For any hypergraph \(\mathcal{H} \subseteq 2^V \) we have

\[
\mathcal{H}^+ \cap \mathcal{H}^* = \emptyset \quad \text{and} \quad \mathcal{H}^+ \cup \mathcal{H}^* = 2^V.
\]
For any hypergraph $\mathcal{H} \subseteq 2^V$ we have

$$\mathcal{H}^+ \cap \mathcal{H}^{*-} = \emptyset \quad \text{and} \quad \mathcal{H}^+ \cup \mathcal{H}^{*-} = 2^V.$$

Given a Sperner hypergraph \mathcal{H}, we can view it as the family of minimal sets in the monotone system \mathcal{H}^+. Similarly, \mathcal{H}^* can be viewed as the family of maximal independent sets in the independence system \mathcal{H}^{*-}.

Notations
Notations

For any hypergraph $\mathcal{H} \subseteq 2^V$ we have

$$\mathcal{H}^+ \cap \mathcal{H}^* = \emptyset \quad \text{and} \quad \mathcal{H}^+ \cup \mathcal{H}^* = 2^V.$$

Given a Sperner hypergraph \mathcal{H}, we can view it as the family of minimal sets in the **monotone system** \mathcal{H}^+. Similarly, \mathcal{H}^* can be viewed as the family of maximal independent sets in the **independence system** \mathcal{H}^*.

We shall assume that \mathcal{H} or equivalently \mathcal{H}^* are represented by a membership oracle Ω, either for the monotone system \mathcal{H}^+ or for the independence system \mathcal{H}^* (one is simply the negation of the other).
Notations

For any hypergraph $\mathcal{H} \subseteq 2^V$ we have

$$\mathcal{H}^+ \cap \mathcal{H}^{*-} = \emptyset \quad \text{and} \quad \mathcal{H}^+ \cup \mathcal{H}^{*-} = 2^V.$$

Given a Sperner hypergraph \mathcal{H}, we can view it as the family of minimal sets in the monotone system \mathcal{H}^+. Similarly, \mathcal{H}^* can be viewed as the family of maximal independent sets in the independence system \mathcal{H}^{*-}.

We shall assume that \mathcal{H} or equivalently \mathcal{H}^* are represented by a membership oracle Ω, either for the monotone system \mathcal{H}^+ or for the independence system \mathcal{H}^{*-} (one is simply the negation of the other).

The set $B(\Omega) = \mathcal{H} \cup \mathcal{H}^*$ is called the boundary of Ω (as well as of the independence system \mathcal{H}^{*-} and the monotone system \mathcal{H}^+).
Fact 1. Consider an arbitrary algorithm A, which generates every Sperner family \mathcal{H} by using only a membership oracle Ω for the monotone system \mathcal{H}^+. Then, for every hypergraph \mathcal{H} such an algorithm must call the oracle at least $|B(\Omega)| = |\mathcal{H}| + |\mathcal{H}^*|$ times.
Easy Facts

Fact 1. Consider an arbitrary algorithm \(A \), which generates every Sperner family \(\mathcal{H} \) by using only a membership oracle \(\Omega \) for the monotone system \(\mathcal{H}^+ \). Then, for every hypergraph \(\mathcal{H} \) such an algorithm must call the oracle at least \(|\mathcal{B}(\Omega)| = |\mathcal{H}| + |\mathcal{H}^*| \) times.

Proof. For any \(B \in \mathcal{B}(\Omega) \) let \(\Omega_B \) be defined by

\[
\Omega_B(S) = \begin{cases}
\Omega(S) & \text{if } S \neq B, \\
\overline{\Omega}(S) & \text{if } S = B.
\end{cases}
\]

Then, \(\Omega_B \) is the membership oracle of a monotone system corresponding to a different Sperner hypergraph, and thus algorithm \(A \) must distinguish the systems represented by \(\Omega \) and \(\Omega_B \), for any \(B \in \mathcal{B}(\Omega) \). \(\square \)
Corollary 1. A purely membership oracle based generation of \mathcal{H} (or \mathcal{H}^*) will (anyway) generate both sets $\mathcal{H} \cup \mathcal{H}^*$.
Corollary 1. A purely membership oracle based generation of \(\mathcal{H} \) (or \(\mathcal{H}^* \)) will (anyway) generate both sets \(\mathcal{H} \cup \mathcal{H}^* \).

Corollary 2. Generating the maximal independent sets \(\text{max} \mathcal{I} \) of an independence system \(\mathcal{I} \) represented by a membership oracle \(\Omega \) is not simply \text{NP-hard} (cf. Lawler, Lenstra and Rinnooy Kan, 1980) but \text{exponential}, in worst case!!! Because, for infinite families of independence systems we have

\[
|\min \left(2^V \setminus \mathcal{I} \right)| \gg \text{poly}(|\text{max} \mathcal{I}|, |\Omega|)
\]

for any polynomial \(\text{poly}() \).
Corollary 3. A purely membership oracle based generation of \mathcal{H} can be efficient in total time only if

$$|\mathcal{H}^*| \leq poly(|\mathcal{H}|, |\Omega|)$$

for some polynomial $poly()$.

