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On Multivariate Discrete

Moment Problems and their

Applications to Bounding

Expectations and Probabilities

Gergely Nagy Andr�as Pr�ekopa

Abstract� The discrete moment problem �DMP� has been formulated as a
methodology to �nd the minimum and�or maximum of a linear functional acting
on an unknown probability distribution� the support of which is a known discrete
�usually �nite� set� where some of the moments are known� The moments may
be binomial� power or of more general type� The multivariate discrete moment
problem �MDMP� has been initiated by the second named author who developed
a linear programming theory and methodology for the solution of the DMP�s and
MDMP�s under some assumptions� that concern the divided di�erences of the
coe�cients of the objective function� The central results in this respect are there
that concern the structure of the dual feasible bases� In this paper further results
are presented in connection with MDMP�s for the case of power and binomial
moments� The main theorem �Theorem ���� and its applications help us to �nd
dual feasible bases under the assumption that the objective coe�cient function has
nonnegative divided di�erences of a given total order and further divided di�erences
are nonnegative in each variable� Any dual feasible basis provides us with a bound
for the discrete function that consists of the coe�cients of the objective function
and also for the linear functional� The latter bound is sharp if the basis is primal
feasible as well� The combination of a dual feasible basis structure theorem and the
dual method of linear programming is a powerful tool to �nd the sharp bound for
the true value of the functional� i�e�� the optimum value of the objective function�
The lower and upper bounds are frequently close to each other even if the number
of utilized moments is relatively small� Numerical examples are presented for
bounding the expectations of functions of random vectors as well as probabilities
of Boolean functions of event sequences�

Keywords� Discrete moment problem� Multivariate Lagrange interpolation�
Linear programming� Expectation bounds� Probability bounds
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� Introduction

The multivariate discrete moment problem �MDMP� has been introduced and discussed in
the papers by Pr�ekopa ��		�
 �		�
 ������ The problem can be formulated in connection
with a random vector �X�� � � � �Xs� in the following way� We assume that the support of Xj

is a known nite set Zj � fzj�� � � � � zjnjg
 where zj� � � � � � zjnj � j � �� � � � � s and dene

pi����is � P �X� � z�i�� � � � �Xs � zsis�� � � ij � nj � j � �� � � � � s�

�������s �
n�X
i���

� � �
nsX
is��

z���i� � � � z
�s
sis
pi����is�

where ��� � � � � �s are nonnegative integers� The number ���������s will be called the
���� � � � � �s��order moment of the random vector �X�� � � � �Xs�
 and the sum ��� � � ���s the
total order of the moment�

Let Z � Z� � � � � � Zs and f�z�
 z � Z be a function for which we introduce some
assumptions� Let fi����is � f�z�i�� � � � � zsis�� One way to formulate the multivariate discrete
moment problem is the following�

min�max�
n�X
i���

� � �
nsX
is��

fi����ispi����is

subject to
n�X
i���

� � �
nsX
is��

z���i� � � � z
�s
sis
pi� ���is � �������s

for �j � �� j � �� � � � � s� �� � � � ��s � m
pi����is � �� all i�� � � � � is�

���

We can generalize the above problem by introducing univariate moments of higher order than
m into the constraints� One possible way
 what we consider in this paper
 is the following

min�max�
n�X
i���

� � �
nsX
is��

fi� ���ispi����is

subject to
n�X
i���

� � �
nsX
is��

z���i� � � � z
�s
sis
pi����is � �������s

for �j � �� j � �� � � � � s� �� � � � ��s � m and
for �j � �� j � �� � � � � k � �� k � �� � � � � s� m � �k � mk� k � �� � � � � s�
pi����is � �� all i�� � � � � is�

���

In problems ��� and ��� the unknown variables are the pi����is
 all other quantities are known�
In case of ���
 this means that
 in addition to all moments of total order at most m
 the
at most mkth order moments �mk � m� of the kth univariate marginal distribution is also
known
 k � �� � � � � s�
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The above problems serve for bounding

E�f�X�� � � � �Xs�� ���

under the given moment information� By suitable choices of the function f 
 the expectation
��� specializes to

P �X� � r�� � � � �Xs � rs� ���

or
P �X� � r�� � � � �Xs � rs�� ���

where �r�� � � � � rs� � Z� As byproducts of our methodology
 we also obtain bounds for the
discrete function f�z�� z � Z�

Problems ��� and ��� can be written in more compact forms by the use of the tensor
products of matrices� The tensor product B � C of the m� � n� matrix B � �bij� and the
m�� n� matrix C � �cij� is the m�m�� n�n� matrix B �C � �cijB�� It is well�known �see

e�g�
 Horn and Johnson ��		��� that the tensor product is associative but not commutative�
Let us introduce the notations�

Aj �

�BBBB�
� � � � � �
zj� zj� � � � zjnj
���

� � �

z
mj

j� z
mj

j� � � � z
mj

jnj

�CCCCA �

A � A� � � � � �As�

b � E ����X�� � � � �X
m�
� �� � � � � ���Xs� � � � �X

ms

s ��T

� ��������� �������� � � � � �m������� ��������� �������� � � ��
T

p � �pi����is� � � i� � n�� � � � � � � is � ns�
T

f � �fi����is� � � i� � n�� � � � � � � is � ns�
T �

where the ordering of the components in p and f coincides with that of the corresponding
columns in the matrix A� By the aid of suitable selections of the rows of A
 as well as
components of b
 we can write up the above problems in compact forms� The compact form
of problem ��� is written as�

min�max� fTp

subject to eAp � eb
p � ��

���

and the compact form of problem ��� is�

min�max� fTp

subject to bAp � bb
p � ��

���
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The matrix A has size ��m� � �� � � � �ms � ��� � ��n� � �� � � � �ns � ��� while eA has size

N � ��n� � �� � � � �ns � ���
 where N �
�
s�m
m

�

 and bA has size N � � ��n� � �� � � � �ns � ���


where N � � N �
Ps

j���mj �m�� The matrix eA has full rank if m � nj � j � �� � � � � s and bA
has full rank if mj � nj� j � �� � � � � s�

Let Vmin �Vmax� designate the minimum �maximum� value in problem ��� or problem
���� Let further B� �B�� designate a dual feasible basis �i�e�
 a basis for which the opti�
mality condition is satised� for the minimization �maximization� problem� Then
 by linear
programming theory
 we know that

f T

B�
pB�

� Vmin � E �f�X�� � � � �Xs�� � Vmax � f T

B�
pB�

� ���

If B� �B�� is an optimal basis in the minimization �maximization� problem
 then the rst
�last� inequality holds with equality sign� We say that Vmin and Vmax are the sharp lower
and upper bounds
 respectively
 for the expectation of f�X�� � � � �Xs��

The formulation of the discrete binomial moment problem is similar to the discrete power
moment problem� Taking into account its most important applications to event sequences

where Xj means the number of events that occur in the jth sequence
 j � �� � � � � s
 we
formulate the problem for the case of Zj � f�� � � � � njg� j � �� � � � � s�

Let us introduce the cross binomial moments of order ���� � � � � �s� ���� � � � � �s are non�
negative integers��

S������s � E

��
X�

��

	
� � �

�
Xs

�s

	

�	�

and formulate again two di�erent types of problems� The rst one is

min�max�
n�X
i���

� � �
nsX
is��

fi����ispi����is

subject to
n�X
i���

� � �
nsX
is��

�
i�
�i

	
� � �

�
is
�s

	
pi����is � S������s

for �j � �� j � �� � � � � s� �� � � � � � �s � m
pi� ���is � �� all i�� � � � � is�

����

while the second one is

min�max�
n�X
i���

� � �
nsX
is��

fi����ispi� ���is

subject to
n�X
i���

� � �
nsX
is��

�
i�
�i

	
� � �

�
is
�s

	
pi����is � S������s

for �j � �� j � �� � � � � s� �� � � � ��s � m and
for �j � �� j � �� � � � � k � �� k � �� � � � � s� m � �k � mk� k � �� � � � � s�
pi����is � �� all i�� � � � � is�

