Dijkstra’s Algorithm

Dijkstra’s Algorithm assigns to every node \(j \) a pair of labels \((p_j, d_j)\), where \(p_j \) is the node preceding node \(j \) in the existing shortest path from 1 to \(j \), \(d_j \) is the length of this shortest path. Some of the labels are called temporary, i.e. they could change at a future step; some labels are called permanent, i.e. they are fixed and the shortest path from 1 to a node that is permanently labeled has been found.

We denote by \(d_{jk} \) the length of arc \((j, k)\).

Step 1. Label node 1 with the permanent labels \((\emptyset, 0)\). Label every node \(j \), such that \((1, j)\) is an arc in the graph, with temporary labels \((1, d_{1j})\). Label all other nodes in the graph with temporary labels \((\emptyset, \infty)\).

Step 2. Let \(j \) be a temporarily labeled node with the minimum label \(d_j \), i.e. \(d_j = \min\{d_l : \text{node } l \text{ is temporarily labeled}\} \). For every node \(k \), such that \((j, k)\) is in the graph, if \(d_k > d_j + d_{jk} \), relabel \(k \) as follows:

\[
p_k = j, d_k = d_j + d_{jk}.
\]

Consider the labels of node \(j \) to be permanent.

Step 3. Repeat step 2 until all nodes in the graph are permanently labeled.

The shortest paths can be found by reading labels \(p_j \) backwards, i.e. from node \(j \) to node 1.