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Basic SP model

CHOOSE the best x ∈ X , its outcome depends on realization of random
parameter ω and is quantified as f (x, ω).

Reformulation → basic SP model

min
x∈X (P)

EP f (x, ω) (1)

is identified by

known probability distribution P of random parameter ω whose
support belongs to Ω – a closed subset of IRs ;

a given, nonempty, closed set X (P) ⊂ IRn of decisions x;
mostly, X does not depend on P,
probability (chance) constraints considered separately;

preselected random objective f : X (P)× Ω → IR — loss or cost
caused by decision x when scenario ω occurs. Structure of f may be
quite complicated (e.g. for multistage problems).

Need to study properties of the model (existence of expectation,
convexity, etc.), to get f ,P,X (P), to solve, interprete.
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Origins of Minimax SP

Assumption of known P is not realistic, its origin is not clear: wish (test
of software, comparisons), generally accepted model (finance, water
resources), data, experts opinion, etc.

Suggestion of Jaroslav Hájek ∼ 1964 – “what if you try minimax.”

ASSUME: P belongs to a specified class P of probability distributions &
APPLY game theoretical approach, or worst-case analysis of SP (1).

FORMULATION (differs from Iosifescu&Theodorescu (1963)):

Incomplete knowledge of P included into the SP model & hedging, e.g.

min
x∈X

max
P∈P

EP f (x, ω). (2)

Study specification of P and sensitivity of results on its choice.

1966 Congress of Econometric Society in Warsaw →
discussed with Peter Kall and Roger Wets.

1966 Paper on minimax in English.

∼ 1975 András Prékopa and Mátrafüred.
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The minimax paper
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Three levels of uncertainties

1 Unknown values of coefficients in optimization problems modeled as
random, with a known probability distribution P – basic SP model

2 Incomplete knowledge of P −→
• output analysis wrt. P (e.g. Römisch in Handbook)
• minimax approach, P ∈ P
e.g. J.D. 1966–1987, Ben-Tal&Hochman 1972, Jagannathan 1977,
Birge & Wets 1987, Bühler ∼ 1980, Ermoliev & Gaivoronski ∼
1985, Gaivoronski 1991, Klein Haneveld 1986,
Shapiro, Takriti, Ahmed, Kleiwegt 2002–2004, Riis 2002–2003,
Čerbáková 2003–2008, Popescu 2005–2008, Thiele 2008, Pflug,
Wozabal 2007-2008,
and host of papers related to moment bounds applied in stochastic
programming algorithms and output analysis, e.g.
Edirisinghe&Ziemba, Frauendorfer, Kall, Prékopa and many others.

3 Vague specification of P.
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Minimax bounds

ASSUME:

1 X is independent of P, P independent of decisions x,

2 optimal value ϕ(P) in (1) exists for all P ∈ P.

Given class P we want to construct bounds

L(x) = inf
P∈P

EP f (x, ω) and U(x) = sup
P∈P

EP f (x, ω)

for values of objective functions (exploited in numerical procedures)
and/or minimax and maximax bounds for the optimal value ϕ(P)

L = inf
x∈X

inf
P∈P

EP f (x, ω) ≤ ϕ(P) ≤ inf
x∈X

sup
P∈P

EP f (x, ω) = U

valid for all probability distributions P ∈ P.
Applicability depends on f and P;

EXPLOIT EXISTING (AVAILABLE) INFORMATION

KEEP THE MINIMAX PROBLEM NUMERICALLY TRACTABLE
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Choice of P

Various possibilities have been suggested and elaborated.

Convenient situations:

1 P is a finite set

2 P is convex compact;
then the (linear in P) objective functions EP f (x, ω) attain their
infimum and supremum on P,
the best case and the worst case probability distributions are
extremal points of P.

Borel measurability of all functions and sets, as well as existence of
expectations will be assumed and we shall focus mostly on P identified
by (generalized) moment conditions and a given “carrier” set Ω; see e.g.
Prékopa 1995 for collection and discussion of relevant results.
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Frequent choices of P I.

The listed classes are not strictly separated!

