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ON MULTIVARIATE DISCRETE
MOMENT PROBLEMS AND THEIR
APPLICATIONS TO BOUNDING
EXPECTATIONS AND PROBABILITIES

Gergely Nagy Andras Prékopa

Abstract. The discrete moment problem (DMP) has been formulated as a
methodology to find the minimum and/or maximum of a linear functional acting
on an unknown probability distribution, the support of which is a known discrete
(usually finite) set, where some of the moments are known. The moments may
be binomial, power or of more general type. The multivariate discrete moment
problem (MDMP) has been initiated by the second named author who developed
a linear programming theory and methodology for the solution of the DMP’s and
MDMP’s under some assumptions, that concern the divided differences of the
coeflicients of the objective function. The central results in this respect are there
that concern the structure of the dual feasible bases. In this paper further results
are presented in connection with MDMP’s for the case of power and binomial
moments. The main theorem (Theorem 3.1) and its applications help us to find
dual feasible bases under the assumption that the objective coefficient function has
nonnegative divided differences of a given total order and further divided differences
are nonnegative in each variable. Any dual feasible basis provides us with a bound
for the discrete function that consists of the coefficients of the objective function
and also for the linear functional. The latter bound is sharp if the basis is primal
feasible as well. The combination of a dual feasible basis structure theorem and the
dual method of linear programming is a powerful tool to find the sharp bound for
the true value of the functional, i.e., the optimum value of the objective function.
The lower and upper bounds are frequently close to each other even if the number
of utilized moments is relatively small. Numerical examples are presented for
bounding the expectations of functions of random vectors as well as probabilities
of Boolean functions of event sequences.

Keywords: Discrete moment problem, Multivariate Lagrange interpolation,
Linear programming, Expectation bounds, Probability bounds
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1 Introduction

The multivariate discrete moment problem (MDMP) has been introduced and discussed in
the papers by Prékopa (1992, 1998, 2000). The problem can be formulated in connection
with a random vector (Xi,...,X,) in the following way. We assume that the support of X;
is a known finite set Z; = {zjo,..., zjn, }, Where zj0 < -+ < zjn;; = 1,...,5 and define

pil...is :P(Xl :Zlil,...,Xs :Zsis), 0 S’I,] §nj, j: 1,...,3,

]

Ng
— E E a1 Qg o )
/’La1~~~as - e zlil e Zsispll~~~7fs7

721 =0 1s=0

where ay,...,a, are nonnegative integers. The number p,, ., will be called the
(a1, ...,a,s)-order moment of the random vector (Xi,...,X,), and the sum a; + -+ -+ a, the
total order of the moment.

Let Z = Zy x -+ x Zs and f(z), 2 € Z be a function for which we introduce some
assumptions. Let f; ;. = f(z1i,...,%s,). One way to formulate the multivariate discrete

moment problem is the following:

]

min(max) Y -+ > fi, iDiy..d.

721 =0 25=0
subject to
) (1)
Do D A R Piiy = ey a
721 =0 25=0
fora; >0, 5=1,...,8 a1 +---a, <m
Piy.is > 0, all ¢q,. .. 1,

We can generalize the above problem by introducing univariate moments of higher order than
m into the constraints. One possible way, what we consider in this paper, is the following

1 Ng
min(max) »_ -+ ¥ firiiPiris

21=0 2s=0

subject to

1 Mg
a1 e X F—
Z te Z 214y " RaigPin g — Moy .o (2)

21=0 1s=0

foro; >0, 3=1,....8 au+ -0, <mand

foro; =0, 3=1,....k—1k+1,....8, m< o <my, k=1,....,s;
Diq.. i Z 0, all 7:1,...,’1:3.

In problems (1) and (2) the unknown variables are the p;, _;,, all other quantities are known.
In case of (2), this means that, in addition to all moments of total order at most m, the
at most myth order moments (my > m) of the kth univariate marginal distribution is also
known, k=1,...,s.
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The above problems serve for bounding

E[f(X1,...,X,)] (3)

under the given moment information. By suitable choices of the function f, the expectation
(3) specializes to

P(Xl Zrl,...,XSer) (4:)

or

P(Xl :Tl,...,XSZTS), (5)

where (71,...,75) € Z. As byproducts of our methodology, we also obtain bounds for the
discrete function f(z), z € Z.

Problems (1) and (2) can be written in more compact forms by the use of the tensor
products of matrices. The tensor product B ® C of the m; x n; matrix B = (b;;) and the
ms X Ny matrix C = (¢;;) is the mims X nine matrix B Q@ C = (¢;;B). It is well-known (see,
e.g., Horn and Johnson (1991)) that the tensor product is associative but not commutative.
Let us introduce the notations:

A, _ Z]O Zjl Z]n]
J ”

mjy mjy my

ZjO Zjl Zjnj

A=40 04,

b = E[(LX1,...,. X ® @ (1,X,,...,X")"

= (,Moo...o, H10...05 - - - 5y #m,0...05 H010...0, H11...05 - - -)T
p = (pil...is7 0§i1§n17"'70§i8§n8)T
.f - (fil...is7 OSII’l §n17"'70§i8§n8)T7

where the ordering of the components in p and f coincides with that of the corresponding
columns in the matrix A. By the aid of suitable selections of the rows of A, as well as
components of b, we can write up the above problems in compact forms. The compact form
of problem (1) is written as:

min(max) f'p
subject to
Ap i (6)

P 0

AVANI

Y

and the compact form of problem (2) is:

min(max) f'p

subject to
Ap
p

AVART

o o
—
N
S—
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The matrix A has size [(my + 1)---(ms + 1)] X [(ny + 1)---(ns + 1)] while A has size
N x [(ngy 4+ 1)---(ns + 1)], where N = (s—i—nm)7 and A has size N’ x [(ny +1)---(ns + 1)],

where N' = N + 37%_;(m; —m). The matrix A has full rank if m < nj, j=1,...,s and A
has full rank if m; <mnj;, 3 =1,...,s.

Let Vinin (Vinaz) designate the minimum (maximum) value in problem (1) or problem
(2). Let further B; (B,) designate a dual feasible basis (i.e., a basis for which the opti-
mality condition is satisfied) for the minimization (maximization) problem. Then, by linear
programming theory, we know that

.f]T31pBl S Vmin S E [f(X17 s 7Xs)] S Vmam S f§2p32- (8)

If By (B,) is an optimal basis in the minimization (maximization) problem, then the first
(last) inequality holds with equality sign. We say that V,,;, and V.4, are the sharp lower
and upper bounds, respectively, for the expectation of f(Xi,...,X,).

The formulation of the discrete binomial moment problem is similar to the discrete power
moment problem. Taking into account its most important applications to event sequences,

where X; means the number of events that occur in the jth sequence, 7 = 1,....s, we
formulate the problem for the case of Z; = {0,...,n;}, 7=1,...,s.
Let us introduce the cross binomial moments of order (ay,...,a,) (aq,...,a, are non-

negative integers):

Sapeas = B [(f) (f)] )

and formulate again two different types of problems. The first one is

]

min(max) >+ > firiiPi

21=0 2s=0

: (Zs)pil...is - SOél...Oés (10)
84

for o; >0, j=1,...,8 ar+---+a,<m
pil...is Z 07 a-']-]- 7:1, . . 7'1:37

subject to

while the second one is

1 Mg
min(max) > o > firiiPiy .

721 =0 1s=0

" ne /- .
YIRS (“) (Z)p = Sqcx (11)
71 =0 1s=0 & s

foro; >0, 3=1,....8 au+ -0, <mand

foro; =0, 79=1,....k—1k+1,....8, m< o <my, k=1,....s;
pil...is Z 0, all 7:1, . ,’I:s.

subject to
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These correspond to problems (1) and (2), respectively. If in problems (1) and (2) we
assume that Z; = {0,...,n;}, 7 =1,...,s, then problems (1) and (10) as well as problems
(2) and (11) can be transformed into the each other by simple nonsingular transformations.
This means that if we write up problem (10) (problem (11)) in the compact matrix form of
(6) ((7)), then the matrices of the equality constraints can be transformed into each other
by a nonsingular square matrix and its inverse, respectively. This fact implies that a basis
in problem (6) (problem (7)) is dual feasible if and only if it is dual feasible in problem (10)
(problem (11)). In fact, let D designate the nonsingular square matrix that has the property
that DA equals the matrix of the equality constraints in problem (10). Then the optimality
condition for a basis B in problem (6) is:

FEB ay < (2)fi for all k. (12)
while the optimality condition for the transformed basis in problem (11) is:
f5(DB)™'Day, < (>)f; for all k. (13)

Obviously, (12) and (13) are the same. The above reasoning applies to problems (7) and
(11) as well.