����
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These correspond to problems ��� and ���
 respectively� If in problems ��� and ��� we
assume that Zj � f�� � � � � njg� j � �� � � � � s
 then problems ��� and ���� as well as problems
��� and ���� can be transformed into the each other by simple nonsingular transformations�
This means that if we write up problem ���� �problem ����� in the compact matrix form of
��� �����
 then the matrices of the equality constraints can be transformed into each other
by a nonsingular square matrix and its inverse
 respectively� This fact implies that a basis
in problem ��� �problem ���� is dual feasible if and only if it is dual feasible in problem ����
�problem ������ In fact
 let D designate the nonsingular square matrix that has the property
that DA equals the matrix of the equality constraints in problem ����� Then the optimality
condition for a basis B in problem ��� is�

fT
BB

��ak � ���fk for all k� ����

while the optimality condition for the transformed basis in problem ���� is�

fT
B�DB���Dak � ���fk for all k� ����

Obviously
 ���� and ���� are the same� The above reasoning applies to problems ��� and
���� as well�

Finally
 in order to see the relationship between multivariate Lagrange interpolation and
dual feasible bases of problems ��� �����
 let U � fu�� � � � �uMg be a set of distinct points in
IRs and H � f���� � � � � �s�g a nite set of s�tuples of nonnegative integers ���� � � � � �s��

We say that the set U admits an H�type Lagrange interpolation if for any real function
f�z�
 z � U 
 there exists a polynomial p�z� of the form

p�z� �
X

���������s��H

c���� � � � � �s�z
��
� � � � z�ss � ����

where all c���� � � � � �s� are real
 such that

p�ui� � f�ui�� i � �� � � � �M� ����

Let us dene eb�z�� � � � � zs� �bb�z�� � � � � zs�� in a similar way as we have dened eb �bb� but
we remove the expectation and replace zj for Xj 
 j � �� � � � � s�

In connection with problem ��� �problem ���� we dene H
 I and U as follows�

H � f���� � � � � �s�j � � �j� �j integer
 �� � � � � � �s � m� j � �� � � � � sg
�H � f���� � � � � �s�j � � �j� �j integer
 �� � � � � � �s � m� j � �� � � � � s�

or �j � �� j � �� � � � � k � �� k � �� � � � � s� m � �k � mk� k � �� � � � � sg��
����

I � f�i�� � � � � is�j eai����is � eBg
�I � f�i�� � � � � is�j bai����is � bBg��

U � f�z�i�� � � � � zsis�j �i�� � � � � is� � Ig�
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Then
LI�z�� � � � � zs� � fTeB eB��eb�z�� � � � � zs�
�LI�z�� � � � � zs� � fTbB bB��bb�z�� � � � � zs�� ����

is the unique H�type Lagrange polynomial corresponding to the set U �
The dual feasibility of the basis eB or bB in the minimization �maximization� problem

means that
f�z�� � � � � zs� � LI �z�� � � � � zs�� all �z�� � � � � zs� � Z
�f�z�� � � � � zs� � LI �z�� � � � � zs�� all �z�� � � � � zs� � Z��

����

where equality holds in case of �z�� � � � � zs� � U �
Relation ���� is called the condition of optimality of the minimization �maximization�

problem ���
 ����
Replacing �X�� � � � �Xs� for �z�� � � � � zs� and taking expectations in ���� we obtain bounds

for E�f�X�� � � � �Xs��� If the basis is also primal feasible
 then it is optimal and thus
 the
obtained bound is sharp�

The organization of the paper is the following� In Section � we introduce the concept
of a discrete convex function in the multivariate case and mention some of its properties�
In Section � we prove a theorem on multivariate Lagrange interpolation that generalizes
the well known univariate formula for the di�erence of the function and the interpolating
polynomial and also the main theorem �Theorem ���� in Pr�ekopa ��		��� Assuming that
the coe�cient function in problem ��� satises some higher order convexity conditions
 we
present some bounds in Section �� In Section � we introduce algorithms to generate a variety
of dual feasible bases in the bivariate case� Finally
 in Section �
 numerical examples are
presented�

� Multivariate Discrete Higher Order Convex Func�

tions

Let f�z�� z � fz�� � � � � zng be a univariate discrete function
 where z� � � � � � zn� Its rst
order divided di�erences are designated and dened by the equation

�zi�� zi�� f � �
f�zi��� f�zi��

zi� � zi�
� ��	�

The kth order divided di�erences are dened by induction in the usual way �see Jor�
dan ��	���
 Popoviciu ��	���
 Pr�ekopa ��		����

We call the function kth order convex if its kth order divided di�erences are all nonneg�
ative� First order convexity means monotonicity
 second order convexity means convexity of
the sequence of function values in the traditional sense�

Note that this denition is slightly di�erent than that given by Popoviciu ��	���� In
Popoviciu ��	��� the function f is called kth order convex if its k � �st order divided
di�erences are nonnegative�
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If we consider a multivariate discrete function f�z�� z � Z � Z� � � � � � Zs �see Section
�� and take the subset

ZI����Is � fz�i� i � I�g � � � � � fzsi� i � Isg
� Z�I� � � � � � ZsIs �

����

where jIjj � kj ��� j � �� � � � � s
 then we can dene the �k�� � � � � ks��order divided di�erence
of f on the set ���� in an iterative way� First we take the k�th divided di�erence with respect
to the rst variable
 then the k�th divided di�erence with respect to the second variable etc��
This operations can be executed in any order even in a mixed manner
 the result is always
the same� Let

�z�i� i � I�� � � � � zsi� i � Is� f � ����

designate the �k�� � � � � ks��order divided di�erence� The sum k� � � � �� ks is called the total
order of the divided di�erence�

The above mentioned statement concerning divided di�erences is essentially the same as
the following two statements�

If f�z�� z � Z is a univariate discrete function and V�� V� � Z� V� 	 V� � 

 then

�V�� �V�� f �� � �V�� �V�� f �� � �V� � V�� f ��

If f�z�� z � Z � Z� � Z� is a discrete function and z� � Z�
 z� � Z�
 V� � Z�
 V� � Z�

then

�V�� �z��V�� f �� � �V�� �V�� z�� f �� � �V��V�� f ��

De�nition ��� The function f�z�� z � Z is called a �multivariate� discrete convex function
of order �m�� � � � �ms� if for any fzji� i � Ijg� jIjj � mj ��� j � �� � � � � s we have the relation

�z�i� i � I�� � � � � zsi� i � Is� f � � �� ����

De�nition ��� The function f�z�� z � Z is called a �multivariate� discrete convex function
of order m� if all its divided di�erences of total order m are nonnegative�

If f�z�� g�z�� z � Z are convex of the same order
 then this property carries over to the
sum f�z� � g�z�� z � Z� As regards the product
 we have the following

Theorem ��� If f�z� � �� g�z� � �� z � Z are convex of any order i� � � i � m� then the
same holds for the function f�z�g�z�� z � Z�

Proof� The divided di�erences of a product can be obtained by a rule similar to the
derivatives of a product� The assertion easily follows from this fact� �

Our denitions of higher order convexity use only divided di�erences in the directions of
the coordinate axes�

It may happen
 e�g�
 that a function has all nonnegative second total order divided
di�erences but it does not produce a convex discrete function along a line� An example is
given below�
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Let Z� � Z� � f�� �� �g and dene f�z�� z � Z� � Z� in the following way�

f��� �� � �� f��� �� � ���� f��� �� � ����
f��� �� � ���� f��� �� � �� f��� �� � ����
f��� �� � �� f��� �� � ���� f��� �� � ����

The function is not convex along the line ��� ��� ��� ��� ��� ��� In fact
 we have

f��� �� � � �
� � ���

�
�
f��� �� � f��� ��

�
�

As we see in later sections of the paper
 we are able to derive quite good bounds based on
our more restrictive denition of multivariate discrete convex functions� However
 the inclu�
sion of the condition of nonnegativity of the divided di�erences along any set of orthogonal
directions would improve on the results�

If f�z�� z � Z is derived from a function f �z� dened in Z � �z��� z�n��� � � � � �zs�� zsns�
by taking f�z� � f�z�� z � Z and f�z� has continuous
 nonnegative derivatives of order
�k�� � � � � ks� in the interior of Z
 then all divided di�erences of f�z�� z � Z of order �k�� � � � � ks�
are nonnegative� For further results in this respect see Popoviciu ��	����

Given a function f�z�� z � Z which is discrete convex of order m
 it is a di�cult task
to construct an f�z�� z � Z with continuous
 nonnegative derivatives of total order m� We
can easily do it
 however
 if we restrict the denition of f to a subset of Z� One of such
constructions is expressed by