If such an inequality hold, we say that \mathcal{H} is dual bounded.
Corollary 3. A purely membership oracle based generation of \mathcal{H} can be efficient in **total time** only if

$$|\mathcal{H}^*| \leq \text{poly}(|\mathcal{H}|, |\Omega|)$$

for some polynomial $\text{poly}()$.

If such an inequality holds, we say that \mathcal{H} is **dual bounded**.

We do not know if there is a purely membership oracle based algorithm A which would generate in **polynomial total time** every dual bounded hypergraph.

BUT

We do know that there is one, which does that in **quasi-polynomial total time**.
The Idea of Joint Generation
(Bioch and Ibaraki, 1995, Gurvich and Khachiyan, 1998)

Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, we have

\[
S = \mathcal{H} \text{ and } Q = \mathcal{H}^*
\]
The Idea of Joint Generation
(Bioch and Ibaraki, 1995, Gurvich and Khachiyan, 1998)

Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, we have

\[S = \mathcal{H} \text{ and } Q = \mathcal{H}^* \]

\[\uparrow \]

\[Q = S^* \]
Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, we have

\[S = \mathcal{H} \quad \text{and} \quad Q = \mathcal{H}^* \]

\[Q = S^* \]

\[S^+ \cup Q^- = 2^V \]
Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, we have

\[
S = \mathcal{H} \quad \text{and} \quad Q = \mathcal{H}^*
\]

\[
\updownarrow
\]

\[
Q = S^*
\]

\[
\updownarrow
\]

\[
S^+ \cup Q^- = 2^V
\]

The latter conditions do not depend on \mathcal{H} or \mathcal{H}^*!!
The Idea of Joint Generation
(Bioch and Ibaraki, 1995, Gurvich and Khachiyan, 1998)

Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, we have

$$S = \mathcal{H} \text{ and } Q = \mathcal{H}^*$$

$$\iff$$

$$Q = S^*$$

$$\iff$$

$$S^+ \cup Q^- = 2^V$$

Dualization: Given the Sperner hypergraphs $S \subseteq \mathcal{H}$ and $Q \subseteq \mathcal{H}^*$, the equality $S^+ \cup Q^- = 2^V$ can be tested, and if it does not hold, a new subset $X \in 2^V \setminus (S^+ \cup Q^-)$ can be found in $O(N^{o(\log N)} \log N)$ time, where $N = |S| + |Q|$. (Fredman and Khachiyan, 1996)
Joint Generation
(Bioch and Ibaraki, 1995, Gurvich and Khachiyan, 1998)

Given an oracle Ω representing the monotone system $\mathcal{H}^+ \subseteq 2^V$ (or the independence system $\mathcal{H}^{*-} \subseteq 2^V$), let us start with $S = Q = \emptyset$.

While $S^+ \cup Q^- \neq 2^V$ do:

 Let $X \in 2^V \setminus (S^+ \cup Q^-)$ be the set found by dualization.
 Test $\Omega(X) = ?$ (remember, we have $\mathcal{H}^+ \cup \mathcal{H}^{*-} = 2^V$).
 If $X \in \mathcal{H}^+$, then by calling the oracle at most $|X|$-times,
 find a set $H \in \mathcal{H}$ for which $X \supseteq H$, and
 set $S = S \cup \{H\}$.
 If $X \in \mathcal{H}^{*-}$, then by calling the oracle at most $|V \setminus X|$-times
 find a set $H \in \mathcal{H}^*$ for which $X \subseteq H$, and
 set $Q = Q \cup \{H\}$.

The complexity of one incremental step is $O(N^o(\log N) + O(n|\Omega|)$ time, where $N = |S| + |Q|$ and $n = |V|$.
Theorem. Given an oracle \(\Omega \) representing a monotone system \(\mathcal{H}^+ \), joint generation generates the boundary family \(B(\Omega) = \mathcal{H} \cup \mathcal{H}^* \) in incremental quasi-polynomial time.
Theorem. Given an oracle Ω representing a monotone system H^+, joint generation generates the boundary family $B(\Omega) = H \cup H^*$ in incremental quasi-polynomial time.

Consequence. If H is dual bounded, i.e. $|H^*| \leq \text{poly}(|H|,|\Omega|)$, then joint generation generates H in quasi-polynomial total time (just do not output sets in H^*).
Joint Generation
(Bioch and Ibaraki, 1995, Gurvich and Khachiyan, 1998)

Theorem. Given an oracle \(\Omega \) representing a monotone system \(\mathcal{H}^+ \), joint generation generates the boundary family \(\mathcal{B}(\Omega) = \mathcal{H} \cup \mathcal{H}^* \) in incremental quasi-polynomial time.