Finally, in order to see the relationship between multivariate Lagrange interpolation and
dual feasible bases of problems (6) ((7)), let U = {wu1,...,up} be a set of distinct points in
R* and H = {(a1,...,as)} a finite set of s-tuples of nonnegative integers (o, ..., as).

We say that the set U admits an H-type Lagrange interpolation if for any real function
f(z), z € U, there exists a polynomial p(z) of the form

p(z) = Yo (e, ag)z e 2 (14)

(a1,...,t5)EH
where all ¢(aq, ..., a,) are real, such that
plus) = flaw). i =1, M. (15)
Let us define B(zl, ey Zs) (B(zl, ..., %)) in a similar way as we have defined b (IA)) but
we remove the expectation and replace z; for X;, 5 =1,...,s.

In connection with problem (6) (problem (7)) we define H, I and U as follows:

H = {(o,...,2:)] 0 < @j, aj integer, oy +---+as; <m, j=1,...,s}
(H = {(a1,...,05)| 0 < v, o integer, a1 +-+-+a, <m, j=1,...,8; (16)
ora;=0,57=1,....;k—LEk+1,....8, m<apr<my, k=1,...,s}),

I = {(ir,...,4,)| @i,..c, € B}
(I = {(ir,...,15)| @i..c. € B}),

U = {(zlilv .- '7zsis)

(41,...,15) € T}.
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Then L
Li(z1,...,25) = f%B_lb(zl,...,zs)

(Li(#1,...02) = f5B7(z,..., %))
1s the unique H-type Lagrange polynomial corresponding to the set U.

(17)

The dual feasibility of the basis B or B in the minimization (maximization) problem
means that

f(z1,.-y25) > Li(z1, ..., 25), all (z1,...,25) € Z
(f(z1,...,25) S Li(z1,...,25), all (21,...,25) € Z),

where equality holds in case of (z1,...,2,) € U.

(18)

Relation (18) is called the condition of optimality of the minimization (maximization)
problem (6), (7).

Replacing (Xi,...,X,) for (z1,...,2,) and taking expectations in (18) we obtain bounds
for E[f(X1,...,X,)]. If the basis is also primal feasible, then it is optimal and thus, the
obtained bound is sharp.

The organization of the paper is the following. In Section 2 we introduce the concept
of a discrete convex function in the multivariate case and mention some of its properties.
In Section 3 we prove a theorem on multivariate Lagrange interpolation that generalizes
the well known univariate formula for the difference of the function and the interpolating
polynomial and also the main theorem (Theorem 4.1) in Prékopa (1998). Assuming that
the coeflicient function in problem (2) satisfies some higher order convexity conditions, we
present some bounds in Section 4. In Section 5 we introduce algorithms to generate a variety
of dual feasible bases in the bivariate case. Finally, in Section 6, numerical examples are
presented.

2 Multivariate Discrete Higher Order Convex Func-
tions

Let f(z), z € {z0,...,2z,} be a univariate discrete function, where zy < -+ < z,. Its first
order divided differences are designated and defined by the equation

Flea) = fz)

25

1T %y

The kth order divided differences are defined by induction in the usual way (see Jor-
dan (1965), Popoviciu (1944), Prékopa (1998)).

We call the function kth order convex if its kth order divided differences are all nonneg-
ative. First order convexity means monotonicity, second order convexity means convexity of
the sequence of function values in the traditional sense.

Note that this definition is slightly different than that given by Popoviciu (1944). In
Popoviciu (1944) the function f is called kth order convex if its k 4 1st order divided
differences are nonnegative.
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If we consider a multivariate discrete function f(z), z € Z = Z; x -+ X Z, (see Section
1) and take the subset

Zfl...Is - {zli7 7' E -[1} X oo X {Zsi7 7/ E .[3}

= Z]-Il X e X ZSIS7 (20)

where |I;| = k;4+1, j =1,...,s, then we can define the (kq, ..., k;)-order divided difference
of f on the set (20) in an iterative way. First we take the k;th divided difference with respect
to the first variable, then the koth divided difference with respect to the second variable etc..
This operations can be executed in any order even in a mixed manner, the result is always
the same. Let
(210, i € Ly+ -5 2, 0 € L f] (21)
designate the (kq,...,k,)-order divided difference. The sum k; + - -- + k;, is called the total
order of the divided difference.
The above mentioned statement concerning divided differences is essentially the same as

the following two statements.
If f(z), z € Z is a univariate discrete function and V1,V € Z, Vi NV, =0, then

[Vi; [Va; fl] = [Va; [Va; 1] = [VA U Vas f].

If f(2), 2z € Z =271 x Zs is a discrete function and z1 € Zy, 2o € Zo, Vi C Z1, Vo C 2o,
then
[Va; [21; Vas fl] = [Va; [Va; 225 fl] = [V; Va; f].

Definition 2.1 The function f(z), z € Z is called a (multivariate) discrete convex function
of order (mq,...,my) if for any {z;,t € L;}, |I;| =m;+1, j =1,...,s we have the relation

[216,0 € Taie -+ 20,1 € L f] 2 0. (22)

Definition 2.2 The function f(z), z € Z is called a (multivariate) discrete conver function
of order m, if all its divided differences of total order m are nonnegative.

If f(z), g(z), 2 € Z are convex of the same order, then this property carries over to the
sum f(z)+ g(z), z € Z. As regards the product, we have the following

Theorem 2.1 If f(z) > 0, g(z) >0, 2z € Z are convexr of any order i, 1 < i < m, then the
same holds for the function f(z)g(z), z € Z.

Proof. The divided differences of a product can be obtained by a rule similar to the
derivatives of a product. The assertion easily follows from this fact. a

Our definitions of higher order convexity use only divided differences in the directions of
the coordinate axes.

It may happen, e.g., that a function has all nonnegative second total order divided
differences but it does not produce a convex discrete function along a line. An example is
given below.
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Let Zy = Z» = {0,1,2} and define f(z), z € Z; X Z, in the following way:
£0,0)=0,  f(1,0) =12, £(2,0) =26,
F0,1) =04, F(L1)=2  f(2,1) = 3.6,
F0,2) =1,  f(L.2) =28, f(2.2)=46.
The function is not convex along the line (0,2), (1, 1) (2,0). In fact, we have
1+2.6 _ f(0,2) + f(2,0)

f(1,1)=2>

2

As we see in later sections of the paper, we are able to derive quite good bounds based on
our more restrictive definition of multivariate discrete convex functions. However, the inclu-
sion of the condition of nonnegativity of the divided differences along any set of orthogonal
directions would improve on the results.

If f(z), z € Z is derived from a function f(z) defined in Z = [210, 21, ] X =+ + X [240, Zsn,]
by taking f(z) = f(z), z € Z and f(z) has continuous, nonnegative derivatives of order
(k1,...,k,)in the interior of Z, then all divided differences of f(z), z € Z of order (ky, ..., k,)
are nonnegative. For further results in this respect see Popoviciu (1944).

Given a function f(z), z € Z which is discrete convex of order m, it is a difficult task
to construct an f(z), z € Z with continuous, nonnegative derivatives of total order m. We
can easily do it, however, if we restrict the definition of f to a subset of Z. One of such
constructions is expressed by

Theorem 2.2 Define the simplicial discrete set Z1 in the following way:

Zr ={(ziyy. -y z,)| (G1,...,15) € I}, (23)
where
I={(i1,....05)| ta+---+is<m, 0<4; <mny, j=1,...,8}, (24)
m<ny 4.+ n,.
Then there exists a unique polynomial Li(z) such that
Li(z) = f(z) for z € Z;

and the (ki, ..., ks)-order derivative of Li(z) is equal to the (ki, ..., ks)-order divided differ-

ence of the function f corresponding to the set
{(Zlila---azsis” 0 S ’I:j S kj, j == 1,...,3}.

The polynomial Li(z) is given by

L J
Li(z1,...,25) = Z (2105« -5 21403 " * 5 2505 -+ - Zsin; T H H Zj — Zjn), (25)

i1 4 tis<m 7=1 h=0
0<4;<ny, j=1,...,8

15—1
where, by definition, H (z; — zn) =1, fori; =0.
h=1
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Proof. It is easy to check that L;(z) has the required derivatives. The unicity of the
polynomial is proved in Prékopa (1998, p.362, Theorem 4.1). O

Remark 2.1 The polynomial Li(z) is the Newton’s form of the multivariate Lagrange poly-
nomial corresponding to the set of points Zg.