P consists of probability distributions on Borel set Ω ⊆ Rm which
fulfill certain moment conditions, e.g.,

Py = {P : EPgj(ω) = yj , j = 1, . . . , J}

with prescribed values yj ∀j , mostly 1st and 2nd order moments.

Inequalities in (3).
Interesting idea (Delage&Ye 2008): identify P by bounds on
expectations (µ) and bounds on the covariance matrix, e.g.

EP [(ω − µ)(ω − µ)>] � γΣ0 for all P ∈ P

and apply approaches of semi-definite programming.

P contains probability distributions on Ω with prescribed marginals
(Klein Haneveld);

Additional qualitative information, e.g. unimodality, symmetry or
bounded density of P, taken into account, e.g. J.D., Popescu,
Shapiro;
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Frequent choices of P II.

P consists of probability distributions carried by specified finite set
Ω. To get P means to fix the worst case probabilities of considered atoms

(scenarios) taking into account a prior knowledge about their partial

ordering (Bühler, Čerbáková) or their pertinence to an uncertainty set

(Thiele), etc.;

P is a neighborhood of a hypothetical, nominal or sample probability
distribution P0 such as the empirical distribution. This means that

P := {P : d(P,P0) ≤ ε}

with ε > 0 and d a suitable distance between P0 and P. Naturally,
results are influenced by choice of d and ε.
See Calafiore for the Kullback-Leibler divergence between discrete P, P0 :

dKL(P, P0) :=
X

i
pi log(pi/p0

i )

or Pflug&Wozabal, Wozabal for the Kantorovich distance.

P consists of finite number of specified probability distributions
P1, . . . ,Pk , e.g. Shapiro&Kleywegt; the problem is

min
x∈X

max
i=1,...,k

F (x,Pi ).
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Py defined by moment conditions

P = Py consists of probability distributions Ω ⊆ Rm which fulfill certain
moment conditions, e.g.

Py = {P : EPgj(ω) = yj , j = 1, . . . , J} (3)

with prescribed values yj ∀j , mostly 1st and 2nd order moments.

Also with inequalities in (3), with additional qualitative information, e.g.
unimodality, symmetry or bounded density of P, taken into account; cf.
J.D., Čerbáková, Popescu, Shapiro.

Allows to exploit classical results on moment problems.

SUGGESTED SOLUTION TECHNIQUES: generalized simplex method,
stochastic quasigradients, L-shaped method ...
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Basic assumptions

For simplicity assume:
Ω is compact, gj ∀j continuous, f (x, •) upper semicontinuous on Ω,
y ∈ Y := conv{g(ω), ω ∈ Ω} =⇒ Py is convex compact (in weak
topology), ∃ extremal probability distributions, have finite supports and
solution of the “inner” problem

U(x, y) := max
P∈Py

EP f (x, ω) :=

∫
Ω

f (x, ω)dP(ω) subject to

∫
Ω

dP(ω) = 1,

∫
Ω

gj(ω)dP(ω) = yj , j = 1, . . . , J

with prescribed y ∈ Y reduces to solution of generalized linear program
−→ atoms of the worst-case probability distribution & their probabilities.
Dual program:

min
d

∑J

j=1
djyj + d0 subject to

d0 +
∑J

j=1
djgj(z) ≥ f (x, z) ∀z ∈ Ω.

U(x, y) is a concave function of y on Y, to be minimized over x ∈ X .
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Example: Special convex case

For f (x, •) convex function on bounded convex polyhedron
Ω = conv{z(1), . . . , z(H)} ⊂ IRm, gj linear,

Py = {P : P(Ω) = 1,EPωj = yj , j = 1, . . . ,m}

y given interior point of Ω. Constraints of dual problem

d0 +
∑m

j=1
djzj ≥ f (x, z)

hold true ∀ z ∈ Ω ⇐⇒ they are fulfilled for all extreme points z(h) of Ω.
By LP duality, the moment problem reduces to linear program

max
p

∑H

h=1
phf (x, z(h)) subject to (4)

∑H

h=1
phz

(h)
j = yj , j = 1, . . . ,m,

∑H

h=1
ph = 1, ph ≥ 0 ∀h.

