

Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and Technology Center

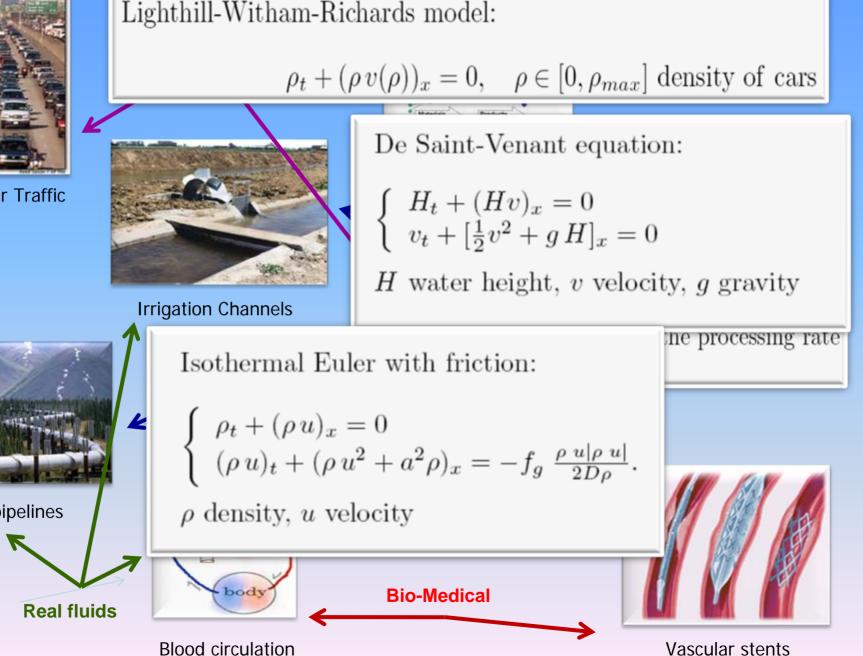
Center for Advanced Data Analysis A Department of Homeland Security Center of Excellence

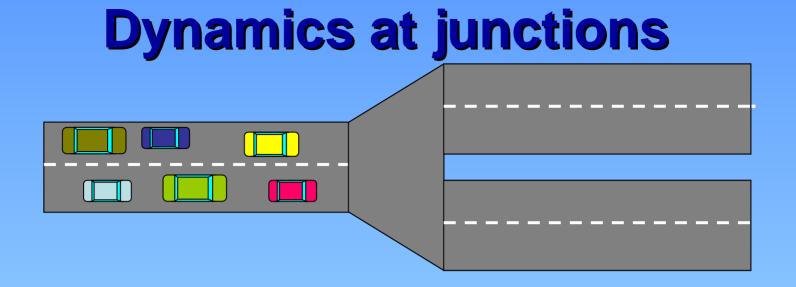
DIMACS/CCICADA Workshop on Stochastic Networks: Reliability, Resiliency, and Optimization

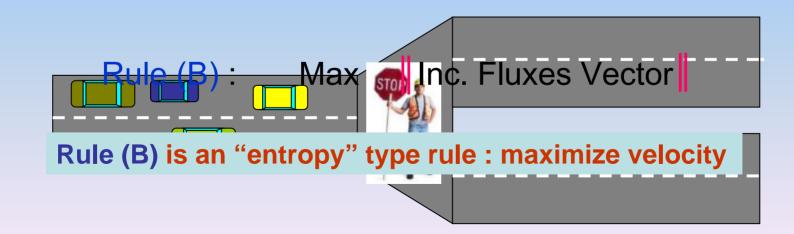
Heterogeneous models for nonlinear flows on networks