In Prékopa (1998) bounds for E[f(Xi,...,X,)] are presented by the use of expectations
of Lagrange polynomials of Xi,..., X, for the case where the moments ji,. o, are known
for a; 4+ --- a5, < m and the function f(z), z € Z satisfies some higher order convexity
requirement, e.g., it is a discrete convex function of order m + 1. Simultaneously, bounds are
presented for the function f(z), z € Z itself. We use this technique in this paper for more
general problems.

We will frequently use the following formula, well-known in univariate Lagrange interpo-
lation theory:

f(z) = L(z) = 20, -+, 2Ky 2; f] H (z — zj), (26)

where L(z) is the Lagrange polynomial corresponding to the base points z, ..., z, i.e.,
k (Z_Zo)-.-(z—zi_]_)(z—Zi_l_l)-..(z_zk)
L) =2 (= : 27
( ) ;f( )(Zi_ZO)-.-(Zi—zi_l)(zi—Zi_l_l)--.(zi_zk) ( )

Formula (26) has been established for functions defined in an interval. However, we will use
it in connection with discrete functions, where not only the set of base points is a finite set
but also the whole set on which f is defined.

3 A Theorem on Multivariate Lagrange Interpolation

In this section we drop the condition that Z;,..., Z, are ordered sets and prove a theorem
valid for a Lagrange interpolation polynomial defined in IR®. We consider the set of subscripts

=10 (UL, (28)
where
In = {(i1,...,%5)| 0 <i; <m —1, integers, j =1,...,8, i1+ ...+ 1, <m} (29)

and . o . .
Ij:{(7117---,3)|’1,]€K]7 ’I/l—Ol%J}
KJ:{kj(.l)V..,JK,}C{mm—I—l Lnit g =100

In what follows we will use the notations
Zii = {zjos- - Zii}s

/ f— . .o .
Zii = %oy Zjir Zi}s
v=0,...,n5, 7=1,...,s

(30)
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and

Kji = {k,gl)v SR k(l)}v

K
Z]K], = {ijglh"‘?’zjk;i)}?
i=1,.... K], j=1,...,s,
ZjKj = ZjKjIKjl’ ] = 1,...,3.

Corresponding to the points Z; = {(z14, - - -, Zsi, )
polynomial, given by its Newton’s form

Li(z1,...,2)
s tj—1

= Z [Zlil;"'; szsafHH _ij

1+...+i,<m 7=1 k=0
0<i;<m—1, j=1,...,s

(41,...,15) € I} we assign the Lagrange

s |l
-I-ZZ [Zm, Z(5-1)05 Zj(m-1) UZgK,,aZ(jﬂ)o;"';Zso;f] H (25 — zjr) ,
j=1 =1 ke{o,..., m—l}UKj(i_l)
z]—l
where, by definition, H —zjx) =1, for i; =0, and K;o = 0.
k=0

(31)
In (31) the function f is not necessarily restricted to the set Z as its domain of definition; it
may be defined on any subset of IR® that contains Z.
Next, we define the “residual function”:

Ri(z1,...,2s) = Rir(z1,...,25) + Rog(z1,. .., 25), (32)
where
Rir(z1,...,25)
= Z [210; : Z(] 1)07 Z; j(m—1) U Z]K U {Z]} ]-I—l * 3 %30 f] H (zj - ij)
j=1 ke{0,....,m—1}UK;
(33)
and
Ror(z1,. .., 25) .
K] h
=> > [21; 3 2015 Dby D(ha)inga s 005 Dsis f] IT (2 — 2m)
W=l iptetis=m =0
0<i;<m—1, j=h,...,s
s ;-1
< T II (25 = 2n) (34)
h+1 k=0
+ Z [21; *tt ) Zh—1; Z;/Lo; Z(h+1)0; Tt Z(j—1)0; Z]/'(m_1); Z(j+1)0; Ty Zso] (Zh - Zho)
j=h+1
m—1
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The following theorem generalizes the univariate formula (26) and the multivariate for-
mula in Prékopa (1998, Section 4).

Theorem 3.1 Consider the Lagrange polynomial (31), corresponding to the points Zy. For
any z = (z1,...,2s) for which the function f is defined, we have the equality

Li(z1,...,25) + Ri(z1, ..., 25) = f(z1, .-, 25)- (35)

Proof. For the sake of simplicity we assume that m; < n;, 5 =1,...,s. The proof of
the general case needs only slight modification. We may assume, without loss of generality,
that K; = {m,m + 1,...,m;}, where m; > m, j = 1,...,s. In fact, if we introduce the
new sets Z; = Zjm-1) U Zix;, J=1,...,8, and prove the assertion for them, we will have
proved the statement for the general case.

Under the assumption for the sets K;, j = 1,...,s, the functions L(z,...,z,) and
Ri1(z1,. .., zs) specialize as follows:

Li(z1,...,2s)
s tj—1
— . Z [leu? szsaf H H Z]k
0<i;1<—|1;;“+lsj§n; 3=1 k=0 (36)
15—1
—I-Z Z [Zm, Z;- 1)07Z]l,7Z(,7+1)0;"';ZSO;f] IT (25— 2zn)
j=lij=m k=0
and
R1I(Z1, e 723) = Z [Zm; ! Z(j—1)o; Z]{mj; Z(j+1)o; “ 5 Zs0; f] H (Zj - ij) . (37)
7=1 k=0
The formula for Rar(z1,...,2,) remains unchanged. Now we prove the following

Lemma 3.2 We have the equality
Li(z1y...,2s) + Rag(z1, ..., 25)

= Z [Zlil;"'; szsaf 1:[1:[ ZJk

o<i,il<i~;"+fsg§nf (38)
m—1
+ Z [Zm, Z(j-1)0; Z/( 1) s Z(j+1)05 3 Lo f] H (25 — zjr) -
k=0

Proof of Lemma 3.2 Consider the function of the single variable z;:

[Zlo; Ty Z(j—l)o; Zgl'(m—1); Z(j+1)0; “ 5 Zs0; f]-
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Its Lagrange polynomial, corresponding to the points zjy, ..., 2jm;, equals

mj 15—1
3 [Z1oi 5 Zi—1)y0; Ziiys Zigrnyoi -5 Zeoi £ 1 (25 — zje)-
ij=m k=m

Hence, by formula (26), we have the equation

[Zlo; R Z(j—1)o; Z‘;(m—l); Z(j+1)0; “ 5 Zs0; f]

mj 15—1
= Y [Zioi- 5 Z(i1y0s Zjiys Dy -5 Zoos f) 11 (25 — 2jk)
ij=m k=m (39)
+ [Zm; Tt Z(j—l)o; Zg/'mj; Z(j+1)o; e Zg0; f] H (Zj - ij) .
k=m

If we multiply each line in (39) by [Tr=y (2; — z;) and sum for j = 1,..., s, then we obtain

8 m—1

Z[Zm; Tt Z(j—l)o; Zj{(m_1)§ Z(j+1)0; 5 Zg0; f] H (2 — zjr)
7=1 k=0 )

i1 (40)
= Z Z [Zloa ] 1)07Z]l]7Z(]+1)0;"';ZSO;f] (Z]—Z]k)

j=li;=m k=0

+Ri1(z1,. -y 2s)-

By (36) and (40) Lemma 3.2 follows. O
If we separate the term for j = 1, in the third line in (38), we obtain

Llj(Zl, ceey Zs) —|— le(zl, PN ,Zs)

s tj—1

= Z [leua slsa.f H H _Z]k (41)
4t <m 4=1 k=0
0<i;<m—1, j=1,...,8
m—1
+ [Z]/_(m—l); 2205 "+ *  Zs0; f] IT (21— z1) (42)
k=0
m—1
-I-Z [Zm, Zj- 1)0,Z/( 1) Z(j+1)0;"';Zso;f] H (2j = zir) - (43)
k=0
Similarly, if we separate the term for h = 1 in Ry, we obtain
Ror(z1,. .., 25)
i s tj—1
= > [Z{“, Znigs e+ 5 Lsiy f] II (= — =) IT 1T (25 — 2n) (44)
211+...+is=m =0 7=2 k=0