Set of feasible solutions is bounded convex polyhedron =⇒ ∃ finite
number of worst-case (decision-dependent) probability distributions P∗

satisfying moment conditions & carried by extreme points of Ω (cf.
Edmunson-Madansky).
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Stability of minimax solutions – 3rd level of uncertainty

EXAMPLE 1. f (x, z) =
∑m

j=1 fj(x, zj), fj convex functions of zj ∀j , x,
Py is defined by conditions on marginal distributions of ωj :
carried by given intervals [aj , bj ] (Ω is their Cartesian product),
EPωj = yj , with prescribed values yj ∈ (aj , bj)∀j =⇒

max
P∈Py

f (x, ω) =
∑m

j=1
λj fj(x, aj) +

∑m

j=1
(1− λj)fj(x, bj) (5)

with λj = (bj − yj)/(bj − aj).

∃ extensions to inequality constrained moment problems, non-compact Ω
∃ relaxations to moment problems with given range and expectation etc.

ORIGIN OF PRESCRIBED MOMENTS VALUES AND/OR OF Ω?
estimated, given by regulations, fixed ad hoc ..., vague definition of P
−→ interest in robustness wrt. changes of P

3rd LEVEL OF UNCERTAINTY

IDEA: Exploit parametric optimization and asymptotic statistics in
output analysis wrt. Py developed for ordinary stochastic programs.
Different techniques needed for nonparametric classes.
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Assumptions

ASSUMPTIONS

X ⊂ IRn is a nonempty convex compact set,

Ω ⊂ IRm is a nonempty compact set,

g1, . . . , gK are given continuous functions on Ω,

f : X ×Ω → IR1 is continuous on Ω for an arbitrary fixed x ∈ X and
for every ω ∈ Ω it is a closed convex function of x,

the interior of the moment space Y := conv {g(Ω)} is nonempty.

Basic assumptions =⇒ for fixed y ∈ Y class Py is convex and compact
(in weak topology) and
for fixed x, U(x, y) is concave function of y on Y.

Additional convexity assumptions =⇒ convex - concave function U(x, y).
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Deterministic stability wrt. prescribed moments values

Stability of minimax bound U(y) := minx∈X U(x, y) follows from results
for nonlinear parametric programming.
Denote X (y) set of minimax solutions.

PROPOSITION
If X ⊂ IRn is nonempty, compact, convex ⇒

• U(y) is concave on Y,
• mapping y → X (y) is upper semicontinuous on Y.

Directional derivatives exist on intY in all directions and gradients of
U(y) exist almost everywhere there.
Explicit formulas are available under additional assumptions.
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Stability wrt. choice of Ω

Direct analysis of explicit formulas in Example 1 shows that due to
changes of Ω the upper bound function U(x, y) may change substantially.

For probability distributions carried by given finite set of scenarios and in
the special convex case, worst case probabilities are obtained as solutions
of LP of the type (4) with compact set of feasible solutions. Changes of
scenarios or vertices z(h) influence matrix of coefficients and coefficients
in the objective function. Classical stability analysis for LP applies:
For y interior point of Ω, set of optimal solutions of LP dual to (4)

inf
d∈D

d0 +
K∑

k=1

dkyk (6)

D = {d ∈ IRK+1 : d0 +
K∑

k=1

dkz
(h)
k ≥ f (x, z(h)), h = 1, . . . ,H} (7)

is nonempty and bounded (cf. Kemperman)
=⇒ the LP (4) is stable =⇒
local continuity of its optimal value U wrt. all input coefficients.
(cf. Robinson)
Covers the case of unique, nondegenerated optimal solution of (4).
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Stability wrt. choice of Ω – cont.