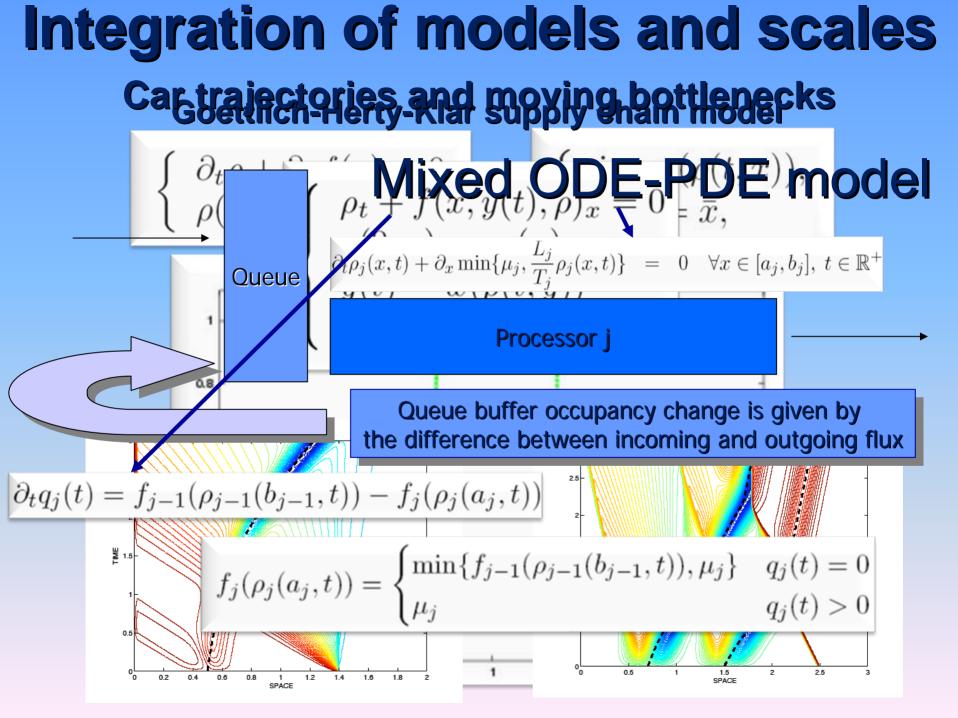
BENEDETTO PICCOLI

Joseph and Loretta Lopez Chair Professor of Mathematics Department of Mathematical Sciences

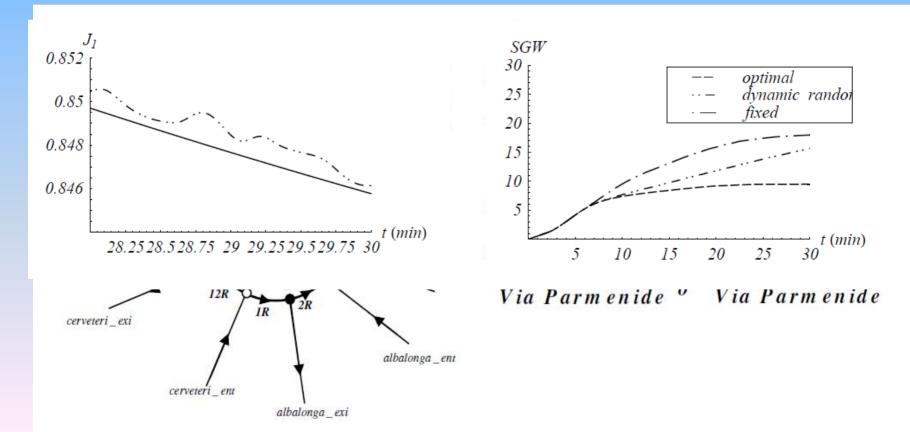

and


Director of Graduate Program in Computational and Integrative Biology Center for Computational and Integrative Biology Rutgers University - Camden




Lighthill-Witham-Richards model:

Rule (A) : Out. Fluxes Vector = $A \cdot Inc.$ Fluxes Vector Traffic distribution matrix $A = (\alpha_{ii}), 0 < \alpha_{ii} < 1, \Sigma_i \alpha_{ii} = 1$