0<i;<m—15=1,...,s

+ Z [Z{o; Zi205*+ 3 L(j-1)0; Z‘;(m—l); (41055 ZsO] (21 — z10) H (zj — zj)  (49)

7=2 k=0
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+>° > [21; 3 201 Dy Dhtingas s Lsi f]
h ih+~~~+is=m
0<i;<m—1, j=h,.
s z]—l
X H Zn — Znl H H — Zjk) (46)
1=0 ht1 k=0
+ Z [21; *t S Zh-1; Z}/Lo§ Z(h+1)0; R Z(j—l)o; Z]/'(m—1)§ Z(j+1)0; Tty Zso]
j=h+1
m—1
X (zn = zn0) TI (25— ij)) :
k=0

Now, we evaluate the sum of the terms in (41), (42) and (44). We write up (41) in the
form:

Mm—1tg—-—1g 21 —1 s tj—1
Z ( Z [Z1117Z21277Z8137f] H Zl _le ) H H _Z]k 47)
=0

0<tg+--+1,<m 721 =0 7=2 k=0
0<i;<m—1, j=2,...,8

m—1 i1—1
+ D [Z1iy Zoos -+ Zooi f] 11 (21 — 2u0)- (48)
721 =0 =0

We also write up (44) in the following form:
s tj—1

Z ([Z/(m imemiy)s D2iny 0 Ly f] lll_[ 21 — z11) ) H H — Zjk) (49)

0<ig+...4+1:<m 7=2 k=0
0<i;<m—15=2,...,8

So we have to add the formulas in (47), (48), (49) and (42). The sum of (48) and (42) equals
(by the application of formula (26)):

[21;Z20;"';Zso§f]- (50)

On the other hand, the sum of (47) and (49) equals (add first the terms in the parentheses):

s tj—1
> (215 Zoig -1 Zaiay 1T 1T (25— 28) (51)
0<igt-Fis<m 7=2 k=0

0<i;<m—1, j=2,...,8

The sum of (50) and (51), the result of this step in the proof, is equal to

s tj—1
> (215 Zaini o5 Zois S T 1T (25 — 28) (52)
i2+-+is<m j=2 k=0

0<i;<m—1, j=2,...,8
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The next step is the evaluation of the sum of (43) and (45). If we consider the jth terms
in (43) and (45), then we see that, without the factor [I7 5 (z; — zjt), the sum of the two
terms equals (again, by formula (26)):

(215 Zao; -+ Z(j-1)0; Zjl'(m_1); Z(j+1)05 "+ 5 Zs0; fl- (53)

Thus, the sum of (43) and (45) is

8 m—1
Z[Zl; Z50y 3 Z(j-1)0; Zgl'(m_1); Z(j+1)05 "+ *5 Zso; f] H (2 — zjr)- (54)
7=2 k=0

The result so far is that Lz(z1,...,2s) + Rir(z1,...,2s) + Rar(z1, ..., zs) is equal to the sum
of (52), (54) and (46). The sum of (52) and (54) is equal to Ly + Ry, while (46) is equal
to Ray, where J is similarly defined as I in connection with 4, . ..,%, and the function is the
s — l-variate function f(z1,22,...,2s), where z; € Z, fixed. If we assume that (35) is true
for any s — l-variate function, then, by the above reasoning, (35) follows for the s-variate

function f. a

4 Bounds When Moments of Total Order Up to m and
Some Higher Order Univariate Moments are Known

In this section we assume that, in addition to all moments po, . a,, €1 + -+ + as; < m, we
know the moments E(ij), Bi=1,....m; where m <m; <mnj;, 3=1,...,s. If we use our
notation for the multivariate moments, then we can write

E(ij) = po..0gjo.0, J =1,...,8,

where on the right hand side 3; is the jth subscript. Let H be the set given in the parentheses
of (16).

As regards the ordering of the elements in the sets Z;,..., 7, we mention separately in
each theorem of this section what is our assumption about it.

We keep the assumption that K; C {m,m + 1,...,n;} and introduce four different
structures for them as follows:

|K;| even |K;| odd

maz m,uD w0 +1,.. . 00 ) 4 1,n; w w41, 0@ ) 4 1,n;.
We prove the following

Theorem 4.1 Let zjo < zj3 < -+ < Zjn;, § = 1,...,5. Suppose that the function f(z), z €
Z has nonnegative divided differences of total order m+1, and, in addition, in each variable
zj it has nonnegative divided differences of order m + |K;|, where the set K; has one of the
min structures in (55).
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Under these conditions Li(z1,. .., zs), defined by (31), is a unique H-type Lagrange poly-
nomial on Z; and satisfies the relations

f(z1s 00y 28) > Li(z1, ..oy 24), (21,...,25) € Z, (56)

i.e., the set of columns B of/T in problem (7), with the subscript set I, is a dual feasible
basis in the minimization problem (7), and

E[f(X1,....X,)] > E[Li(X1,....X,)]. (57)

If B is also a primal feasible basis in problem (7), then the inequality (57) is sharp.
If all the above mentioned divided differences are nonpositive, then (56) and (57) hold

with reversed inequality signs.

Proof. The unicity of the H-type Lagrange polynomial (36), and the fact that Bisa
basis in the LP (7), can be proved as follows. The columns in problem (7) that correspond
to the points in Z;, form a square matrix. The fact that (z = (z1,...,2,)) L1(2) = f(z) for
z € Zj, tells us that fz can be represented as suitable linear combination of the rows of B.
Since it holds for any function f, hence for any fz, it follows that B must be nonsingular.
This implies the unicity of the Lagrange polynomial as well.

The equivalence of the dual feasibility of B in the minimization problem (7) and relations
(56) can be deduced similarly as we did it at the end of Section 1 for problems (7) and (6).

To prove (56) we look at equation (35). Since Rp(z1,...,2s) = Rir(z1,...,2s)
+Roi(z1,...,2s5), 1t is enough to prove that Rir(z1,...,2s) > 0, Rar(z1,...,2s) > 0 for
(z1,...,25) € Z.

As regards Riz(z1,...,2s), given by (33), the special structure of K; implies that

II (zj — zj) >0 for 5 € {0,... ., m —1} U K; (58)

ke{0,...m—1}UK;

and if 7 € {0,...,m — 1} U K}, the above product is 0. Since the function f has nonnegative
divided differences of order m + |K;| in the variable z;, 57 = 1,...,s, it follows that for any
(z1,...,25) € Z we have Ry(z1,...,25) > 0.

As regards Rar(z1,...,2s), defined by (34), all divided differences in the sums are of total
order m+1 and the products that multiply them are all nonnegative for any (z1,...,2s) € Z.
Thus, Rer(#1,...,2s) > 0 for any (z1,...,2s) € Z. This proves (56).

Inequality (57) is a straightforward consequence of the inequalities (56). Finally, if B is
both primal and dual feasible basis in problem (7), it is an optimal basis and the optimum
value equals

minE[f(z1,. .., 2s)]
- fps = f3B7b

- gé—iE@(Xl, LX)
= BlfzB7b(X,..., X,)]

= ElLi(X1,...,X,)).
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Thus, the theorem is proved. a
In the next theorem we prove both lower and upper bounds for the function f(z, ..., z),

(#1,...,25) € Z and the expectation E[f(X1,...,X;)].

Theorem 4.2 Let zjo > zj3 > - > zjn;, § = 1,...,5. Suppose that the function f(z), z €
Z has nonnegative divided differences of total order m+1, and, in addition, in each variable
zj it has nonnegative divided differences of order m+|Kj|, where K; has one of the structures
in (55) that we specify below. Under these conditions we have the following assertions:

(a) If m + 1 is even, |K;| is even and K; has the maz structure in (55) or m + 1 is

even, |K;| is odd and K; has the min structure in (55), then the Lagrange polynomial
Li(z1,...,2s), defined by (31), satisfies

f(z1s 00y 28) > Li(z1, ..., 24), (21,...,25) € Z, (59)

i.e., the set of columns B in A, corresponding to the subscripts I, is a dual feasible
basis in the minimization problem (7). We also have the inequality

E[f(X1,...,X.)] = E[Li(X1,.... X,)]. (60)

If B is also a primal feasible basis in the LP (7), then the lower bound (60) for
E[f(X1,...,X,)] is sharp.