Theorem ��� De�ne the simplicial discrete set ZI in the following way�

ZI � f�zi�� � � � � zis�j �i�� � � � � is� � Ig� ����

where
I � f�i�� � � � � is�j i� � � � �� is � m� � � ij � nj� j � �� � � � � sg� ����

m � n� � � � � � ns�

Then there exists a unique polynomial LI�z� such that

LI�z� � f�z� for z � ZI

and the �k�� � � � � ks�	order derivative of LI�z� is equal to the �k�� � � � � ks�	order divided di�er	
ence of the function f corresponding to the set

f�z�i�� � � � � zsis�j � � ij � kj � j � �� � � � � sg�

The polynomial LI�z� is given by

LI �z�� � � � � zs� �
X

i������is�m
��ij�nj � j�������s

�z��� � � � � z�i�� � � � � zs�� � � � � zsis� f �
sY

j��

ij��Y
h��

�zj � zjh�� ����

where� by de�nition�
ij��Y
h��

�zj � zjh� � �� for ij � ��
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Proof� It is easy to check that LI�z� has the required derivatives� The unicity of the
polynomial is proved in Pr�ekopa ��		�
 p����
 Theorem ����� �

Remark ��� The polynomial LI�z� is the Newton
s form of the multivariate Lagrange poly	
nomial corresponding to the set of points ZI �

In Pr�ekopa ��		�� bounds for E�f�X�� � � � �Xs�� are presented by the use of expectations
of Lagrange polynomials of X�� � � � �Xs for the case where the moments �������s are known
for �� � � � ��s � m and the function f�z�� z � Z satises some higher order convexity
requirement
 e�g�
 it is a discrete convex function of order m��� Simultaneously
 bounds are
presented for the function f�z�� z � Z itself� We use this technique in this paper for more
general problems�

We will frequently use the following formula
 well�known in univariate Lagrange interpo�
lation theory�

f�z� � L�z� � �z�� � � � � zk� z� f �
kY

j��

�z � zj�� ����

where L�z� is the Lagrange polynomial corresponding to the base points z�� � � � � zk
 i�e�


L�z� �
kX
i��

f�zi�
�z � z�� � � � �z � zi����z � zi��� � � � �z � zk�

�zi � z�� � � � �zi � zi����zi � zi��� � � � �zi � zk�
� ����

Formula ���� has been established for functions dened in an interval� However
 we will use
it in connection with discrete functions
 where not only the set of base points is a nite set
but also the whole set on which f is dened�

� A Theorem on Multivariate Lagrange Interpolation

In this section we drop the condition that Z�� � � � � Zs are ordered sets and prove a theorem
valid for a Lagrange interpolation polynomial dened in IRs� We consider the set of subscripts

I � I� �
�
�s
j��Ij

�
� ����

where

I� � f�i�� � � � � is�j � � ij � m� �� integers
 j � �� � � � � s� i� � � � �� is � mg ��	�

and
Ij � f�i�� � � � � is�j ij � Kj� il � � l � jg

Kj � fk
���
j � � � � � k

�jKjj�
j g � fm�m� �� � � � � njg� j � �� � � � � s�

����

In what follows we will use the notations

Zji � fzj�� � � � � zjig�

Z �
ji � fzj�� � � � � zji� zjg�

i � �� � � � � nj� j � �� � � � � s
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and

Kji � fk
���
j � � � � � k

�i�
j g�

ZjKji
� fz

jk
���
j

� � � � � z
jk

�i�
j

g�

i � �� � � � � jKjj� j � �� � � � � s�

ZjKj
� ZjKjjKj j

� j � �� � � � � s�

Corresponding to the points ZI � f�z�i�� � � � � zsis�j �i�� � � � � is� � Ig we assign the Lagrange
polynomial
 given by its Newton�s form

LI �z�� � � � � zs�

�
X

i������is�m
��ij�m��� j�������s

�Z�i� � � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk�

�
sX

j��

jKjjX
i��

h
Z��� � � � �Z�j�����Zj�m��� � ZjKji

�Z�j����� � � � �Zs�� f
i Y
k�f������m��g�Kj�i���

�zj � zjk� �

where
 by denition

ij��Y
k��

�zj � zjk� � �� for ij � �� and Kj� � 
�

����
In ���� the function f is not necessarily restricted to the set Z as its domain of denition� it
may be dened on any subset of IRs that contains Z�

Next
 we dene the �residual function��

RI�z�� � � � � zs� � R�I�z�� � � � � zs� �R�I�z�� � � � � zs�� ����

where

R�I�z�� � � � � zs�

�
sX

j��

h
z��� � � � � z�j�����Zj�m��� � ZjKj

� fzjg� z�j����� � � � � zs�� f
i Y
k�f������m��g�Kj

�zj � zjk�

����
and

R�I�z�� � � � � zs�

�
sX

h��

X
ih�����is�m

��ij�m��� j�h�����s

h
z�� � � � � zh���Z

�
hih

�Z�h���ih��
� � � � �Zsis� f

i ihY
l��

�zh � zhl�

�
sY

h��

ij��Y
k��

�zj � zjk�

�
sX

j�h��

h
z�� � � � � zh���Z

�
h��Z�h����� � � � �Z�j�����Z

�
j�m����Z�j����� � � � �Zs�

i
�zh � zh��

�
m��Y
k��

�zj � zjk� �

����
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The following theorem generalizes the univariate formula ���� and the multivariate for�
mula in Pr�ekopa ��		�
 Section ���

Theorem ��� Consider the Lagrange polynomial ����� corresponding to the points ZI � For
any z � �z�� � � � � zs� for which the function f is de�ned� we have the equality

LI�z�� � � � � zs� � RI�z�� � � � � zs� � f�z�� � � � � zs�� ����

Proof� For the sake of simplicity we assume that mj � nj
 j � �� � � � � s� The proof of
the general case needs only slight modication� We may assume
 without loss of generality

that Kj � fm�m � �� � � � �mjg
 where mj � m� j � �� � � � � s� In fact
 if we introduce the
new sets Zj � Zj�m��� � ZjKj

� j � �� � � � � s� and prove the assertion for them
 we will have
proved the statement for the general case�

Under the assumption for the sets Kj � j � �� � � � � s� the functions LI�z�� � � � � zs� and
R�I�z�� � � � � zs� specialize as follows�

LI�z�� � � � � zs�

�
X

i������is�m
��ij�m��� j�������s

�Z�i� � � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk�

�
sX

j��

mjX
ij�m

h
Z��� � � � �Z�j�����Zjij �Z�j����� � � � �Zs�� f

i ij��Y
k��

�zj � zjk�

����

and

R�I�z�� � � � � zs� �
sX

j��

h
Z��� � � � �Z�j�����Z

�
jmj

�Z�j����� � � � �Zs�� f
i mjY
k��

�zj � zjk� � ����

The formula for R�I�z�� � � � � zs� remains unchanged� Now we prove the following

Lemma ��� We have the equality

LI�z�� � � � � zs� �R�I�z�� � � � � zs�

�
X

i������is�m
��ij�m��� j�������s

�Z�i�� � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk�

�
sX

j��

h
Z��� � � � �Z�j�����Z

�
j�m����Z�j����� � � � �Zs�� f

im��Y
k��

�zj � zjk� �

����

Proof of Lemma ��� Consider the function of the single variable zj�

�Z��� � � � �Z�j�����Z
�
j�m����Z�j����� � � � �Zs�� f ��
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Its Lagrange polynomial
 corresponding to the points zjm� � � � � zjmj
� equals

mjX
ij�m

�Z��� � � � �Z�j�����Zjij �Z�j����� � � � �Zs�� f �
ij��Y
k�m

�zj � zjk��

Hence
 by formula ����
 we have the equation

�Z��� � � � �Z�j�����Z
�
j�m����Z�j����� � � � �Zs�� f �

�
mjX

ij�m

�Z��� � � � �Z�j�����Zjij �Z�j����� � � � �Zs�� f �
ij��Y
k�m

�zj � zjk�

�
h
Z��� � � � �Z�j�����Z

�
jmj

�Z�j����� � � � �Zs�� f
i mjY
k�m

�zj � zjk� �

��	�

If we multiply each line in ��	� by
Qm��
k�� �zj � zjk� and sum for j � �� � � � � s� then we obtain