Optimization of vehicular traffic

$$J_1(t) = \sum_i \int_{I_i} v(\rho_i(t, x)) dx,$$
$$J_2(t) = \sum_i \int_{I_i} \frac{1}{v(\rho_i(t, x))} dx.$$

$$SGW = \int_0^T \int_{\cup I_i} |Dv(\rho)| \, dt dx.$$

Optimal control for supply chains

$$\begin{cases} \partial_t \rho_j (x, t) + \partial_x \min \{\mu_j, \upsilon_j \rho_j (x, t)\} = 0 & j = 1, ..., N, \\ \dot{q}_j (t) = f_{j-1} (\rho_{j-1} (b_{j-1}, t)) - f_j^{inc} & j = 2, ..., N, \\ \rho_1 (a_1, t) = u(t) & \\ \rho_j (x, 0) = \rho_{j,0} (x) & j = 1, ..., N, \\ q_j (x, 0) = q_{j,0} & j = 2, ..., N, \end{cases}$$

$$J(u) = \sum_{j=1}^{n} \int_{0}^{T} q_{j}(t)dt + \int_{0}^{T} \left[\upsilon_{N} \cdot \rho_{N}(b_{N}, t) \right] - \psi(t) \left[\frac{1}{2} dt \doteq J_{1}(u) + J_{2}(u) \right],$$

Existence of solutions

Take minimizing sequence: compactness by Helly and Ascoli Arzela' Theorem.

$$q_n \to q$$
 in C^0 , thus $J_1(u_n) \to J_1(u)$

$$\int_{0}^{T} \left((v_{N} \cdot \rho_{N}^{n}(b_{N},t)) - \psi(t))^{2} - (v_{N} \cdot \rho_{N}(b_{N},t)) - \psi(t))^{2} \right) dt = \int_{0}^{T} \left((v_{N})^{2} \left((\rho_{N}^{n}(b_{N},t))^{2} - (\rho_{N}(b_{N},t))^{2} \right) + 2\psi(t)v_{N}\left(\rho_{N}^{n}(b_{N},t)\right) - \rho_{N}(b_{N},t) \right) dt \leq ||2\psi(t) + v_{N}(\rho_{N}^{n}(b_{N},t) + \rho_{N}(b_{N},t))||_{\infty} \cdot ||v_{N}(\rho_{N}^{n}(b_{N},t) - \rho_{N}(b_{N},t))||_{L^{1}}.$$

Tangent vectors for numerical optimization

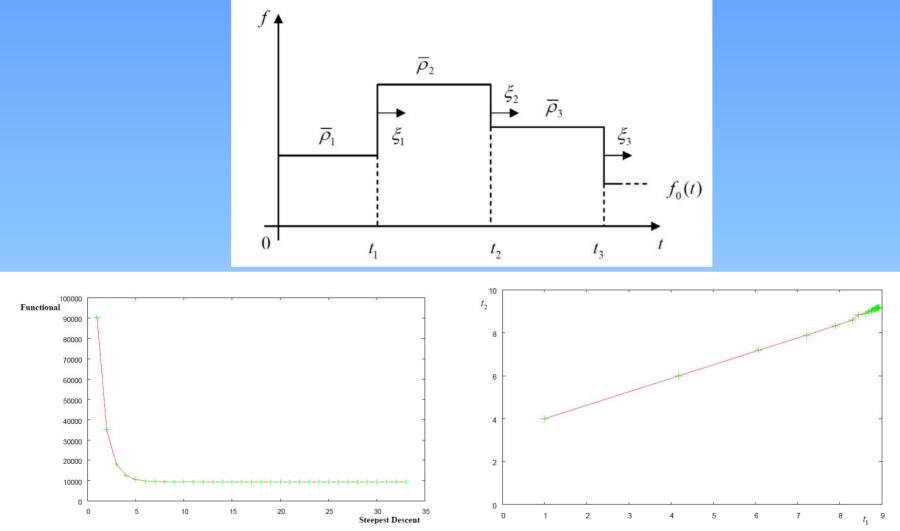


Figure 7: Supply chain with 11 arcs, case a. Left: J_1 versus iteration steps; right: "path" followed by the steepest descent algorithm in the plane (t_1, t_2) .