(b) If m+1 is odd, |K;| is even and K; has the maz structure in (55) or m+1 is odd, |K}|
is odd and K; has the min structure in (55), then the Lagrange polynomial, defined by
(31), satisfies

f(z1.ooy28) < Li(z1, ...y 24), (21,...,25) € Z, (61)

i.e., the basis B is dual feasible in the mazimization problem (7). We also have the
inequality

E[f(X4,....X.)] < E[Li(X.....,X,)]. (62)

If B is also a primal feasible basis in the LP (7), then the upper bound (62) for
E[f(X1,...,X,)] is sharp.

Proof. We prove the first part of (a), the other proofs can be carried out in the same
way.

We have already shown in the proof of Theorem 4.1 that B is a basis in the LP (7).
Also, we have clarified that (59) is equivalent to the dual feasibility of B in the minimization
problem (7).

We ounly have to prove (59), because (60) is a trivial consequence of it and the proof of
the sharpness of (60), i.e., the primal feasibility of B, is the same as that in the proof of
Theorem 4.1.
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We prove that Ri; > 0 and Re; > 0 for all (z1,...,2,) € Z. The nonnegativity of Rys
follows from the fact that each term in the sum of R;;is the product of a nonnegative divided

I1 (2 — 2jk)- (63)

ke{0,...m—1}UK;

difference and some

Since m + 1 1s even, we have the inequality

II (z-zn)=<o0 (64)
ke{0,...,m—1}
The product in (64) is zero, if 0 < 5 < m—1. On the other hand, due to the special structure
of K;, we also have for j > m:
IT (2 —z) < 0. (65)

keK;
Thus, Ri7(#1,...,2s) > 0 for any (z1,...,2s) € Z.
The nonnegativity of Rs; follows from the fact that each term in the sum that defines it
1s the product of a nonnegative divided difference and an even number of factors of the form

zj — zjr < 0. Thus, Rar(z1,...,25) > 0 for any (z1,...,2,) € Z and the theorem is proved.
O

In the next theorem we use the subscript set
I= LU (U;Zlfj) , where
In= {(i1,...,%5)| ¢; integer, 0 <mn; —i; <m—1, 5=1,...,s, (66)
ny —iy+ o0, —i, <my,
Ij: {(7:17“‘77:3)| (nJ_ZJ) EKJ? ’I,l:()l%]}, .7: 17"'73'

The Lagrange polynomial corresponding to Zr is:

Li(z1,...,25) =
8 g
Z [Zlnla---7zl(n1—i1);"';ansv---728(ns—is);f] H H (Zj—ij)—I-
1+...+i,<m j=1k=nj—1;+1
0<i;<m—1, j=1,...,s
8 |K]|
+ Z Z Zingy "ty 2(G—1)nj_13 Zgngs s 0y Zj(m—1)» z'(n,_k(l))v ceeg® L (i)
: ; I —Fy Jnj—k;7")
]:1 1,j:1 J
z(j+1)nj+1; Tty ans; f:| X
nj—m+1 15—1
< I Gi= ) 1Tz =25, 09)-
k=0 =1

(67)

Theorem 4.3 Let zjo < zj1 < -+ < zjn;, j = 1,...,5. Suppose that the function f(z), z €
Z has nonnegative divided differences of total order m + 1, and, in addition, in each vari-
able z; it has nonnegative divided differences of order m + |K;|, where n; — K; has one of
the structures in (55) that we specify below. Under these conditions we have the following
assertions:
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(a) If m+1 is even, |K;| is even and n;— K; has the maz structure in (55), or m+1 is even

|K;| is odd and n; — K; has the min structure in (55), then the Lagrange polynomial
Li(z1,...,2s), defined by (67), satisfies

f(z1s 00y 28) > Li(z1, ..., 24), (21,...,25) € Z, (68)

i.€., the set of those columns ofﬁ in problem (7) that correspond to the subscripts in
I, is dual feasible in the minimization problem (7). We also have the inequality

BIf (X1 X)) > B[Li(Xs, .., X,)]. (69)
If B is also a primal feasible basis in problem (7), then the bound in (69) is sharp.

(b) If m+1 is odd, |K;| is even and n; — K; has a maz structure in (55), or m+ 1 is odd,
|K;| is odd and n; — K; has a min structure in (55), then Li(z1,...,zs), satisfies

f(z1.ooy28) < Li(z1, ...y 24), (21,...,25) € Z, (70)

i.€., B is a dual feasible basis in the mazimization problem (7). We also have the
inequality

BIf (X1, X)) < B[Li(Xs, ... X,)]. (1)
If B is also primal feasible basis in problem (7), then the bound in (71) is sharp.

Proof. The assertion that B is a basis can be proved in the usual way. Otherwise,
the theorem is a consequence of Theorem 4.2, if we replace z;(n;—0), Zj(n;-1), - - - » Zj(n;—n;) fOr
Zj0s Zj1s - s Zjny, 0 =1,..., s and (21,...,2,) € Z. O

The next theorem presents bounds for E[f(X7,...,X,)] in the case where in connection
with each variable X;, 7 = 1,..., s we know the expectation, variance, skewness and kurtosis,
or we know the first four moments E(X;), E(X7), E(X?), E(X}), further, in addition, we
know all covariances Cov(X;, X;), @ # j.

Theorem 4.4 Let zjo < zj1 < +++ < zjn; j = 1,...,5. Suppose that the function f(z)
z € Z has nonnegative divided differences of total order m + 1 = 3, and, in addition, in
each variable z; it has nonnegative divided differences of order m+3 = 5. Then we have the
following assertions.

(a) If |K;| = 3 and each K; consists of m and any two consecutive elements of {m-+1,m+
2,...,n5}, 3 =1,....8 (i.e., K; has the min structure in (55)) and I is the subscript
set (28)-(30), then the Lagrange polynomial (31) satisfies

f(z1s 00y 28) > Li(z1, ..., 24), (21,...,25) € Z, (72)

i.e., the set of columns B ofﬁ in problem (7), that correspond to the subscript set I
in (28), is a dual feasible basis in problem (7). We also have the inequality

E[f(X1,....X,)] > E[Li(X1,....X,)]. (73)

If B is also a primal feasible basis in problem (7), then the inequality in (73) is sharp.
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(b) If |K;| = 3 and each n; — K; consists of m and any two consecutive elements of
{m+1,....n;},5=1,...,s (i.e., n; — K; has the min structure in (55)) and I is the
subscript set (66), then the Lagrange polynomial (31) satisfies

f(z1.ooy28) < Li(z1, ...y 24), (21,...,25) € Z, (74)

i.e., the set of columns B of/T in problem (7), that corresponds to the subscript set I
in (28), is a dual feasible basis in problem (7). We also have the inequality

Blf(X. .. X)) < BLi(X,. .., X)) (75)
If B is also a primal feasible basis in problem (7), then the inequality in (75) is sharp.
Proof. The theorem is an immediate consequence of Theorems 4.1 and 4.3. O

Remark 4.1 For the case of s = 2 the Lagrange polynomial in Theorem 4.4, Case (a) has
the detailed form:

LI(Zh Zz)
(2105 2203 f] + [#10, 2115 2205 f](21 — #10)
[210; Z20, %21, f](zz - Zzo)
[2107 2115 %220, %221, f](zl - 210)(22 - Zzo)
[2107 211, 2125 2205 f](zl - 210)(21 - Z11)
o (76)
[210, 2115 %125 2145 220, f](zl - 210)(21 - Z11)(Z1 - 212)
[210, 2115 212, 145 Z1(i4+1)5 #20; f](zl - 210)(21 - Z11)(Z1 - 212)(21 - Zli)
[210; 2204 2215 £22; f](zz - Zzo)(zz - 221)
[210; 220y 221, 222, Z2k; f](zz - Zzo)(zz - 221)(22 - 222)
[210; %20, %21, 222, ©2k, Z2(k+1); f](zz - 220)(22 - 221)(22 - 222)(21 - sz)-

++++++++ 1

For the case of s = 2 the Lagrange polynomial in Theorem 4.4, Case (b) has the detailed
form:

Li(z1, 22)

[zlnu Z2ng 5 f] ['zlnl » Z1(ng—1)1 %20z f](zl - zlnl)

[zlnu 22195 #2(ng—1)3 f](z2 - Z2n2)

[Zln17 Z1(n1—1)3 4205 22(n2-1); f](zl - Zlnl)(z2 - Zzng)

(21045 21(ny —1)» Z1(m1—2)5 Zanas F1(21 = 2100 ) (21 — 21(ny-1))