sX
j��

�Z��� � � � �Z�j�����Z
�
j�m����Z�j����� � � � �Zs�� f �

m��Y
k��

�zj � zjk�

�
sX

j��

mjX
ij�m

h
Z��� � � � �Z�j�����Zjij �Z�j����� � � � �Zs�� f

i ij��Y
k��

�zj � zjk�

�R�I�z�� � � � � zs��

����

By ���� and ���� Lemma ��� follows� �

If we separate the term for j � �
 in the third line in ����
 we obtain

�L�I�z�� � � � � zs� �R�I�z�� � � � � zs�

�
X

i������is�m
��ij�m��� j�������s

�Z�i�� � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk� ����

�
h
Z �
��m����Z��� � � � �Zs�� f

im��Y
k��

�z� � z�k� ����

�
sX

j��

h
Z��� � � � �Z�j�����Z

�
j�m����Z�j����� � � � �Zs�� f

im��Y
k��

�zj � zjk� � ����

Similarly
 if we separate the term for h � � in R�I 
 we obtain

R�I�z�� � � � � zs�

�
X

i������is�m
��ij�m��j�������s

h
Z �
�i� �Z�i�� � � � �Zsis� f

i i�Y
l��

�z� � z�l�
sY

j��

ij��Y
k��

�zj � zjk� ����

�
sX

j��

h
Z �
���Z��� � � � �Z�j�����Z

�
j�m����Z�j����� � � � �Zs�

i
�z� � z���

m��Y
k��

�zj � zjk� ����
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�
sX

h��

�BBB� X
ih�����is�m

��ij�m��� j�h�����s

h
z�� � � � � zh���Z

�
hih

�Z�h���ih��
� � � � �Zsis� f

i

�
ihY
l��

�zh � zhl�
sY

h��

ij��Y
k��

�zj � zjk�

�
sX

j�h��

h
z�� � � � � zh���Z

�
h��Z�h����� � � � �Z�j�����Z

�
j�m����Z�j����� � � � �Zs�

i
� �zh � zh��

m��Y
k��

�zj � zjk�

	
�

����

Now
 we evaluate the sum of the terms in ����
 ���� and ����� We write up ���� in the
form�

X
��i������is�m

��ij�m��� j�������s

��m�i������isX
i���

�Z�i��Z�i� � � � � �Zsis� f �
i���Y
l��

�z� � z�l�

�A sY
j��

ij��Y
k��

�zj � zjk� ����

�
m��X
i���

�Z�i��Z��� � � � �Zs�� f �
i���Y
l��

�z� � z�l�� ����

We also write up ���� in the following form�

X
��i������is�m

��ij�m��j�������s

�h
Z �
��m�i������is�

�Z�i�� � � � �Zsis� f
i i�Y
l��

�z� � z�l�

	
sY

j��

ij��Y
k��

�zj � zjk� � ��	�

So we have to add the formulas in ����
 ����
 ��	� and ����� The sum of ���� and ���� equals
�by the application of formula ������

�z��Z��� � � � �Zs�� f �� ����

On the other hand
 the sum of ���� and ��	� equals �add rst the terms in the parentheses��

X
��i������is�m

��ij�m��� j�������s

�z��Z�i�� � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk� � ����

The sum of ���� and ����
 the result of this step in the proof
 is equal to

X
i������is�m

��ij�m��� j�������s

�z��Z�i�� � � � �Zsis� f �
sY

j��

ij��Y
k��

�zj � zjk� � ����
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The next step is the evaluation of the sum of ���� and ����� If we consider the jth terms
in ���� and ����
 then we see that
 without the factor

Qm��
k�� �zj � zjk�
 the sum of the two

terms equals �again
 by formula ������

�z��Z��� � � � �Z�j�����Z
�
j�m����Z�j����� � � � �Zs�� f �� ����

Thus
 the sum of ���� and ���� is

sX
j��

�z��Z��� � � � �Z�j�����Z
�
j�m����Z�j����� � � � �Zs�� f �

m��Y
k��

�zj � zjk�� ����

The result so far is that LI�z�� � � � � zs� �R�I�z�� � � � � zs� �R�I�z�� � � � � zs� is equal to the sum
of ����
 ���� and ����� The sum of ���� and ���� is equal to eLJ � eR�J 
 while ���� is equal
to eR�J 
 where J is similarly dened as I in connection with i�� � � � � is and the function is the
s � ��variate function f�z�� z�� � � � � zs�
 where z� � Z
 xed� If we assume that ���� is true
for any s � ��variate function
 then
 by the above reasoning
 ���� follows for the s�variate
function f � �

� Bounds When Moments of Total Order Up to m and

Some Higher Order Univariate Moments are Known

In this section we assume that
 in addition to all moments �������s
 �� � � � � � �s � m
 we

know the moments E�X
�j
j �� �j � �� � � � �mj where m � mj � nj� j � �� � � � � s� If we use our

notation for the multivariate moments
 then we can write

E�X
�j
j � � �������j������ j � �� � � � � s�

where on the right hand side �j is the jth subscript� LetH be the set given in the parentheses
of �����

As regards the ordering of the elements in the sets Z�� � � � � Zs we mention separately in
each theorem of this section what is our assumption about it�

We keep the assumption that Kj � fm�m � �� � � � � njg and introduce four di�erent
structures for them as follows�

jKj j even jKjj odd
min u�j�� u�j� � �� � � � � v�j�� v�j� � � m�u�j�� u�j� � �� � � � � v�j�� v�j� � �
max m�u�j�� u�j� � �� � � � � v�j�� v�j� � �� nj u�j�� u�j� � �� � � � � v�j�� v�j� � �� nj �

����

We prove the following

Theorem ��� Let zj� � zj� � � � � � zjnj � j � �� � � � � s� Suppose that the function f�z�� z �
Z has nonnegative divided di�erences of total order m��� and� in addition� in each variable
zj it has nonnegative divided di�erences of order m� jKj j� where the set Kj has one of the
min structures in ���



RRR ������� Page �	

Under these conditions LI �z�� � � � � zs�� de�ned by ����� is a unique H	type Lagrange poly	
nomial on ZI and satis�es the relations

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� the set of columns bB of bA in problem ���� with the subscript set I� is a dual feasible
basis in the minimization problem ���� and

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also a primal feasible basis in problem ���� then the inequality ��� is sharp�
If all the above mentioned divided di�erences are nonpositive� then ��� and ��� hold

with reversed inequality signs�

Proof� The unicity of the H�type Lagrange polynomial ����
 and the fact that bB is a
basis in the LP ���
 can be proved as follows� The columns in problem ��� that correspond
to the points in ZI 
 form a square matrix� The fact that �z � �z�� � � � � zs�� LI�z� � f�z� for
z � ZI 
 tells us that f bB can be represented as suitable linear combination of the rows of bB�

Since it holds for any function f 
 hence for any f bB
 it follows that bB must be nonsingular�
This implies the unicity of the Lagrange polynomial as well�

The equivalence of the dual feasibility of bB in the minimization problem ��� and relations
���� can be deduced similarly as we did it at the end of Section � for problems ��� and ����

To prove ���� we look at equation ����� Since RI�z�� � � � � zs� � R�I�z�� � � � � zs�
�R�I�z�� � � � � zs�
 it is enough to prove that R�I�z�� � � � � zs� � �� R�I�z�� � � � � zs� � � for
�z�� � � � � zs� � Z�

As regards R�I�z�� � � � � zs�
 given by ����
 the special structure of Kj implies thatY
k�f������m��g�Kj

�zj � zjk� � � for j � f�� � � � �m� �g �Kj ����

and if j � f�� � � � �m� �g�Kj
 the above product is �� Since the function f has nonnegative
divided di�erences of order m� jKjj in the variable zi� j � �� � � � � s
 it follows that for any
�z�� � � � � zs� � Z we have R�I�z�� � � � � zs� � ��

As regards R�I�z�� � � � � zs�
 dened by ����
 all divided di�erences in the sums are of total
order m�� and the products that multiply them are all nonnegative for any �z�� � � � � zs� � Z�
Thus
 R�I�z�� � � � � zs� � � for any �z�� � � � � zs� � Z� This proves �����

Inequality ���� is a straightforward consequence of the inequalities ����� Finally
 if bB is
both primal and dual feasible basis in problem ���
 it is an optimal basis and the optimum
value equals

minE�f�z�� � � � � zs��

� fTbBp bB � fTbB bB��bb
� fTbB bB��E�bb�X�� � � � �Xs��

� E�fTbB bB��bb�X�� � � � �Xs��

� E�LI�X�� � � � �Xs���
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Thus
 the theorem is proved� �

In the next theorem we prove both lower and upper bounds for the function f�z�� � � � � zs��
�z�� � � � � zs� � Z and the expectation E�f�X�� � � � �Xs���

Theorem ��� Let zj� � zj� � � � � � zjnj � j � �� � � � � s� Suppose that the function f�z�� z �
Z has nonnegative divided di�erences of total order m��� and� in addition� in each variable
zj it has nonnegative divided di�erences of order m�jKjj� where Kj has one of the structures
in �� that we specify below� Under these conditions we have the following assertions�

�a� If m � � is even� jKj j is even and Kj has the max structure in �� or m � � is
even� jKj j is odd and Kj has the min structure in ��� then the Lagrange polynomial
LI�z�� � � � � zs�� de�ned by ����� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ��	�

i�e�� the set of columns bB in bA� corresponding to the subscripts I� is a dual feasible
basis in the minimization problem ���� We also have the inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also a primal feasible basis in the LP ���� then the lower bound ���� for
E�f�X�� � � � �Xs�� is sharp�

�b� If m�� is odd� jKjj is even and Kj has the max structure in �� or m�� is odd� jKjj
is odd and Kj has the min structure in ��� then the Lagrange polynomial� de�ned by
����� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� the basis bB is dual feasible in the maximization problem ���� We also have the
inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also a primal feasible basis in the LP ���� then the upper bound ���� for
E�f�X�� � � � �Xs�� is sharp�

Proof� We prove the rst part of �a�
 the other proofs can be carried out in the same
way�

We have already shown in the proof of Theorem ��� that bB is a basis in the LP ����
Also
 we have claried that ��	� is equivalent to the dual feasibility of bB in the minimization
problem ����

We only have to prove ��	�
 because ���� is a trivial consequence of it and the proof of
the sharpness of ����
 i�e�
 the primal feasibility of eB
 is the same as that in the proof of
Theorem ����
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We prove that R�I � � and R�I � � for all �z�� � � � � zs� � Z� The nonnegativity of R�I

follows from the fact that each term in the sum of R�I is the product of a nonnegative divided
di�erence and some Y

k�f������m��g�Kj

�zj � zjk�� ����

Since m� � is even
 we have the inequalityY
k�f������m��g

�zj � zjk� � �� ����

The product in ���� is zero
 if � � j � m��� On the other hand
 due to the special structure
of Kj
 we also have for j � m� Y

k�Kj

�zj � zjk� � �� ����

Thus
 R�I�z�� � � � � zs� � � for any �z�� � � � � zs� � Z�
The nonnegativity of R�I follows from the fact that each term in the sum that denes it

is the product of a nonnegative divided di�erence and an even number of factors of the form
zj � zjk � �� Thus
 R�I�z�� � � � � zs� � � for any �z�� � � � � zs� � Z and the theorem is proved�
�

In the next theorem we use the subscript set

I � I� �
�
�s
j��Ij

�
� where

I� � f�i�� � � � � is�j ij integer� � � nj � ij � m� �� j � �� � � � � s�
n� � i� � � � �� ns � is � mg�

Ij � f�i�� � � � � is�j �nj � ij� � Kj � il � � l � jg� j � �� � � � � s�

����

The Lagrange polynomial corresponding to ZI is�

LI �z�� � � � � zs� �X
i������is�m

��ij�m��� j�������s

h
z�n�� � � � � z��n��i��� � � � � zsns� � � � � zs�ns�is�� f

i sY
j��

njY
k�nj�ij��

�zj � zjk��

�
sX

j��

jKjjX
ij��

�
z�n�� � � � � z�j���nj��� zjnj � � � � � zj�m���� zj�nj�k���j

�
� � � � � z

j�nj�k
�ij �

j �
�

z�j���nj�� � � � � � zsns� f
i
�

�
nj�m��Y
k��

�zj � zjk�
ij��Y
l��

�zj � z
j�nj�k

�l�
j �

��

����

Theorem ��� Let zj� � zj� � � � � � zjnj � j � �� � � � � s� Suppose that the function f�z�� z �
Z has nonnegative divided di�erences of total order m � �� and� in addition� in each vari	
able zj it has nonnegative divided di�erences of order m � jKjj� where nj � Kj has one of
the structures in �� that we specify below� Under these conditions we have the following
assertions�
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�a� If m�� is even� jKj j is even and nj�Kj has the max structure in ��� or m�� is even
jKj j is odd and nj �Kj has the min structure in ��� then the Lagrange polynomial
LI�z�� � � � � zs�� de�ned by ����� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� the set of those columns of bA in problem ��� that correspond to the subscripts in
I� is dual feasible in the minimization problem ���� We also have the inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ��	�

If bB is also a primal feasible basis in problem ���� then the bound in ���� is sharp�

�b� If m�� is odd� jKj j is even and nj �Kj has a max structure in ��� or m�� is odd�
jKj j is odd and nj �Kj has a min structure in ��� then LI�z�� � � � � zs�� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� bB is a dual feasible basis in the maximization problem ���� We also have the
inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also primal feasible basis in problem ���� then the bound in ���� is sharp�

Proof� The assertion that bB is a basis can be proved in the usual way� Otherwise

the theorem is a consequence of Theorem ���
 if we replace zj�nj���� zj�nj���� � � � � zj�nj�nj� for
zj�� zj�� � � � � zjnj � i � �� � � � � s and �z�� � � � � zs� � Z� �

The next theorem presents bounds for E�f�X�� � � � �Xs�� in the case where in connection
with each variable Xj � j � �� � � � � s we know the expectation
 variance
 skewness and kurtosis

or we know the rst four moments E�Xj�
 E�X�

j �
 E�X	
j �
 E�X


j �
 further
 in addition
 we
know all covariances Cov�Xi�Xj�� i � j�

Theorem ��� Let zj� � zj� � � � � � zjnj j � �� � � � � s� Suppose that the function f�z�
z � Z has nonnegative divided di�erences of total order m � � � �� and� in addition� in
each variable zj it has nonnegative divided di�erences of order m�� � �� Then we have the
following assertions�

�a� If jKj j � � and each Kj consists of m and any two consecutive elements of fm���m�
�� � � � � njg� j � �� � � � � s �i�e�� Kj has the min structure in ��� and I is the subscript
set ����	����� then the Lagrange polynomial ���� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� the set of columns bB of bA in problem ���� that correspond to the subscript set I
in ����� is a dual feasible basis in problem ���� We also have the inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also a primal feasible basis in problem ���� then the inequality in ���� is sharp�
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�b� If jKjj � � and each nj � Kj consists of m and any two consecutive elements of
fm��� � � � � njg� j � �� � � � � s �i�e�� nj �Kj has the min structure in ��� and I is the
subscript set ����� then the Lagrange polynomial ���� satis�es

f�z�� � � � � zs� � LI�z�� � � � � zs�� �z�� � � � � zs� � Z� ����

i�e�� the set of columns bB of bA in problem ���� that corresponds to the subscript set I
in ����� is a dual feasible basis in problem ���� We also have the inequality

E�f�X�� � � � �Xs�� � E�LI�X�� � � � �Xs��� ����

If bB is also a primal feasible basis in problem ���� then the inequality in ��� is sharp�

Proof� The theorem is an immediate consequence of Theorems ��� and ���� �

Remark ��� For the case of s � � the Lagrange polynomial in Theorem ���� Case �a� has
the detailed form�

LI�z�� z��
� �z��� z��� f � � �z��� z��� z��� f ��z� � z���
��z��� z��� z��� f ��z� � z���
��z��� z��� z��� z��� f ��z� � z����z� � z���
��z��� z��� z��� z��� f ��z� � z����z� � z���
��z��� z��� z��� z�i� z��� f ��z� � z����z� � z����z� � z���
��z��� z��� z��� z�i� z��i���� z��� f ��z� � z����z� � z����z� � z����z� � z�i�
��z��� z��� z��� z��� f ��z� � z����z� � z���
��z��� z��� z��� z��� z�k� f ��z� � z����z� � z����z� � z���
��z��� z��� z��� z��� z�k� z��k���� f ��z� � z����z� � z����z� � z����z� � z�k��

����

For the case of s � � the Lagrange polynomial in Theorem ���� Case �b� has the detailed
form�

LI�z�� z��
� �z�n�� z�n�� f � � �z�n�� z��n����� z�n�� f ��z� � z�n��
��z�n�� z�n�� z��n����� f ��z� � z�n��
��z�n�� z��n����� z��� z��n����� f ��z� � z�n���z� � z�n��
��z�n�� z��n����� z��n����� z�n�� f ��z� � z�n���z� � z��n�����
��z�n�� z��n����� z��n����� z�i� z�n�� f ��z� � z�n���z� � z��n������z� � z��n�����
��z�n�� z��n����� z��n����� z�i� z��i���� z�n�� f ��z� � z�n���z� � z��n������z� � z��n������z� � z�i�
��z�n�� z�n�� z��n����� z��n����� f ��z� � z�n���z� � z��n�����
��z�n�� z�n�� z��n����� z��n����� z�i� f ��z� � z�n���z� � z��n������z� � z��n�����
��z�n�� z�n�� z��n����� z��n����� z�k� z��k���� f ��z� � z�n���z� � z��n������z� � z��n������z� � z�k��

����
If we replace X��X� for z�� z�� respectively� in ���� and ����� and take expectations�

then the value resulting from ���� �from ����� provides us with a lower �upper� bound for
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E�f�X��X���� Note that all expectations in ���� and ���� can be expressed by the use of the
moments

E�Xk
j �� k � �� �� �� �� j � �� �

and the covariance

Cov�X��X���

Given a dual feasible basis
 we may look at it as an initial basis and carry out the dual
algorithm of linear programming to obtain the best possible bound� The knowledge of an
initial dual feasible basis has two main advantages� First it saves roughly half of the running
time of the entire dual algorithm� Second
 it improves on the numerical accuracy of the
computation that we carry out in connection with our LP�s�

� More Dual Feasible Bases� Algorithms and Bounds

in the Bivariate Case

In the bivariate case we can create a larger variety of dual feasible bases for problem ���

and produce better bounds than what we can obtain by the use of the dual feasible basis
structures presented in the previous section� We drop the condition that the elements of the
supports of the random variables X��X� are arranged in increasing order
 we only assume
that each set Z� � fz��� � � � � z�n�g
 Z� � fz��� � � � � z�n�g consist of distinct elements�

For convenience we write up the Lagrange polynomial ���� and the residual terms ����

���� for the case of s � �� We obtain�

LI�z�� z��

�
X

i��i��m
��ij�m��� j����

�z��� � � � z�i�� z��� � � � � z�i�� f �
�Y

j��

ij��Y
k��

�zj � zjk�

�
jK�jX
i��

�z��� � � � � z��m���� z�k����
� � � � � z

�k
�i�
�
� z��� f �

Y
k�f������m���k

���
� �����k

�i�
� g

�z� � z�k�

�
jK�jX
i��

�z��� z��� � � � � z��m���� z�k����
� � � � � z

�k�i��
� f �

Y
k�f������m���k

���
� �����k

�i�
� g

�z� � z�k��

����

R�I�z�� z��

� �z��� � � � � z��m���� Z�K�� z�� z��� f �
Y

k�f������m��g�K�

�z� � z�k�

��z��� z��� � � � � z��m���� Z�K�� z�� f �
Y

k�f������m��g�K�

�z� � z�k��

��	�
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R�I�z�� z��

�
X

i��i��m
��ij�m�� j����

�z��� � � � � z�i�� z�� z��� � � � � z�i�� f �
i�Y
l��

�z� � z�l�
i���Y
k��

�z� � z�k�

��z��� z�� z��� � � � � z��m���� z�� f ��z� � z���
m��Y
k��

�z� � z�k��

����

We want to ensure that the Lagrange polynomial corresponding to the set ZI 
 i�e�
 the
polynomial ���� should satisfy

LI�z�� z�� � f�z�� z��� �z�� z�� � Z ����

or
LI�z�� z�� � f�z�� z��� �z�� z�� � Z� ����

A su�cient condition for ���� ������ is that R�I�z�� z�� � �
 R�I � �
 for all �z�� z�� � Z
�R�I�z�� z�� � �
 R�I � �
 for all �z�� z�� � Z��

All coe�cients in the expression of R�I�z�� z�� and R�I�z�� z�� are divided di�erences of
order m� �� Assume all of them are nonnegative� Hence
 in order to ensure ���� ������ we
have to choose I in such a way that all products in ��	� and ���� be nonnegative �nonpositive��

Consider the m� �m� �� array

z�� z�� z�� � � � z��m��� z��m��� z��
z�� z�� z�� � � � z��m��� z�� z��

���
z�� z�� z�� � � � z��m�
� z��m�	� z��m���

z�� z�� z�� � � � z��m�	� z��m��� z��m���

����

and associate each of the rst m� � rows with the corresponding product in the second line
of ����� Similarly
 associate the last row of ���� with the product in the third line of ����
that denes R�I�z�� z��� A su�cient condition for the nonnegativity of all products in ����

for all �z�� z�� � Z
 is that

jfij� � i � i�� z�i � z�gj
� jfij� � i � i�� z�i � z�gj � even number

����

should hold for all �z�� z�� � Z in each row of ����
 i�e�
 for every i� � �� i� � � integers
satisfying i��i� � m��� Similarly
 a su�cient condition for the nonpositivity of all products
in ����
 for all �z�� z�� � Z
 is that

jfij� � i � i�� z�i � z�gj
� jfij� � i � i�� z�i � z�gj � odd number

����

should hold for all �z�� z�� � Z in each row of ����
 i�e�
 for every i� � �� i� � � integers
satisfying i� � i� � m� ��
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Consider rst the case
 where we want to construct lower bound
 i�e�
 satisfy relations
����
 by suitable choices of z��� � � � � z��m���� z��� � � � � z��m���� We present an algorithm to nd
these sequences� We may assume
 without loss of generality
 that the ordered sets Z� and
Z� are the following� Z� � f�� �� � � � � n�g
 Z� � f�� �� � � � � n�g�

Min Algorithm

Algorithm to �nd z��� � � � � z��m���� z��� � � � � z��m��� satisfying �	�
�
Step �� Initialize t � �
 �� � q � m � �
 L � f�� �� � � � � qg
 U � fn�� n� � �� � � � � n� �

�m� q � ��g
 V � � farbitrary merger of the sets L�Ug � fv�� v�� � � � � vm��g� If jU j is even

then h� � �
 l� � �
 u� � n�
 and if jU j is odd
 then h� � n�
 l� � �
 u� � n� � �� Go to
Step ��

Comment� The rst m elements of the rst row in ���� are the elements of V �
 them��st
element of the same row is h�� All the sets L�U� V � are ordered�

Step �� If t � m
 then go to Step �� Otherwise go to Step ��
Step �� Let V t � fv�� v�� � � � � vm���tg
 H t � fh�� h�� � � � � htg If vm���t � L
 then let

ht�� � lt
 lt�� � lt � �
 ut�� � ut
 and if vm���t � U 
 then let ht�� � ut
 ut�� � ut � �

lt�� � lt� Set t� t� � and go to Step ��

Comment� The elements of V t�H t
 in that order
 constitute the tth row of tableau �����
Step �� Stop
 all m rows of the tableau have been created� The tableau ���� has rows

fV t�H tg� t � �� �� � � � �m� ��
The points presented below represent those columns in problem ��� which correspond to

the subscript set I��

�z��� z���� �z��� z���� � � � �z��m���� z���� �z��m���� z����
�z��� z���� �z��� z���� � � � �z��m���� z����

���
���

�z��� z��m����� �z��� z��m�����
�z��� z��m�����

����

It remains to nd suitable sets K� and K� to make R�I�z�� z�� � �
 for all �z�� z�� � Z�
Let �� �� � � � � q�� n�� � � � � n� � �m � q� � �� be the numbers used to construct

z��� z��� � � � � z��m���� Then the set Kj should be taken from the set fqj � �� qj � �� � � � � nj �
�m � qj � ��g
 j � �� �� These subsets of the sets Z�� Z�
 respectively
 remain intact after
the construction of I�� For each j the products

m��Y
k��

�zj � zjk�� �z�� z�� � Z ����

do not change sign
 but they may be positive or negative
 depending on the construction of
zj�� � � � � zj�m���
 j � �� ��

If ���� is positive
 then Kj should follow a minimum structure in ����
 and if ���� is
negative
 then Kj should follow a maximum structure�
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We have completed the construction of the dual feasible basis related to the subscript set
I�

If we want to satisfy the relation ����
 i�e�
 construct an upper bound
 then only slight
modication is needed in the above algorithm to nd z��� � � � � z��m���� z��� � � � � z��m���� We
only have to rewrite Step � and keep the other steps unchanged�

Max Algorithm

Step � of algorithm to �nd z��� � � � � z��m���� z��� � � � � z��m��� satisfying �	�
�
Step �� Initialize t � �
 �� � q � m � �
 L � f�� �� � � � � qg
 U � fn�� n� � �� � � � � n� �

�m � q � ��g
 V � � farbitrary merger of the sets L�Ug � fv�� v�� � � � � vm��g� If jU j is odd

then h� � �
 l� � �
 u� � n�
 and if jU j is even
 then h� � n�
 l

� � �
 u� � n� � �� Go to
Step �
 etc�

The points
 representing the basic columns in problem ��� are given by �����
It remains to nd suitable sets K� and K� to make R�I�z�� z�� � � for all �z�� z�� � Z�
The set Kj should be taken from the set fqj � �� qj � �� � � � � nj � �m� qj � ��g
 j � �� ��
In case of the upper bound we have to choose Kj the other way around as in case of the

Min algorithm� If ���� is positive
 then Kj should follow a maximum structure
 otherwise a
minimum structure�

We have completed the construction of the dual feasible basis related to the subscript set
I�

In the general case
 where Z� is not necessarily f�� �� � � � � n�g and Z� is not necessarily
f�� �� � � � � n�g
 we do the following� First we order the elements in both Z� and Z� in increas�
ing order� Then
 establish one�to�one correspondences between the elements of Z� and the
elements of the set f�� �� � � � � n�g that we assume to be ordered now� We do the same to Z�

and f�� �� � � � � n�g� After that
 we carry out the Min or Max Algorithm to nd a dual feasible
basis
 using the sets f�� �� � � � � n�g
 f�� �� � � � � n�g
 as described in this section� Finally
 we
create the set ����
 by the use of the above mentioned one�to�one correspondences�

The above construction allows for the construction of a variety of dual feasible bases�
However
 we do not have a simple criterion
 like in the dual method
 to decide which of the
bases
 that we can obtain by the above Min or Max Algorithm
 would improve on the bound
�on the value of the objective function�� Still
 the above construction is simple and fast

further
 given the dual feasible basis and the corresponding Lagrange polynomial LI�z�� z��

the bound is simply E�LI�X��X��� which is not di�cult to compute
 at least in many cases�
So
 we can test a large number of dual feasible bases in a relatively short time and then
choose the best one
 to bound and approximate E�f�X��X���� This method may produce
very good results much faster than the execution of the dual algorithm�

� Illustrative Examples

In this section we present illustrative numerical examples for discrete moment bounds� For
the sake of simplicity we restrict ourselves to the bivariate case�
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Example ��� Let Z� � Z� � f�� � � � � 	g� m � �� m� � m� � �� Based on the assumptions of
Theorem ���� and the sets K� � K� � f�� �� 	g� which are min structures in ��� we present
a dual feasible basis for the minimum problem of ���� and a lower bound for E�f�X��X����
from ���� Figure ��a� illustrates that basis�

We also present a dual feasible basis for the maximum problem of ���� using Theorem
���� and give upper bound for E�f�X��X���� Let K��K� be the same as before� The basis
subscript set is illustrated in Figure ��b��
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� � � � � � � � � � �

� � � � � � � � � 	

�b�

Figure �� Z� � Z� � f�� � � � � 	g� m � �� m� � m� � �� K� � K� � f�� �� 	g� Figure
�a� illustrates a dual feasible basis for the min problem of ���
 worked out from Theorem
���� Figure �b� illustrates a dual feasible basis for the max problem of ���
 worked out from
Theorem ���� The elements of I� are designated by �
 the elements of I� and I� are designated
by ��

Consider the bivariate function

f�z�� z�� � log��e�z��a � ���e�z��b � �� � ��� ����

de�ned for
e�z��a � �� e�z��b � ��

where �� � are positive constants� This function is a modi�cation of a function known
as Frank
s copula in actuarial mathematics �see Bowers Jr�� Hickman� Jones and Nes	
bitt ��������

It is easy to see that

	f

	zj
� ��

	�f

	z�j
� ��

		f

	z	j
� ��

	
f

	z
j
� ��

	�f

	z�j
� �� � � � �

j � �� ��

	�f

	z�	z�
� ��

		f

	z��	z�
� ��

		f

	z�	z
�
�

� �� etc�



RRR ������� Page �	

All even �odd� total order derivatives of the function are negative �positive��
If we restrict the de�nition of the function to Z � Z��Z�� then it satis�es the conditions

of Theorem ��� and ���� assume the following moments are known�

� � � � � � � �
� � ������ ������� �������� ��������� ��������� ��	�������
� ������ ���	��	 	������ �	������
� ������� 	������ ��������
� �������� �	������
� ���������
� ���������
� ��	�������

We can obtain lower and upper bounds for E�f�X��X���� if we calculate the value of f
TbB bB��bb�

where bB is the matrix of the columns corresponding to the above bases� For the lower bound
the result is ������� and for the upper bound it is 	������ There is a big gap between
these bounds�

However� the use of the algorithms of Section  improved on the lower bound� Below we
present an example to �nd a dual feasible basis for the lower bound� First we run the Min
Algorithm as follows�

Step �� t � �� q � ��� L � 
� U � f	� �� �� �g� V � � U � jU j is even� hence h���� l� � ��
u� � 	�

Step �� vm�� � U � hence h� � u� � 	� l� � l� � �� u� � u� � � � �� t � t� � � ��
Step �� vm�� � U � hence h� � u� � �� l� � l� � �� u� � u� � � � �� t � t� � � ��
Step �� vm�� � U � hence h	 � u� � �� l	 � l� � �� u	 � u� � � � �� t � t� � � ��
Step �� vm�� � U � hence h� � u� � 	� l� � l� � �� u� � u� � � � �� t � t� � � ��
Step �� t � � � m� �� hence we stop�
At this point we have found z��� z��� z��� z�	 and z��� z��� z��� z�	� We write them in the

form of ���� as follows�
	 � � � �
	 � � � 	
	 � � 	 �
	 � 	 � �

To complete the dual feasible basis subscript set� we need sets K� � f�� � � � � �g and K� �
f�� � � � � �g� Let K� � f�� �� �g which is a suitable min structure� and K� � f�� �� �g which is
a suitable max structure�

Next� we present an example to �nd a dual feasible basis for the upper bound� Again� �rst
we run the Max Algorithm�

Step �� t � �� q � ��� L � 
� U � f	� �� �� �g� V � � f	� �� �� �g� jU j is even� hence
h� � 	� l� � �� u� � ��

Step �� v	 � U � hence h� � u� � �� l� � l� � �� u� � u� � � � �� t � t� � � ��
Step �� v� � U � hence h� � u� � �� l� � l� � �� u� � u� � � � �� t � t� � � ��
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Step �� v� � U � hence h	 � u� � �� l	 � l� � �� u	 � u� � � � �� t � t� � � ��
Step �� t � m� � � �� Stop�
If we write up the result in the form of ����� we obtain

	 � � � 	
	 � � 	 �
	 � 	 � �
	 	 � � �

Let K� � K� � f�� �� �g which is a max structure� All dual feasible bases that can be
obtained in this way have been tested� The best lower bound is 	������ and the best upper
bound is 	������

	 � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � 	

�a�

	 � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � 	

�b�

Figure �� Z� � Z� � f�� � � � � 	g� m � �� m� � m� � �� In Case �a� K� � f�� �� �g

K� � f�� �� �g
 and the marked points illustrate a dual a feasible basis for the min problem
of ���� in Case �b� K� � K� � f�� �� �g and the marked points illustrate a dual feasible basis
for the max problem of ���� The bases have been obtained by the use of the algorithms of
Section �� The elements of I� are designated by �
 the elements of I� and I� are designated
by ��

Finally� we solve the problem by the dual algorithm� We can choose any of the above dual
feasible bases as an initial basis� and carry out only the second stage of the method� For the
above problem we have received the following results� 	������ for the lower bound with basis
illustrated in Figure ��a�� and 	����� for the upper bound with basis illustrated in Figure
��b��

Example ��� Consider the function�

f�z�� z�� � e
z�
���

z�z�
��� �

z�
� � ��	�

de�ned on z�� z� � �� All derivatives of this function are positive in the nonnegative orthant�



RRR ������� Page ��

	 � � � � � � � � � �
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� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � 	

�a�

	 � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � 	

�b�

Figure �� Z� � Z� � f�� � � � � 	g
 m � �� m� � m� � �� In Case �a� we have an optimal basis
for the min problem of ���
 in Case �b� we have one for the max problem of ���� The bases
have been obtained by the dual algorithm�

Let Z� � f�� �� � � � � ��g� Z� � f���� �� � � � � �g� Z � Z� � Z�� Let m � �� m� � m� � �� as
in example ����

It is easy to see� that the function satis�es the conditions of Theorem ��� and ���� Hence�
the bases in Figure � are dual feasible for the min and max problems of ���� respectively�
Assume the following moments are known

�ij � � � � � � �
� � �� ��� ���� ������� ������ ������	�
� ���� �	��	�� �������� ��������
� 	���� ������� ��		�����
� ������� �	������
� ���������
� �	��������
� ��	�������

All bases of Theorems ��� and ��� have been tested for the above problem and those in
Figure � turned out to be the best ones� The best one among these lower bounds is ��	��
and the best ones among these upper bounds is ������

We can improve on both bounds by the use of the algorithms of Section �
First� we detail the algorithm that �nds a dual feasible basis for the min problem�
Step �� t � �� q � �� L � f�� �g� U � f	� �g� V � � f�� 	� �� �g� jU j is even� hence h� � ��

l� � �� u� � 	�
Step �� v	 � U � hence h� � u� � 	� l� � l� � �� u� � u� � � � �� t � t� � � ��
Step �� v� � L� hence h� � l� � �� l� � l� � � � �� u� � u� � �� t � t� � � ��
Step �� v� � U � hence h	 � u� � �� l	 � l� � �� u	 � u� � � � �� t � t� � � ��
Step �� t � m� � � �� Stop�
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At this point we have found the sequences V � and Hm��� By the use of the elements of
the ordered sets Z�� Z�� the array ���� is the following�

� �� � �� ���
� �� � ��� �
� �� ��� � �
� ��� � � ���

Let us choose K� � K� � f�� �� �g� The obtained basis is illustrated in Figure ��a�� The
related bound is �������

Now� we run the algorithm to �nd an upper bound�

Step �� t � �� q � �� L � f�� �� �g� U � f	g� V � � f�� �� 	� �g� jU j is odd� hence h� � ��
l� � �� u� � 	�

Step �� v	 � L� hence h� � l� � �� l� � l� � � � �� u� � u� � 	� t � t� � � ��

Step �� v� � U � hence h� � u� � 	� l� � l� � �� u� � u� � � � �� t � t� � � ��

Step �� v� � L� hence h	 � l� � �� l	 � l� � � � �� u	 � u� � �� t � t� � � ��

Step �� t � m� � � �� Stop�

We can write up the results in the form of �����

� � �� � ���
� � �� ��� �
� � ��� � �
� ��� � � ���

Choose K� � K� � f�� �� �g� The obtained basis is illustrated in Figure ��b�� The
corresponding bound is �������

The problem has been solved by the dual algorithm as well� We have obtained the following
results� ����	� for the lower bound and ������ for the upper bound�

In the next three examples
 we present only the best lower and upper bounds obtained
by the use of the Min and Max Algorithms of Section ��

Example ��� The problem is taken from Pr�ekopa� Vizv�ari and G� Reg�os ������� We have
�� events� subdivided into two ��	element groups� Xj equals the number of events that occur
in the jth group� j � �� �� Z� � Z� � f�� � � � � ��g � f�� � � � � ��g�

We want to �nd bounds for the probability that at least one out of the �� events occurs�
i�e�

P �X� �X� � �� � E�f�X��X����

where

f�z�� z�� �

�
�� if �z�� z�� � ��� ��
�� otherwise�

�	��
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� � � � � � � � � � �
��� � � � � � � � � � �
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��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �

� � � � �� �� �� �� �� ��

�a�

� � � � � � � � � � �
��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �
� � � � � � � � � � �
��� � � � � � � � � � �

� � � � �� �� �� �� �� ��

�b�

Figure �� Z� � f�� �� � � � � ��g
 Z� � f���� �� � � � � �g� m � �� m� � m� � ��In Case �a�
K� � K� � f�� �� �g
 and the marked points illustrate a dual feasible basis for the min
problem of ���� In Case �b� K� � K� � f�� �� �g and the marked points illustrate a dual
feasible basis for the max problem of ���
 worked out from the algorithms of Section �� The
elements of I� are designated by �
 the elements of I� and I� are designated by ��

Pr�ekopa ������ has shown� that if m � � is even �odd�� then all divided di�erences ���� of
total order m� � are nonpositive �nonnegative�� Suppose that we know the following cross
binomial moments

�st �nd group
group � � � � � � �

� ���� ��	� ���� ����	 ����� ������ ������
� ���� ���� ����� �����	 �	���� �������
� ����� ����� �	��	� ������� ������	
� �����	 �����	 ������� ��������
� ������ �	���� ������	
� ������� �������
� ���	��	�

We have obtained the following results� by the use of the dual feasible bases of Section 
for problem �����

m m� m� lower bound upper bound
� � � ������� �
� � � ������	 �������
� � � ������� �

The best bounds correspond to the second case� where m � �� m� � m� � �� even though in
the third case more moments are taken into account� This phenomenon is explained by the
fact that in the second case we have the freedom to choose the sets K�� K� arbitrarily �in
agreement with ����
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We know from Pr�ekopa� Vizv�ari and Reg�os ������� that the optimal value is ��	���� for
the min� and ��	���� for the max problem� in case of m � m� � m� � �� These values
have been obtained by the full execution of the dual method of linear programming�

In the following example we present bounds in the case where in connection with each
variable Xj� j � �� � we know the expectation
 variance
 skewness and kurtosis
 i�e�
 we know
the rst four moments and the covariance Cov�X��X���

Example ��� Consider the bivariate utility function ����� Let � � � � �� a � b � � and
Z� � Z� � f�� � � � � ��g�
Case �

Assume that� in addition to ���� the following moments are known� ���� � ��� ��� � ��� �
��
�� ��� � ��� � ��
�� �	� � ��	 � ��� �
� � ��
 � ���
��

The results are presented below� The lower and upper bound columns contain values
obtained by the Min and Max Algorithms of Section � The min and max columns contain
values obtained by the dual algorithm carried out for problem ����

��� lower bound upper bound min max
����� �������� ����			� ������� ����	���
�� �������� ����			� ������	� ��������
�� �������� ����			� ������� ����	�	�

Remark� In the �rst case ��� � ����� � ���
��� � ������� hence the two random variables
do not correlate�
Case �

Now� suppose that ���� � ��� ��� � ��� � ����	��
������� ��� � ��� � �������
�������
�	� � ��	 � ���������
�������� �
� � ��
 � ���������
�������� ��� � ����	��
�������
We have obtained the following results�

lower bound upper bound min max
������� ���	�� ������	 ����	�

Example ��� Finally� we consider the function

f�z�� z�� � e
z�
���

z�
���

z�z�
��� �

the support set Z� � Z� � f�� � � � � ��g � f�� � � � � ��g and the following power moments�

�ij � � � � � � �
� ���� ���� 	���� ���	��� �������� ��	������ ���	�	����
� ��	� ���� ����� ������� ����	�� ����	�
� ����� ����� ������� ����	�� ����	�
� ������ ������� ����	�� ����	�
� ��	���� ����	�� ����	�
� ������� ����	�
� ���	��
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We have obtained the following results�

m m� m� lower bound upper bound
� � � �������� �������	
� � � �����	�� ��������
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