Cyber-infcastatictures fepinfe-mobility Network with 5000 roads parametrized by [0,1], h space mesh size, T real size CPU time 1. Use simplified flux function with two characteristic speeds FSF \mathbf{FG} G 0.60 s $1.78 \ s$ 29.37 s0.21.12 s $1.35 \, {\rm s}$ 0.15.68 s3.05 s10**4**.74 s $19.83 \ s$ 9.30 s 0.05394.03 s 1515.32 s0.02573.86 s 31.40 sT = 30regu TRUD 3500 32 s85 71 s3000 2500c.berkeley.edu 2000 $f(\rho)$ 1500 5.38 s $45'_{2}$ 1000 www.octotelematics.com 500<u>G = Fast Godi</u> **ristic**) 0 250300 330 501001502000 FSF = Fasi IX

CROWD DYNAMICS

Andrea Tosin

VEHICULAR TRAFFIC

SUPPLY CHAINS

Gabriella Bretti

Ciro D'A Michae

Rosanna Manzo

Axel Klar

Simone Goet

Paola Gmatiro Ganavella Maria

Francesco Rossi

Roberto Nataline Bing Work

Emiliano Cristian

Alex Bayerrado Lasten Blandin

Paolo Frascecine Chitour, Giuseppe Aroelite Maur ANIMAL GROUPS

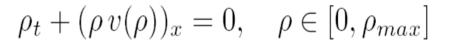
Thank you for your attention!

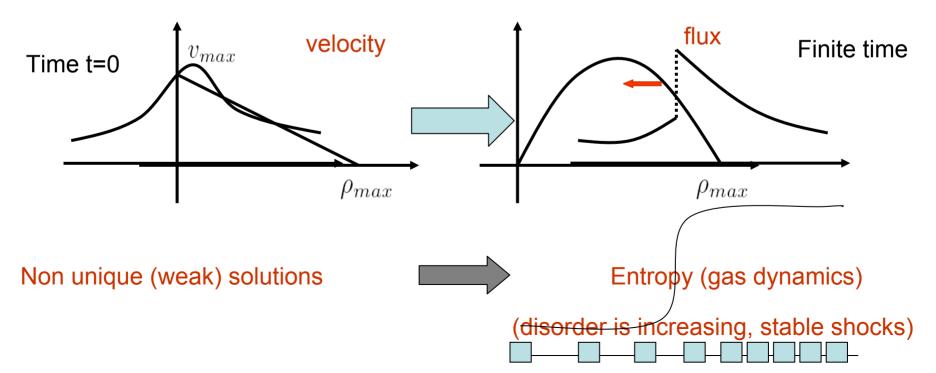
- 1. G. Bastin, A. Bayen, C. D'Apice, X. Litrico, B. Piccoli, Open problems and research perspectives for irrigation channels, Networks and Heterogeneous Media, 4 (2009), i-v.
- 2. M. Caramia, C. D'Apice, B. Piccoli and A. Sgalambr, Fluidsim: a car traffic simulation prototype based on fluid dynamic, Algorithms, 3 (2010), 291-310.
- 3. A. Cascone, C. D'Apice, B. Piccoli and L. Rarità, Optimization of traffic on road networks, M3AS Mathematical Methods and Modelling in Applied Sciences 17 (2007), 1587-1617.
- 4. G.M. Coclite, M. Garavello and B. Piccoli, Traffic Flow on a Road Network, Siam J. Math. Anal 36 (2005), 1862-1886.
- 5. R. Colombo, P. Goatin, B. Piccoli, Road networks with phase transitions, Journal of Hyperbolic Differential Equations 7 (2010), 85-106.
- 6. E. Cristiani, C. de Fabritiis, B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensors data, Communications in Applied and Industrial Mathematics 1 (2010), 54-71.
- 7. C. Emiliani, P. Frasca, B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, to appear on Journal of Mathematical Biology.
- 8. C. D'Apice, S. Goettlich, M. Herty, B. Piccoli, Modeling, Simulation and Optimization of Supply Chains, SIAM series on Mathematical Modeling and Computation, Philadelphia, PA, 2010.
- 9. C. D'Apice, B. Piccoli, Vertex flow models for vehicular traffic on networks, Mathematical Models and Methods in Applied Sciences (M3AS), 18 (2008), 1299 -1315.
- 10. M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, vol. 1, American Institute of Mathematical Sciences, 2006, ISBN-13: 978-1-60133-000-0.
- 11. M. Garavello, B. Piccoli, Source-Destination Flow on a Road Network, Communications Mathematical Sciences 3 (2005), 261-283.
- 12. M. Garavello, B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations 31 (2006), 243-275.
- 13. M. Garavello, B. Piccoli, On fluid dynamic models for urban traffic , Networks and Heterogeneous Media 4 (2009), 107-126.
- 14. M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with discontinuous flux, Network Heterogeneous Media 2 (2007), 159–179.
- 15. A. Marigo and B. Piccoli, A fluid-dynamic model for T-junctions, SIAM J. Appl. Math. 39 (2008), 2016-2032.
- 16. B. Piccoli, A. Tosin, Pedestrian flows in bounded domains with obstacles, Continuum Mechanics and Thermodynamics 21 (2009), 85-107.
- 17. D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, A. Bayen, A traffic model for velocity data assimilation, Applied Mathematics Research Express, 2010 (2010), 1-35.