(10,5 Z1(ny—1)5 #1(n1—2)5 %145 Z2ny} fl(z1 — 210, ) (21 — Zl(nl—l))(zl - Zl(nl—z))

[217117 Z1(ng—1)y #1(ng—2)s #1i; Z1(i+1)5 #2nas f](zl - Zlnl)(’zl - Zl(nl—l))(zl - Zl(n1—2))(zl - Zli)

[zlnu Z2ny5 #2(na—1)) #2(na—2)3 f](z2 - Zan)(zz - 22(712—1))

[Zln17 Z2n95 #2(ng—1)> #2(n2-2), #2i; f](zz - Z2n2)(z2 - Zz(n2—1))(22 - Z2(n2—2))

(21015 2205, Z2(na—1) Z2(na—2); Z2ks Z2(k+1); F1(22 — 220, ) (22 — Z2(np-1)) (22 — Z2(ny—2)) (22 — Z(zk)-)
7

If we replace X1, Xs for zi,zs, respectively, in (76) and (77), and take expectations,

then the value resulting from (76) (from (77)) provides us with a lower (upper) bound for

++ + 4+ + + 4+
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E[f(X1,X5)]. Note that all expectations in (76) and (77) can be expressed by the use of the

moments

E(X}), k=1,2,3,4, j=1,2

and the covariance

C'O’l)(jfl7 Xz)

Given a dual feasible basis, we may look at it as an initial basis and carry out the dual
algorithm of linear programming to obtain the best possible bound. The knowledge of an
initial dual feasible basis has two main advantages. First it saves roughly half of the running
time of the entire dual algorithm. Second, it improves on the numerical accuracy of the
computation that we carry out in connection with our LP’s.

5 More Dual Feasible Bases, Algorithms and Bounds
in the Bivariate Case

In the bivariate case we can create a larger variety of dual feasible bases for problem (7),
and produce better bounds than what we can obtain by the use of the dual feasible basis
structures presented in the previous section. We drop the condition that the elements of the
supports of the random variables X;, X, are arranged in increasing order, we only assume
that each set Z; = {z10,..., 210, }, Z2 = {220, - -, Zan, } consist of distinct elements.

For convenience we write up the Lagrange polynomial (31) and the residual terms (33),
(34) for the case of s = 2. We obtain:

LI(Zlv Z2)
2 2j—1
= Z [210,---Z1i1;2207---722i2§f]H H(Zj—zjk)
i iz <m j=1 k=0
0<4;<m—1, j=1,2
+ 2[2107"'7zl(m—1)7zlkgl)7'"7Z1kgi);z20;f] H (zl - zlk)
i=1 ke{0,...m—1,k" By
| K2
+ Z[zlo; 2205« o5 Za(m—1)s Zap(1)y + « ) Zop(D) f] H (22 — 221),
i=1 ke{0,...m—1,k B}
Ri1(z1,22)
= [2107 <o R1(m—1)5 21K, 5 215 %20; f] H (21 - Z1k)
ke{0,...m—1} UK (79)
-I-[Z10; 2205« -+ 5 22(m—1)> ZaKy, 22 f] H (22 - sz),

ke{0,...m—1}UK>
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sz(zl, Zz)
7 i9—1
= Z [Z10,...,Zli1721;220,...,Zziz;f]H(Zl _le) H(Z2 _Z2k)
41tia=m =0 k=0 (80)
0<2;<my, 5=1,2

m—1

-|-[Z107 2152205 -+ + 5 22(m—1)» %2, f](zl - 210) H (Zz - sz)-
k=0

We want to ensure that the Lagrange polynomial corresponding to the set Zp, i.e., the
polynomial (78) should satisfy

Li(z1,22) < f(z1,22), (21,22) € Z (81)

or

Lf(zlvz2) Z f(Zl,Zz), (21722) € Z. (82)

A sufficient condition for (81) ((82)) is that Riz(z1,22) > 0, Rar > 0, for all (z1,20) € Z
(Rir(z1, 22) < 0, Rar <0, for all (21, 22) € Z).

All coeflicients in the expression of Riz(z1,22) and Rar(z1, z2) are divided differences of
order m + 1. Assume all of them are nonnegative. Hence, in order to ensure (81) ((82)) we
have to choose I in such a way that all productsin (79) and (80) be nonnegative (nonpositive).

Counsider the m x (m + 1) array

210 #11 %12 " Z1(m-2) Z1(m-1) %20
210 %11 %12 "t Z1(m-2) 220 221
(83)
210 211 %20 " Z2(m-4) *2(m-3) Z2(m-2)
210 %20 %21 " Z2(m-3) #2(m-2) #%2(m-1)

and associate each of the first m — 1 rows with the corresponding product in the second line
of (80). Similarly, associate the last row of (83) with the product in the third line of (80)
that defines Rar(z1,22). A sufficient condition for the nonnegativity of all products in (80),
for all (z1,29) € Z, is that

144]0 <4 <4y, 215 > 21}
+ [{i|0 <@ < iy, 23 > 2z2}| = even number

(84)

should hold for all (z1,22) € Z in each row of (83), i.e., for every ¢; > 0, i» > 0 integers
satisfying ¢; +¢5 = m—1. Similarly, a sufficient condition for the nonpositivity of all products

in (80), for all (z1,22) € Z, is that

|{’I,|0 S ) S ’1:17 215 > Zl}|

+ [{i|0 <@ <y, 29 > z2}| = odd number (85)

should hold for all (z1,22) € Z in each row of (83), i.e., for every ¢; > 0, i» > 0 integers
satisfying ¢ + 25 = m — 1.
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Consider first the case, where we want to construct lower bound, i.e., satisfy relations
(81), by suitable choices of zg,.. ., Z1(m—1); %205 - - - » Z2(m—1)- We present an algorithm to find
these sequences. We may assume, without loss of generality, that the ordered sets Z; and

Zy are the following: Z; = {0,1,...,n1}, Zo ={0,1,... ny}.
Min Algorithm

Algorithm to find 2z, ..., z1(m-1); 220, - . ., Z2(m—1) satisfying (84).

Step 0. Imitialize t =0, -1 < ¢<m -1, L ={0,1,....4q}, U ={ny,ny — 1,...,ny —
(m —q —2)}, V° = {arbitrary merger of the sets L, U} = {v°,v',... ,v™ 1}, If |U] is even,
then R° = 0, 1° = 1, u® = ns, and if |U| is odd, then h° = ny, I° = 0, v’ = ny — 1. Go to
Step 1.

Comment: The first m elements of the first row in (83) are the elements of VO the m+1st
element of the same row is 2°. All the sets L, U, V° are ordered.

Step 1. If t = m, then go to Step 3. Otherwise go to Step 2.

Step 2. Let Vi = {o% o', ... 0™ 7t} HY = {B° R',... B} If 0™ 17t € L, then let
REFL =t Y = [P 4 1) ottt = ot and if ™71 € U, then let AT = wf) witt = Wt -1
[P+ =t Set t «— t+ 1 and go to Step 1.

Comment: The elements of V* H*, in that order, constitute the tth row of tableau (83).

Step 3. Stop, all m rows of the tableau have been created. The tableau (83) has rows
{Vt*, H'}, t=0,1,..

The points presented below represent those columns in problem (7) which correspond to
the subscript set I:

Y

Lm—1.

(2107 220)7 (2117 220)7 T (Zl(m—2)7 220)7 (Zl(m—1)7 220)7
(2107 221)7 (2117 221)7 T (Zl(m—2)7 221)7

. . (86)
(210722(171—2))7 (211722(171—2))7
(2107 Zz(m—1))-

It remains to find suitable sets K7 and K, to make Ry(z1, z2) > 0, for all (z1,25) € Z.

Let 0,1,...,¢2,m2,...,m2 — (m — ¢o — 2) be the numbers used to -construct
230, %21, - - - » Z2(m—1)- Lhen the set K; should be taken from the set {g; + 1,¢; +2,...,n; —
(m —q; — 1)}, j = 1,2. These subsets of the sets Z;, Z,, respectively, remain intact after
the construction of Iy. For each j the products

m—1

II (2 — zin). (21,22) € Z (87)
k=0
do not change sign, but they may be positive or negative, depending on the construction of
Zj0y+ vy Zj(m-1)> ] = 1,2.
If (87) is positive, then K; should follow a minimum structure in (55), and if (87) is
negative, then K; should follow a maximum structure.



RRR 41-2000 PAGE 23

We have completed the construction of the dual feasible basis related to the subscript set
1.

