1 Overview

In this lecture, we continue to discuss (twice) differentiable convex function over convex set, including first/second necessary and sufficient conditions for optimality.

2 Continue on differentiable convex function

2.1 Conditions for convex function

Theorem 1 If \(f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \) is twice differentiable on \(c \), where \(c \) is a convex set with non-empty interior; then \(f \) is convex iff the Hessian \(\nabla^2 f \) is positive semidefinite.

Proof:

- Using second order Taylor theorem, we know that for \(x, y \in c \), \(\exists 0 \leq \alpha \leq 1 \),
 \[
 f(y) = f(x) + \nabla f(x)(y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(\alpha y + (1 - \alpha) x)(y - x)
 \]
 so that if \(\nabla^2 f(z) \) is positive semidefinite for all \(z \in c \), then choosing \(x, y \in c \) arbitrarily, \(f(y) \geq f(x) + \nabla f(x)(y - x) \), since the second item is non-negative, concluding that \(f \) is convex on \(c \).

- if \(f \) is convex on \(c \), choose \(x \in c \); if \(\nabla^2 f(x) \) is non-positive semidefinite at \(x \), there is \(d \in \mathbb{R}^n \), \(d^T \nabla^2 f(x)d < 0 \). So there is \(\alpha > 0 \), define \(y = x + \alpha d \),
 \[
 (y - x)^T \nabla^2 f(x)(y - x) < 0;
 \]
 By continuity of \(\nabla^2 f(x) \), at \(x \), \(\exists \alpha \), such that,
 \[
 (x + \alpha d)^T \nabla^2 f(x)(x + \alpha d) < 0,
 \]
for every $0 < \alpha < \overline{\alpha}$,

\[
f(y) = f(x) + \nabla f(x)(y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(\alpha y + (1 - \alpha)x)(y - x),
\]

since the last item < 0,

\[
f(y) < f(x) + \nabla f(x)(y - x)
\]

contradicting that f is convex.

\[\blacksquare\]

Theorem 2 Let $f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ be convex over convex set c, and f has continuous first order derivative. If x^* is a point where $\nabla f(x^*)(y - x^*) \geq 0$ for every $y \in c$, then x^* is a global minimum of f.

Proof: We know $f(x) \geq f(x^*) + \nabla f(x^*)(y - x^*) \geq 0$ by convexity of f, since the second item ≥ 0, we have $f(x) \geq f(x^*)$.

\[\blacksquare\]

2.2 Definition: Feasible direction

Let $f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function over c. A vector d is a feasible direction at a point $x \in c$ if there exists some $\overline{\alpha} \geq 0$ such that $x + \alpha d \in c$ for every $0 \leq \alpha \leq \overline{\alpha}$.
3 Conditions for optimality

3.1 First order necessary condition for optimality

Theorem 3 Let \(f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \) be a \(c^1 \) function. If \(x^* \) is a local minimum of \(f \), then for every feasible direction of \(d \), \(\nabla f(x^*)d \geq 0 \). In particular, if \(x^* \in \text{int}(c) \), then \(\nabla f(x^*) = 0 \).

Proof:

- Let \(d \) be a feasible direction, and define \(g : [0, \alpha] \rightarrow \mathbb{R} \) where \(g(\alpha) = f(x^* + \alpha d) \),

\[
g(\alpha) - g(0) = g'(0)\alpha + o(\alpha).
\]

If \(g'(0) < 0 \), then \(\exists \alpha > 0 \) such that the right hand side becomes negative, which means \(g(\alpha) < g(0) \). Which in turn implies that \(f(x^* + \alpha d) < f(x^*) \), contradicting the \(x^* \) being a local minimum.

- \(g'(0) \geq 0 \), then the directional derivative of \(f \) at \(x^* \) in the direction of \(d \) is non-negative, thus: \(\nabla f(x^*)d \geq 0 \). For the second part, since all directions are feasible, we have \(\nabla f(x^*)d \geq 0 \), \(\nabla f(x^*)(-d) \geq 0 \), so \(\nabla f(x^*) = 0 \).

\[\square\]

3.2 Second order necessary condition for optimality

Theorem 4 Let \(f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \) be a \(c^2 \) function. If \(x^* \) is a local minimum of \(f \), then for every feasible direction of \(d \) at \(x^* \), we have:

- \(\nabla f(x^*)d \geq 0 \).
- If \(\nabla f(x^*) = 0 \), then \(d^T f^2(x^*)d \geq 0 \).
Proof: Let $\nabla f(x^*)d = 0$, define $g(\alpha) = f(x^* + \alpha d)$. In this case $g'(\alpha) = 0$, then $g(\alpha) - g(0) = \frac{1}{2}g''(0)\alpha^2 + o(\alpha^2)$. If $g''(0) < 0$, then for sufficiently small α the right hand side becomes negative and then $g(\alpha) < g(0)$, which implies $f(x^* + \alpha d) < f(x^*)$, contradicting local minimality of x^*. $g''(0) = d^T\nabla^2 f(x^*)d \geq 0$.

3.3 Second order sufficient condition for local optimality

Theorem 5 For function $f : c \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ to be c^2 function, the interior point x^* is a local minimum if $\nabla f(x^*) = 0$ and the Hessian $\nabla^2 f(x^*)$ is positive definitive.

Proof: Since $\nabla^2 f(x^*)$ is positive definitive, there $\exists \alpha > 0$ such that $d^T\nabla^2 f(x^*)d > \alpha \|d\|^2$. Then for any d, $f(x^* + d) - f(x^*) = \frac{1}{2}d^T\nabla^2 f(x^*)d + o(\|d\|^2) \geq \frac{1}{2}\alpha \|d\|^2 + o(\|d\|^2) > 0$

A is a square matrix which is invertible and symmetric $A \geq 0$.

$$f(x) = X^TAX + C^TX + d = \sum_{i,j} a_{i,j}x_i x_j + \sum_i c_i x_i + d$$

so that, $$\frac{\partial f}{\partial x_i} = \sum_j a_{i,j}x_j + c_i = A_{i.,x} + c_i$$

and, $$\nabla f(x) = (..., \frac{\partial f}{\partial x_i}, ...) = (..., A_{i.,x} + c_i, ...) + C^T = \{AX\}^T + C^T = X^T A^T + C^T$$

thus, $$\nabla f(x) = 0 \Rightarrow X^T A = -C^T \Rightarrow AX = -C \Rightarrow x^* = -A^{-1} C$$

for the second order, $$\frac{\partial f}{\partial x_i \partial x_j} \left(\sum_{i,j} a_{i,j} x_i x_j \right) = A_{i,j} + A_{j,i} = A + A^T = 2A \geq 0$$

since A is symmetric. Concluding that A is positive semidef.

3.4 Example: Linear Multiple Regression

$$\tilde{x}_1 \rightarrow y_1$$

$$\tilde{x}_2 \rightarrow y_2$$

$$\vdots$$

$$\tilde{x}_m \rightarrow y_m$$
and,
\[y = a_0 + a_1 x_1 + ... a_n x_n \]

Our objective is to,
\[
\begin{align*}
\min & \quad \|Y - XA\|^2 \\
\Rightarrow & \quad \min \|Y - XA\|^T \|Y - XA\| \\
= & \quad A^T X^T X A - 2Y^T X A + Y^T Y \\
\end{align*}
\]

Using the result from Theorem 5, \(x^* = -A^{-1} C \), we get,
\[
A^* = 2(X^T X)^{-1} X^T Y
\]