Real data

Problems :

Dimensionality: big networks Data: measurements and elaboration




NETWORK of SALERNO

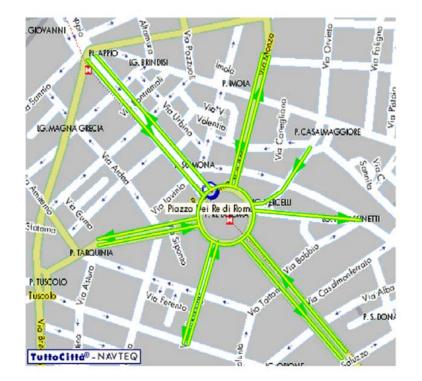
Lighthill-Whitham-Richards model

The flux is given by the density times the average velocity $f(t,x) = \rho(t,x) \cdot v(t,x)$ If we assume that the average velocity depends only on density $v(t,x) = v(\rho(t,x))$

Lighthill-Witham-Richards model:

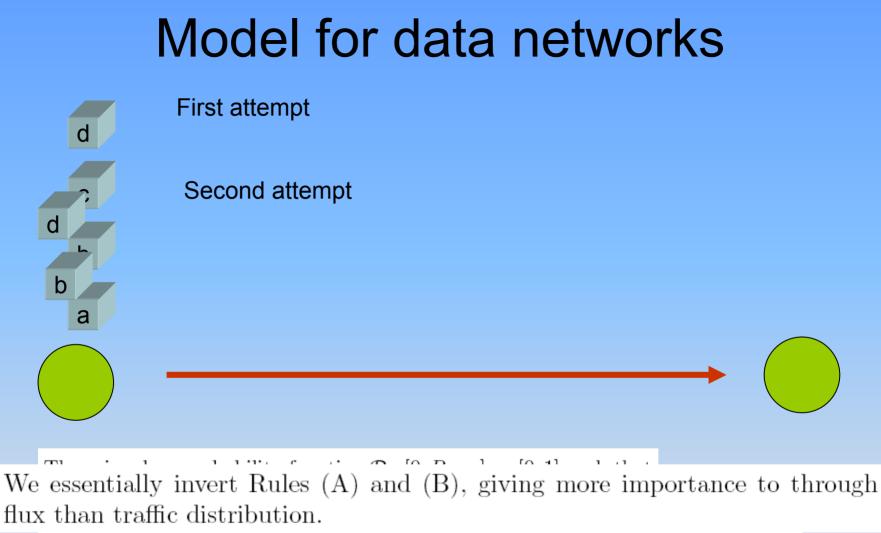
Networks and Re di Roma square

More incoming than exiting road



Priority parameters

Bifurcations, merging, complicate junctions, traffic circles


Theory : existence of solutions on networks for BV initial data.

Road flux total variation in $\mathbf{x} \sim$ Junctions flux total variation in t

ZOOM