If we want to satisfy the relation (82), i.e., construct an upper bound, then only slight
modification is needed in the above algorithm to find zio,. .., z1(m-1); 220, - - - , Z2(m-1). We
only have to rewrite Step 0 and keep the other steps unchanged.

Max Algorithm

Step 0 of algorithm to find z,. .., 2z1(m-1); 220, - - - , Z2(m—1) satisfying (85).

Step 0. Imitialize t =0, -1 < ¢<m -1, L ={0,1,....4q}, U ={ny,ny — 1,...,ny —
(m —q—2)}, V° = {arbitrary merger of the sets L, U} = {v° v, ... ;o™ '} If |U] is odd,
then h° = 0, I° = 1, u® = ny, and if |U]| is even, then h° = ny, I° = 0, u° = ny — 1. Go to
Step 1, etc.

The points, representing the basic columns in problem (7) are given by (86).

It remains to find suitable sets K; and K, to make Ryr(z1, z2) < 0 for all (21, 22) € Z.

The set K; should be taken from the set {¢; + 1,¢; +2,....,n; —(m—¢; — 1)}, j = 1,2.

In case of the upper bound we have to choose K; the other way around as in case of the
Min algorithm. If (87) is positive, then K; should follow a maximum structure, otherwise a
minimum structure.

We have completed the construction of the dual feasible basis related to the subscript set
1.

In the general case, where Z; is not necessarily {0,1,...,n:} and Z, is not necessarily
{0,1,...,n2}, we do the following. First we order the elements in both Z; and Z, in increas-
ing order. Then, establish one-to-one correspondences between the elements of Z; and the
elements of the set {0,1,...,n;} that we assume to be ordered now. We do the same to Z,
and {0,1,...,ny}. After that, we carry out the Min or Max Algorithm to find a dual feasible
basis, using the sets {0,1,...,n:}, {0,1,...,n2}, as described in this section. Finally, we
create the set (86), by the use of the above mentioned one-to-one correspondences.

The above construction allows for the construction of a variety of dual feasible bases.
However, we do not have a simple criterion, like in the dual method, to decide which of the
bases, that we can obtain by the above Min or Max Algorithm, would improve on the bound
(on the value of the objective function). Still, the above construction is simple and fast,
further, given the dual feasible basis and the corresponding Lagrange polynomial L;(z1, z2),
the bound is simply E[L;(X;,X2)] which is not difficult to compute, at least in many cases.
So, we can test a large number of dual feasible bases in a relatively short time and then
choose the best one, to bound and approximate E[f(X;, X5)]. This method may produce
very good results much faster than the execution of the dual algorithm.

6 Illustrative Examples

In this section we present illustrative numerical examples for discrete moment bounds. For
the sake of simplicity we restrict ourselves to the bivariate case.
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Example 6.1 Let 7, = Z, ={0,...,9}, m =4, my = my = 6. Based on the assumptions of
Theorem 4.1, and the sets Ky = Ko = {4,8,9}, which are min structures in (55), we present
a dual feasible basis for the minimum problem of (6), and a lower bound for E[f(X1, X5)],
from (57). Figure 1(a) illustrates that basis.

We also present o dual feasible basis for the mazimum problem of (6), using Theorem

4.8, and give upper bound for E[f(X1,X2)]. Let K1, Ky be the same as before. The basis
subscript set is illustrated in Figure 1(b).

O R N W o I & ©
O ¥ *¥ ¥ X @€ O O O O e
= % ¥ ¥ ¥ O O O O O O
D ¥ ¥ ¥ O O O O O O O
W ¥ ¥ O O O O O O O O
~ ® O O O O O O O O O
¢t O O O O O o 0O O o O
Sy O O O O O O O O O O
- O O O O O o 0 O o O
o e O O O O O O O O O
© @€ O O O O O O O O O

O R N W o I & ©
S O O O O O O O O O e
= O O O O O O O O O e
O O O O O O O O O O
W o O O o o o O O o O
=~ O O O O O O O O O O
Gt O O O O O O O O O e
S O O O O O O O O ¥ ¥
- O O O O O O O *¥ % *
0 O O O O O O % % % %
© e @ O O O @ ¥ ¥ ¥ ¥

—~
&
~—
—~
o
~—

Figure 1: Z; = Z, = {0,...,9}. m =4, m; = my = 6. K; = K, = {4,8,9}. Figure
(a) illustrates a dual feasible basis for the min problem of (6), worked out from Theorem
4.1. Figure (b) illustrates a dual feasible basis for the max problem of (6), worked out from
Theorem 4.3. The elements of I are designated by #, the elements of I; and I, are designated
by e.

Consider the bivariate function
Flz1,72) = logl(e+ — 1)(e#+ — 1) — 1], (58)
defined for
eozzl—l—a > 27 e,BZQ—I—b > 27

where a, 3 are positive constants. This function is a modification of a function known
as Frank’s copula in actuarial mathematics (see Bowers Jr., Hickman, Jones and Nes-

bitt (1986)).
It is easy to see that

af Pf 9% f 0% f o f

G oo T Do S g oy
0z; 0z 023 0z; 0z}
7=12,
2 3 3
of <0 o1 >0 of >0, ete.

021024 102302, 1021023
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All even (odd) total order derivatives of the function are negative (positive).
If we restrict the definition of the function to Z = Zy X Zs, then it satisfies the conditions
of Theorem 4.1 and 4.3. assume the following moments are known:

" 0 1 2 3 1 5 6
0 1 3.1855  18.5564 133.5470 1057.8635 8786.6576 74906.2014
1 31855  13.9179 91.0830 693.3256
2 18.5564  91.0830 623.6111

3 133.5470  693.3256
4 1057.8635
5 8786.6576
6 74906.2014

We can obtain lower and upper bounds for E[f(X1, X2)], if we calculate the value off%B_lg,

where B is the matriz of the columns corresponding to the above bases. For the lower bound
the result is —23.0067 and for the upper bound it is 8.1465. There is a big gap between
these bounds.

However, the use of the algorithms of Section 5 improved on the lower bound. Below we
present an example to find a dual feasible basis for the lower bound. First we run the Min
Algorithm as follows.

Step 0. t=0,q=—-1,L=0,U ={9,8,7,6}, V° =U, |U| is even, hence h°=0, I° =1,
u® = 9.

Step 2. v 1 €U, hence h'! =4’ =9, ' =01°=0,u' =u’ —1=8. t=¢t+1=1.
Step 2. v 1 €U, hence A2 =u' =8, P=01'"=0, v’ =u' —1=7.t=¢t+1=2.
Step 2. v Y e U, hence B3 =u* =7, P=0P=0,v>*=u>—-1=6.t=¢t+1=3.
Step 2. v 1 €U, hence h'! =4’ =9, ' =01°=0,u' =u’ —1=8. t=¢t+1=1.
Step 3. t =3 =m — 1, hence we stop.

At this point we have found zig, 211, 212, 213 and zag, Z21, Z22, 223. We write them in the

form of (83) as follows:

O W W W
oS 0 0
© O~
0w oD
-3 00 © O

To complete the dual feasible basis subscript set, we need sets Ky C {0,...,5} and K, C
{1,...,6}. Let Ky = {0,1,2} which is a suitable min structure, and Ko = {1,2,6} which is
a suttable maz structure.

Next, we present an example to find a dual feasible basis for the upper bound. Again, first
we run the Maz Algorithm.

Step 0. t=0,¢q=-1,L=0,U ={9,8,7,6}, V° = {9,8,7,6}, |U| is even, hence
R0 =9,1=0, u® =8.

Step 2. v* €U, hence h' =u° =8, ' =1°=0,u' =u’ - 1=T7. t=t+1=1.

Step 2. v2 €U, hence W2 =u' =7, P =01 =0, v =u'—-1=6. t=¢t+1=2.
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Step 2. v1 €U, hence B3 =u?> =6, B =0*=0,v*=u>—-1=5.t=¢t+1=3.
Step 1. t =m —1 = 3. Stop.
If we write up the result in the form of (83), we obtain

O© © © O

8
8
8
9

0 O ~3 3
-J 0 © O
S~ 0 ©

Let K; = K, = {0,1,5} which is a maz structure. All dual feasible bases that can be
obtained in this way have been tested. The best lower bound is 8.0402, and the best upper
bound is 8.1465.
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Figure 2: Z; = Z5 = {0,...,9}. m =4, m; = my = 6. In Case (a) K; = {0,1,2},
K, = {1,2,6}, and the marked points illustrate a dual a feasible basis for the min problem
of (6); in Case (b) K; = K5 ={0,1,5} and the marked points illustrate a dual feasible basis
for the max problem of (6). The bases have been obtained by the use of the algorithms of
Section 5. The elements of Iy are designated by *, the elements of I; and I, are designated
by e.