Another possibility: allow some uncertainty in selection of z(h) :
vertices zh belong to ellipsoid around z(h),

z(h) → zh = z(h) + Ehδ
h, ‖δh‖2 ≤ %, (8)

best solution of dual LP (6)–(7) which is feasible for all choices of zh

obtained by perturbations (8). In the simplest case Eh = I h-th
constraint of (7) is fulfilled if

d0 + d>z(h) + d>δh − f (x, z(h) + δh) ≥ 0 ∀‖δh‖2 ≤ %. (9)

Lipschitz property of f (x, •) on neighborhood (8) −→ ∃ constant l s. t.

|f (x, zh)− f (x, z(h))| ≤ l‖δh‖2 ≤ l%.

=⇒ To satisfy constraint (9), it is sufficient that

d0 + d>z(h) − f (x, z(h))− %
√
‖d‖2

2 + l2 ≥ 0. (10)

When the optimal solution of unperturbed LP (6)–(7) is unique and
nondegenerated, then ∃ %max > 0 such that for all problems with
perturbed constraints (10) with 0 < % < %max optimal solutions are
unique and nondegenerated.
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Comments

• Similar analysis applies to the case of probability distributions Py

carried by a fixed finite support (under suitable assumptions about the
mapping g).

• Even for classes P which do not assume a known support various
assumptions about Ω are exploited in output analysis, e.g.

there is a ball of radius R that contains the entire support of
the unknown probability distribution; the magnitude of R may
follow from “an educated and conservative guess”.
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Approximated support – Example

Convergence properties can be given for finite supports which are
consecutively improved to approximate the unknown support, cf.
Riis&Anderson.

EXAMPLE 2. Py is class of probability distributions (3) carried by
compact set Ω ⊂ IRm, f : IRn × Ω is convex in x and bounded,
continuous in ω.

{Ων}ν≥1 – sequence of finite sets in IRm such that Ων ⊆ Ων+1 ⊆ Ω. (Use
additional sample scenarios.) Choose ν0 such that y ∈ int conv{g(Ων0)}.
For ν ≥ ν0 consider classes Pν

y of probability distributions carried by Ων

for which moment conditions (3) are fulfilled.
Application of Proposition 2.1 of Riis&Anderson =⇒

If for every P ∈ Py ∃ subsequence of {Pν}ν≥ν0 , Pν ∈ Pν
y which

converges weakly to P, then for ν →∞,

min
x∈X

max
P∈Pν

y

EP f (x, ω) → min
x∈X

max
P∈Py

EP f (x, ω)

and upper semicontinuity of sets of minimax solutions with respect to the
considered convergence of classes Pν

y to Py holds true.
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Additional input information

Qualitative information such as unimodality – removed by transformation
of probability distributions and functions −→ basic moment problem.
Approach for unimodal probability distributions on IR1; and all
expectations finite; general case cf. Popescu, Shapiro.

PM
y – class of unimodal probability distributions on IR1 with given mode

M & moment conditions (3) =⇒ extremal points of PM
y are mixtures of

uniform distributions over (u,M) or (M, u′), −∞ < u < M < u′ < +∞
and of degenerated distribution concentrated at M; support Ω is kept.

h – real function on IR1, integrable over any finite interval of (u,M) and
(M, u), h∗ – transform of h defined as follows:

h∗(z) =
1

z −M

∫ z

M

h(u)du for z 6= M and h∗(z) = h(z) for z = M.

(11)
Then

Ũ(x, y ,M) := max
P∈PM

y

EP f (x, ω) = max
P
{EP f ∗(x, ω) : EPg∗j (ω) = yj , ∀j}.

(12)
Transform h∗ of a convex function h is convex. See J.D.
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Additional input information – Example

EXAMPLE 3 – Example 1 with m = 1 for unimodal probability
distributions with given mode M : Define µ = 2y −M. For
g(u) = u, g∗(z) = 1/2(z + M), EPg∗(ω) = 1/2(y + M). Then EPω = µ
and the transformed moment problem on rhs. of (12) reads

U(x, µ) = max
P
{EP f ∗(x, ω) : EPω = µ, P(ω ∈ [a, b] = 1)} := Ũ(x, y ,M)

i.e. the usual moment problem over class Pµ. Transformed objective
f ∗(x, z) is convex in z =⇒ maximal expectation EP f ∗(x, ω) over Pµ of
probability distributions on [a, b] with fixed expectation EPω = 2y −M is

U(x, µ) = λf ∗(x, a) + (1− λ)f ∗(x, b) = Ũ(x, y ,M)

with λ = b−µ
b−a = b−2y+M

b−a . Substitution for f ∗(x, z) according to (11) =⇒

Ũ(x, y ,M) =
b − 2y + M

(b − a)(M − a)

∫ M

a

f (x, u)du+
2y −M − a

(b − a)(b −M)

∫ b

M

f (x, u)du.

