the distance of ζk from the subspace spanned by ζ1, . . . , ζk−1. In view of
the spherical symmetry of the distribution of ζi, αk and Δ(k−1)

n are independent of each
other. αk is clearly a χ-variable with n − k + 1-degrees of freedom as the subspace of
the first k − 1 vectors can be fixed as the set of those points (x1, x2, . . . , xn) for which
xk = xk+1 = . . . = xn = 0. This completes the proof. �

Theorem 2 If the ξij’s have standard normal distribution then the random variable
(1.1) can be written as the product of n independent χ-variables:

Δn = χ1χ2 . . . χn,

where αk has n − k + 1 degrees of freedom.
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Proof. The theorem follows from a subsequent application of the idea of the proof in
the preceding Lemma.

As the k-th moment of a χ2-variable with i-degrees of freedom is equal to

(i + 2k − 2)(i + 2k − 4) . . . (i + 2)i,

it follows that

E(Δ2k
n ) =

n∏
i=1

(i + 2k − 2)(i + 2k − 4) . . . (i + 2)i = n!
(n + 2)!

2!
(n + 4)!

4!
. . .

(n + 2k − 2)!
(2k − 2)!

which proves (1.4). We remark that the moments of the content of n random vectors
uniformly distributed on the surface of the unit sphere in the n-dimensional space can be
obtained from this because

Δn = χ1χ2 . . . χn

∣∣∣∣∣∣∣∣∣

ξ11

χ1
. . .

ξ1n

χn
. . . . . . . . . . .
ξn1

χ1
. . .

ξnn

χn

∣∣∣∣∣∣∣∣∣
,

where
χi =

√
ξ2
i1 + · · · + ξ2

in, i = 1, . . . , n

and the n+1 factors in the product as well as the rows of the determinant are independent.

�

4 Polynomials Associated with Random Determinants,

Generalization of the Formula (1.3)

Let us define the polynomials fn(m1,m2, . . . ,mk), k, n = 1, 2, . . . as the sum signed weights
of all k×n tables where in each row we write one permutation of the numbers 1, 2, . . . , n,
the weight of a table is the product of the weights of the columns and the weight of a
column is mi1

1 mi2
2 . . . mik

k where ij is the number of different numbers with multiplicity j in
the column. The sign is the total sum of the transpositions in the k rows. The non-signed
sum of weights will be denoted by gn(m1,m2, . . . ,mk). The variables m1,m2, . . . ,mk can
be real or complex. Considering a random determinant (1.1) where the random entries
are independent, identically (but not necessarily symmetrically) distributed having finite
moments up to order k, and these moments are m1,m2, . . . ,mk, then

fn(m1,m2, . . . ,mk) = E(Δk
n),(4.1)

while
gn(m1,m2, . . . ,mk) = E(P k

n ).(4.2)
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As Δn has a symmetrical distribution with respect to 0, fn(m1,m2, . . . ,mk) vanishes if
m1,m2, . . . ,mk are moments of a probability distribution and k is odd. This implies
that fn(m1,m2, . . . ,mk) vanishes for all values of the variables m1,m2, . . . ,mk if k is an
odd number. The same holds for gn if the entries have symmetrical distribution with
respect to 0. The polynomials fn, gn will be called polynomials associated with random
determinants, random permanents, respectively. Both fn and gn are clearly homogeneous
polynomials of their variables. We mention also the following

Theorem 3 For fixed k and m1,m2, . . . ,mk−1, the polynomials gn/n! are Appel poly-
nomials of the variable mk. The same holds for fn/n! if k is an even number.

Proof. Note that polynomials y1(x), y2(x), . . . are called Appel polynomials if y′n(x) =
nyn−1(x), n = 1, 2, . . .. To prove this property of the above polynomials consider the k×n
tables. Each table contains a certain number of columns consisting of k times the same

number. If the number of such columns is j then they can be selected in
(

n

j

)
different

ways. Thus gn has the form

(4.3) gn(m1,m2, . . . ,mk) = n!
n∑

j=0

(
n

j

)
mj

kdn−j(m1, . . . ,mk−1).

fn has a similar form but we have to remark that if k is even then any particular choice
of the j columns consisting of k times the same numbers the remaining columns form a
k × (n − j) table of the same sign. Thus

(4.4) fn(m1,m2, . . . ,mk) = n!
n∑

j=0

(
n

j

)
mj

kcn−j(m1, . . . ,mk−1).

Our assertions follow immediately from (4.3) and (4.4).

If the random variables ξij in (1.1) have a symmetrical distribution then m1 = m3 =
m5 = . . . = 0. If moreover we take into account that m2 = 1 then we have polynomials
gn(m4, . . . ,m2k), fn(m4, . . . ,m2k). Now we generalize the formula (1.3) and express it in

Theorem 4 If the random variables ξij in (1.1) have a symmetrical distribution and
this has a finite moment of order 2k moreover the moments of order 2, 4, . . . , 2k − 2 are
the same as those of the standard normal distribution,

(4.5) m2j =
(2j)!
j!2j

, j = 1, 2, . . . , k − 1

while m2k is arbitrary, then

(4.6) E(Δ2k
n ) = (n!)2

n∑
j=0

1
j!

(
m2k − (2k)!

k!2k

)j M
(2k)
n−j

[(n − j)!]2
,

where M
(2k)
n stands for the 2k-th moment of Δn the entries of which have the standard

normal distribution, i.e. M
(2k)
n is given by (1.4).
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Proof. From Theorem 3 we know that

(4.7)
d

dm2k

E(Δ2k
n )

n!
= n

E(Δ(2k)
n−1)

(n − 1)!

where we have the initial conditions

(4.8) E(Δ2k
n ) = M (2k)

n for m2k =
(2k)!
2kk!

.

The sequence of polynomials E(Δ2k
1 ), E(Δ2k

2 ), . . . is uniquely determined by (4.7) and (4.8).
But (4.6) satisfies these conditions hence our theorem is proved. �
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