Finally, we solve the problem by the dual algorithm. We can choose any of the above dual
feasible bases as an initial basis, and carry out only the second stage of the method. For the
above problem we have received the following results: 8.06605 for the lower bound with basis
illustrated in Figure 3(a), and 8.1256 for the upper bound with basis illustrated in Figure

3(b).

Example 6.2 Consider the function:

Flan,z) = BT TR

(89)

defined on zy,ze > 0. All derivatives of this function are positive in the nonnegative orthant.
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Figure 3: Z; = Z, ={0,...,9}, m =4, m; = ms = 6. In Case (a) we have an optimal basis
for the min problem of (6), in Case (b) we have one for the max problem of (6). The bases
have been obtained by the dual algorithm.

Let Z, =4{2,4,...,20}, Z, ={0.5,1,...,5}, Z =21 X Zy. Let m =4, m; = my =6, as
in example 6.1.

It is easy to see, that the function satisfies the conditions of Theorem 4.1 and 4.3. Hence,
the bases in Figure 1 are dual feasible for the min and maxz problems of (6), respectively.
Assume the following moments are known

i 0 1 2 3 4 5 6
0 1 11 154 2420  40532.8 706640 12661792
1 2.75 29.5928  408.6112 6353.312
2 9.625  102.368 1399.2232
3 37.8125  398.8574
4 158.33125
5 690.078125
6 3091.25781

All bases of Theorems 4.1 and 4.3 have been tested for the above problem and those in
Figure 1 turned out to be the best ones. The best one among these lower bounds is 3.857,
and the best ones among these upper bounds is 4.635.

We can improve on both bounds by the use of the algorithms of Section 5.

First, we detail the algorithm that finds a dual feasible basis for the min problem.

Step0. t=0,q=1, L ={0,1}, U = {9,8}, V° ={0,9,1,8}, |U| is even, hence h® = 0,
°=1,u4°=09.

Step 2. v* €U, hence h* =u° =9, ' =01=1, u' =u°-1=8. t=¢t+1=1.

Step 2. v2 € L, hence W2 =1 =1, P=01"+1=2, v *=u'=8. t=t+1=2.

Step 2. v1 €U, hence B2 =u?> =8, BP=0=2, v*=u>—-1=T7.t=t+1=3.

Step 1. t =m —1 = 3. Stop.
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At this point we have found the sequences V° and H™ 1. By the use of the elements of
the ordered sets Zy, Zs, the array (83) is the following:

20 4 18 0.5
20 4 05 5
20 05 5 1
05 5 1 45

[SR NI NI ]

Let us choose K1 = Ky = {2,5,6}. The obtained basis is illustrated in Figure 4(a). The
related bound is 3.9122.

Now, we run the algorithm to find an upper bound.

Step 0. t =0, q=2, L ={0,1,2}, U = {9}, V° ={0,1,9,2}, |U| is odd, hence h° = 0,
°=1,u4°=09.

Step 2. v* € L, hence h* =1°=1, ' =1°+1=2, v' =u°=9. t=t+1=1.

Step 2. v2 €U, hence W2 =u' =9, P =01 =2, v*=u' -1=8. t=t+1=2.

Step 2. v1! € L, hence B3 =1=2,P=0P+1=3, v>*=u?>=8. t=t+1=3.

Step 1. t =m —1 = 3. Stop.

We can write up the results in the form of (83):

2 4 20 6 05
2 4 20 05 1
2 4 05 1 5
2

05 1 5 15

Choose K1 = Ky = {3,6,7}. The obtained basis is dllustrated in Figure {(b). The
corresponding bound is 4.0103.

The problem has been solved by the dual algorithm as well. We have obtained the following
results: 3.9489 for the lower bound and 3.9619 for the upper bound.

In the next three examples, we present only the best lower and upper bounds obtained
by the use of the Min and Max Algorithms of Section 5.

Example 6.3 The problem is taken from Prékopa, Vizviri and G. Regds (1997). We have
40 events, subdivided into two 20-element groups; X; equals the number of events that occur
in the jth group, j = 1,2, Zy X Zs = {0,...,20} x {0,...,20}.

We want to find bounds for the probability that at least one out of the 40 events occurs,
i.e.

P(Xi+ X, > 1) = E[f(X1, X)),

where

o) = 3 Bime =00 (90

1, otherwise.
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Figure 4: Z; = {2,4,...,20}, Z, = {0.5,1,...,5}. m = 4, m; = my = 6.In Case (a)
K, = K, = {2,5,6}, and the marked points illustrate a dual feasible basis for the min
problem of (6). In Case (b) K; = K> = {3,6,7} and the marked points illustrate a dual
feasible basis for the max problem of (6), worked out from the algorithms of Section 5. The
elements of I, are designated by *, the elements of I; and I, are designated by e.

Prékopa (1998) has shown, that if m + 1 is even (odd), then all divided differences (90) of
total order m + 1 are nonpositive (nonnegative). Suppose that we know the following cross
binomial moments

1st 2nd group
group 0 1 2 3 4 ) 6
0 1.00 1.93 4.70 12.19 41.05  127.37 317.72
1 6.23 3.28 31.15 186.89  794.26 2541.64
2 46.04 31.15 29590 1775.41 7545.49
3 216.09  186.89 1775.41 10652.46
4 724.30  794.26 7545.49
it 1848.66 2541.64
6 3739.79.

We have obtained the following results, by the use of the dual feasible bases of Section 5
for problem (11):

m my me lower bound upper bound

4 4 4 0.54074 1
4 6 6 0.78259 0.81423
6 6 6 0.64435 1

The best bounds correspond to the second case, where m =4, m; = ms = 6, even though in
the third case more moments are taken into account. This phenomenon is explained by the
fact that in the second case we have the freedom to choose the sets Ky, Ko arbitrarily (in
agreement with (55)).
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We know from Prékopa, Vizvdri and Regds (1997), that the optimal value is 0.80325 for
the min, and 0.80410 for the maz problem, in case of m = my; = ms = 6. These values
have been obtained by the full execution of the dual method of linear programming.

In the following example we present bounds in the case where in connection with each
variable X;, 7 = 1,2 we know the expectation, variance, skewness and kurtosis, i.e., we know
the first four moments and the covariance Cov(Xy, X»).

Example 6.4 Consider the bivariate utility function (88). Let a = =1, a=b=0 and
Zy =2y =A1,...,10}.
Case 1
Assume that, in addition to pi1, the following moments are known: (poo = 1), p10 = pror =
11/2, prao = po2 = 33/2, ps0 = pros = 33, prao = proa = 231/5.

The results are presented below. The lower and upper bound columns contain values
obtained by the Min and Maz Algorithms of Section 5. The min and maz columns contain
values obtained by the dual algorithm carried out for problem (7).

ft11 lower bound wupper bound min maz
30.25  10.77220 10.89995 10.7761 10.89184

35 10.77218 10.89995  10.77590 10.88837

25 10.77224 10.89995 10.8224 10.89191

Remark: In the first case p11 = 30.25 = (11/2)® = po1pt10, hence the two random variables
do not correlate.

Case 2

Now, suppose that (poo = 1), pt10 = pro1 = 2615937/625000, pa0 = proas = 5435467/500000,
30 = proz = 108634563 /5000000, pra0 = proa = 162205043 /5000000, 17 = 2615937/625000.
We have obtained the following results:

lower bound wupper bound  min max

8.00326 8.1915 8.05739 8.1590

Example 6.5 Finally, we consider the function

f(z1,2) = ewtio

the support set Zy X Zs = {0,...,20} x {0,...,20} and the following power moments:

pi; 0 1 2 3 4 5 6

0 1.00 623  98.31 1579.01 25813.23 420472.13 7269694.11
1 1.93 328 6558 1311.52 26229.7 524590

2 1133  65.58 1311.48 26229.5 524590

3 103.27 1311.52 26229.5 524590

4 149177 26229.7 524590

5 27107.8 524590

6 528938
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We have obtained the following results:

my me lower bound upper bound

m
3 6 6 6.000222 6.004789
4 6 6 6.003941 6.00455.
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