Two densities of uniform distributions weighted by λ resp. (1− λ).
Unknown mode – additional maximization wrt. M ∈ [a, b] : worst-case
probability distribution is uniform on [a, b] if y = 1/2(a + b) or mixture
of uniform distribution over [a, b] and degenerated one concentrated at a
or b for y > 1/2(a + b) resp. y < 1/2(a + b).
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Stability wrt. estimated moments values

For compact Ω, for gj∀j continuous in ω and for y ∈ Y class Py is nonempty,
convex, compact (in weak topology).

Expectations EP f (x, ω) attain their maxima and minima at extremal points of

Py , i.e. for discrete probability distributions from Py carried by no more than

J + 1 points of Ω and for y ∈ Y,

U(x, y) is a finite concave function of y on Y.
Assume that sample information was used to estimate moments values, or
other parameters which identify class Py . Assume that these parameters
y were consistently estimated e.g. using sequence of iid observations of
ω. Let yν be based on the first ν observations. Using continuity of
function U(x, •) and theorems about transformed random variables, we
get for consistent estimates yν of true parameter y pointwise convergence

uν(x) := U(x, yν) → U(x, y) a.s. (13)

valid at an arbitrary element x ∈ X .
In general, pointwise convergence does neither imply consistency of
optimal values U(yν) := minx∈X U(x, yν) nor consistency of minimax
solutions.

Use epi-convergence.
Jitka Dupačová Minimax Stochastic Programs and beyond



Epi-convergence

DEFINITION – Epi-convergence.

A sequence of functions {uν : IRn → ĪR, ν = 1, . . . } is said to
epi-converge to u : IRn → ĪR if for all x ∈ IRn the two following
properties hold true:

lim inf
ν→∞

uν(xν) ≥ u(x) for all {xν} → x (14)

and for some {xν} converging to x

lim sup
ν→∞

uν(xν) ≤ u(x). (15)

Pointwise convergence implies condition (15), additional assumptions are
needed to get validity of condition (14).

Fortunately, pointwise convergence of closed, convex functions u, uν with
int dom(u) 6= ∅ implies epi-convergence.
In such case, we also have lim sup{arg min uν} ⊂ arg min u.

Convexity is important!
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Stability wrt. estimated moments values – Consistency

Apply this approach to class Py defined by generalized moment
conditions. U(x, •) is concave and finite on Y =⇒ continuous on intY
=⇒ almost sure pointwise convergence of uν(x) → U(x, y).
Boundedness, continuity and convexity of f (x, ω) wrt. x =⇒
expectations EP f (x, ω) are convex functions of x for all P ∈ P.

THEOREM:
Under consistency of estimates yν , continuity properties of U(x, y) with
respect to y, convexity with respect to x, convexity and compactness of
X (see ASSUMPTIONS) approximate objectives uν(x) epi-converge
almost surely to U(x, y) as ν →∞ =⇒ with probability 1 all cluster
points of sequence of minimizers xν of uν(x) on X are minimizers of
U(x, y) on X and minx∈X uν(x) → minx∈X U(x, y).