Consequence. If \(\mathcal{H} \) is dual bounded, i.e. \(|\mathcal{H}^*| \leq poly(|\mathcal{H}|, |\Omega|) \), then joint generation generates \(\mathcal{H} \) in quasi-polynomial **total** time (just do not output sets in \(\mathcal{H}^* \)).

Remark. Joint generation may not generate \(\mathcal{H} \) incrementally efficiently. For instance, we may get all the sets of \(\mathcal{H}^* \) before getting any from \(\mathcal{H} \)!
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\in S^+$.

For such a set we **must have** $X \in \mathcal{H}^+ \setminus S^+$.
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\in S^+$.

For such a set we must have $X \in \mathcal{H}^+ \setminus S^+$.
Modifying Joint Generation

Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \nsubseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \notin S^+$.

For such a set we **must have** $X \in \mathcal{H}^+ \setminus S^+$.
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\in S^+$.

For such a set we must have $X \in \mathcal{H}^+ \setminus S^+$.
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \nsubseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\in S^+$.

For such a set we must have $X \in \mathcal{H}^+ \setminus S^+$.
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\in S^+$.

For such a set we **must have** $X \in \mathcal{H}^+ \setminus S^+$.
Fact 2. If $S \subseteq H$, $Q \subseteq H^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\subseteq S^*$.

For such a set we **must have** $X \in H^+ \setminus S^*$.
Fact 2. If $S \subseteq \mathcal{H}$, $Q \subseteq \mathcal{H}^*$, and $Q \not\subseteq S^*$, then for any $Q \in Q \setminus S^*$ we have a $j \in V \setminus Q$ such that $X = Q \cup \{j\} \not\subseteq S^*$.

For such a set we must have $X \in \mathcal{H}^+ \setminus S^+$.

The condition $Q \not\subseteq S^*$ can be tested, and if it holds, then a set $X \in \mathcal{H}^+ \setminus S^+$ can be constructed in $O(n|S||Q|)$ time. We do not need the oracle Ω for this.
Modified Joint Generation

While \(Q \not\subseteq S^* \),

let \(X \in \mathcal{H}^+ \setminus S^+ \) be constructed as above, and
by calling the oracle at most \(|X| \)-times,
find a set \(H \in \mathcal{H} \) for which \(X \supseteq H \), and
set \(S = S \cup \{H\} \).

If \(Q \subseteq S^* \) and \(S^+ \cup Q^- \neq 2^V \)
then let \(X \in 2^V \setminus (S^+ \cup Q^-) \) be found by dualization.

Test \(\Omega(X) = ? \) (remember, we have \(\mathcal{H}^+ \cup \mathcal{H}^{*-} = 2^V \)).

If \(X \in \mathcal{H}^+ \), then by calling the oracle at most \(|X| \)-times,
find a set \(H \in \mathcal{H} \) for which \(X \supseteq H \), and
set \(S = S \cup \{H\} \).

If \(X \in \mathcal{H}^{*-} \), then by calling the oracle at most \(|V \setminus X| \)-times
find a set \(H \in \mathcal{H}^* \) for which \(X \subseteq H \), and
set \(Q = Q \cup \{H\} \).

Return to the while loop.
Fact 2. In every iteration of the modified joint generation we have

$$|Q| \leq |S^* \cap H^*| + 1.$$

Corollary 4. Joint generation becomes incrementally efficient (quasi-polynomial) if for all subfamilies $S \subseteq H$ the following inequality holds:

$$|S^* \cap H^*| \leq poly(|\Omega|, |S|).$$

Let us call a hypergraph H (represented by a membership oracle Ω) uniformly dual bounded if the above inequality holds for all subfamilies $S \subseteq H$.
Uniformly Dual Bounded Hypergraphs

Fact 2. In every iteration of the modified joint generation we have

\[|Q| \leq |S^* \cap H^*| + 1. \]

Corollary 4. Joint generation becomes incrementally efficient (quasi-polynomial) if for all subfamilies \(S \subseteq H \) the following inequality holds:

\[|S^* \cap H^*| \leq poly(|\Omega|, |S|). \]

Let us call a hypergraph \(H \) (represented by a membership oracle \(\Omega \)) **uniformly dual bounded** if the above inequality holds for all subfamilies \(S \subseteq H \).

Corollary 5. Since dualization is used as a black-box, joint generation may increment \(Q \) consecutively, up to \(S^* \cap H^* \) before incrementing \(S \). Thus, joint generation is incrementally efficient to generate \(H \) if and only if \(H \) is uniformly dual bounded.