EXAMPLES:
•Py defined by moment conditions (3), fixed compact Ω & f convex in x;
• Special convex case for f convex in x with perturbed y ∈ intY & Ω;
• Similar result holds true also for the “data-driven” version of Example 3
(unimodal probability distributions with estimated mean).
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Consistency – Example

Stability wrt. choice of Ω in one-dimensional case; exploit epi-consistency
ideas under special circumstances:

EXAMPLE 4 – related to Example 1.
Parameters a, b, µ identifying the class of one-dimensional probability
distributions on interval [a, b] with mean value µ are known to belong to
the interior of a compact set and their values can be obtained by
estimation procedure based on a sample path of iid observations of ω
from the true probability distribution P. Their consistent estimates based
on a sample size ν are the minimal/maximal sample values and the
arithmetic mean, i.e. ων:1, ων:ν and µν = 1/ν

∑ν
i=1 ωi . We know explicit

form of all approximate objective functions

uν(x) := λν f (x, ων:1) + (1− λν)f (x, ων:ν)

with λν = (ων:ν − µν)/(ων:ν − ων:1); see Example 1 for m = 1. This is
continuous function of parameters provided that ων:1 < ων:ν . For convex
f (•, ω), uν(x) are convex in x and epi-converge to u(x). For compact set
X , existence of the true minimax solution x follows from continuity of
f (•, a) and f (•, b).
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Extensions

Stochastic programs whose set of feasible solutions depends on P :

minimize F (x,P) := EP f (x, ω) on the set X (P) (16)

where X (P) = {x ∈ X : G (x,P) ≤ 0}, e.g. probabilistic programs, risk
or stochastic dominance constraints, VaR.
Incomplete knowledge of P – solve “robustified” version of (16), cf.
Pflug& Wozabal, Dentcheva& Ruszczyński:

min
x∈X

max{F (x,P) : P ∈ P} (17)

subject to G (x,P) ≤ 0∀P ∈ P or equivalently, subject to

max
P∈P

G (x,P) ≤ 0. (18)

Results of moment problem apply again when G (x,P) is convex in x and
linear in P, e.g. portfolio optimization with CVaR constraints, calculation
of worst-case VaR

VaRwc
α (ω,P) = min k subject to sup

P∈P
P(ω ≥ k) ≤ α.

Depends on choice of class P, additional information (unimodality,
symmetry) – Example:
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Worst-case VaR; mean 0, variance 1
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Functionals nonlinear in P

For convex, compact class P and for fixed x, the maxima in (17), (18)
are attained at extremal points of P; hence for the class Py identified by
moment conditions (3) (and under mild assumptions), it is possible to
work with discrete distributions P ∈ P. This property carries over also to
G (x,P) in (18) and/or F (x,P) in (17) convex in P.

WARNING:
Whereas expected utility functions or CVaRα(x,P) are linear in P, other
popular portfolio characteristics are even not convex in P: the variance is
concave in P, mean absolute deviation is neither convex nor concave in
P. This means that extensions to risk functionals nonlinear in P carry
over only under special circumstances.

EXAMPLE 5.
ω – random vector of unit returns of assets included to portfolio,
f (x, ω) = −ω>x quantifies random loss of investment x.
Probability distribution P of ω is known to belong to a class P of
distributions for which i.a. expectation EPω = µ is fixed (independent of
P). Then for fixed x, varP f (x, ω) = EP(ω>x)2 − (µ>x)2 and mean
absolute deviation MADP f (x, ω) = EP |ω>x− µ>x| are linear in P.
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Conclusions

The presented approach to stability analysis of minimax stochastic
programs with respect to input information was elaborated for class P
defined by generalized moment conditions (3) and a given carrier set Ω.
It is suitable also for other “parametric” classes P. Stability for
“nonparametric” classes, e.g. Pflug&Wozabal, would require different
techniques.
We did not aim at the most general statements and results on stability
and sensitivity of minimax bounds and minimax decisions with respect to
the model input. Various convexity assumptions were exploited:

convexity and compactness of class Py,

convexity of random objective function f (x, ω) with respect to x on
a compact convex set of feasible decisions,

convexity of functionals F (x,P), G (x,P) with respect to probability
distribution P.

Convexity of random objective with respect to x can be replaced by saddle
property and under suitable conditions, also unbounded sets X can be
treated. Open question: under what assumptions the presented approach
can be applied to minimax problems with functionals nonconvex in P.
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