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Abstract.In [13] the authors presented a method to obtain sharp lower and upper
bounds for expectations of convex functions of discrete random variables as well as
probabilities that at least one out of n events occurs, based on the knowledge of some
of the power moments of the random variables involved, or the binomial moments
of the number of events which occur. In this paper Binomial moment problem with
finite, preassigned supports and given shapes of the distribution is formulated and
used to obtain sharp lower and upper bounds for probabilities that exactly r out
of n events occurs as well as probabilities that at least r out of n events occurs.
The bounds are based on the knowledge of some of the binomial moments of the
number of events which occur. Numerical examples and applications in reliability
and finance are presented.



1 Introduction

Let ξ be a random variable, the possible values of which are known to be nonnegative numbers
z0 < z1 < ... < zn. Let pi = P (ξ = zi), i = 0, 1, ..., n. Suppose that these probabilities

are unknown but the binomial moments Sk = E

[(
ξ
k

)]
, k = 1, ...,m, where m < n are

known.

The starting point of our investigation is the following linear programming problem

min(max){f(z0)p0 + f(z1)p1 + ... + f(zn)pn}
subject to

p0 + p1 + ... + pn = 1

z0p0 + z1p1 + ... + znpn = S1(
z0

2

)
p0 +

(
z1

2

)
p1 + ... +

(
zn

2

)
pn = S2 (1.1)

...(
z0

m

)
p0 +

(
z1

m

)
p1 + ... +

(
zn

m

)
pn = Sm

p0 ≥ 0, p1 ≥ 0, ..., pn ≥ 0.

Problem (1.1) is called the binomial moment problem, respectively and have been studied
extensively in [1, 7, 8, 9, 10]. Let A; a0, a1, ..., an and b denote the matrix of the equality
constraints its columns and the vector of the right-hand side values. We will alternatively
use the notation fk instead of f(zk).

In this paper we specialize problem (1.1) in the following manner.

(1) We assume that zi = i, i = 0, ..., n and f0 = ... = fr−1 = 0, fr = ... = fn = 1 for some
r. The problem can be used in connection with arbitrary events A1, ..., An, to obtain
sharp lower and upper bounds for the probability of the union. In fact if we define
S0 = 1 and

Sk =
∑

1≤i1<...<ik≤n

P (Ai1 ...Aik), k = 1, ..., n,

then by a well-known theorem (see, e.g., [11]) we have the equation

Sk = E

[(
ξ
k

)]
, k = 1, ..., n, (1.2)

where ξ is the number of those events which occur. The equality constraints in (1.1)
are just the same as S0 = 1 and the equations in (1.2) for k = 1, ...,m and the objective
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function is the probability of ξ ≥ r under the distribution p0, ..., pn. The distribution,
however, is allowed to vary subject to the constraints, hence the optimum values of
problem (1.1) provide us with the best possible bounds for the probability P (ξ ≥ r),
given S1, ..., Sm.

(2) We assume that zi = i, i = 0, ..., n and fr = 1, fi = 0, i 6= r. In this case the
optimum values of problem (1.1) provide us with the best possible lower and upper
bounds for the probability P (ξ = 1), given S1, ..., Sm.

For small m values (m ≤ 4) closed form bounds are presented in the literature. For power
moment bounds see [10, 11]. Bounds for the probability of the union have been obtained
by Fréchet [3] when m = 1, Dawson and Sankoff [2] when m = 2, Kwerel [5] when m ≤ 3,
Boros and Prékopa [1] when m ≤ 4. In the last two paper bounds for the probability that at
least r events occur, are also presented. For other closed form probability bounds see [4, 11].
In [7, 8, 9, 10, 11] Prékopa discovered that the probability bounds based on the binomial
and power moments of the number of events that occur, out of a given collection A1, ..., An,
can be obtained as optimum values of discrete moment problems (DMP) and showed that
for arbitrary m values simple dual algorithms solve problem (1.1) if f is of type (1) or (2).
In [13], authors gave closed form formulas for expectations of convex functions of discrete
random variables and the probability that at least 1 out of n events occurs when m = 2.

In this paper we formulate and use the binomial moment problem with finite, preassigned
support and with given shape of the probability distribution to obtain sharp lower and upper
bounds for unknown probabilities. We assume that the probability distribution {pi} is either
decreasing (Type 1) or increasing (Type 2) or unimodal with a known modus (Type 3). The
reasoning goes along the lines presented in above cited papers by Prékopa.

In Section 2 some basic theorems are given. In Section 3 and 4 we use the dual feasible
basis structure theorems in [7, 8, 9, 10] to obtain sharp bounds for P (ξ ≥ r) and P (ξ = r) in
case of problem (1.1), where the first two moments are known. In Section 5 we give numerical
examples to compare the sharp bounds obtained by the original binomial moment problem
and the sharp bounds obtained by the transformed problems: Type 1, Type 2 and Type 3.
In Section 6 we present two examples for the application of our bounding technique, where
shape information about the unknown probability distribution can be used.

2 Basic Theorems

Consider the following binomial moment problem:

min(max)
n∑

i=r

pi
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subject to
n∑

i=0

pi = 1

n∑
i=1

ipi = S1

n∑
i=2

(
i
2

)
pi = S2

...
n∑

i=m

(
i
m

)
pi = Sm

p0, ..., pn ≥ 0 . (2.1)

The following theorem [7, 8, 9, 10] describes the dual feasible bases in problem (2.1).

Theorem 1. Let 0 ≤ r ≤ n. A basis in problem (2.1) is a dual feasible basis if and only if
it has one of the following structures (in terms of the subscripts of the basic vectors).

Minimization problem, m + 1 even

• r /∈ I,

• {0, i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1} if 2 ≤ r ≤ n− 1,

• {i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1, n} if 1 ≤ r ≤ n− 2,

• {0, 1, i, i + 1, ..., j, j + 1} if r = 0,

• {i, i + 1, ..., j, j + 1, n− 1, n} if r = n.

Minimization problem, m + 1 odd

• r /∈ I,

• {0, i, i + 1, ..., j, j + 1, r − 1, r, r + 1, k, k + 1, ..., t, t + 1, n} if 2 ≤ r ≤ n− 2,

• {i, i + 1, ..., j, j + 1, r − 1, r, r + 1, k, k + 1, ..., t, t + 1} if 1 ≤ r ≤ n− 1,

• {0, 1, i, i + 1, ..., j, j + 1, n} if r = 0,

• {0, i, i + 1, ..., j, j + 1, n− 1, n} if r = n.

Maximization problem, m + 1 even

• {i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1, n} if 0 ≤ r ≤ n− 1,

• {0, i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1} if 1 ≤ r ≤ n.

Maximization problem, m + 1 odd

• {i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1} if 0 ≤ r ≤ n,
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• {0, i, i+1, ..., j, j +1, r, k, k +1, ..., t, t+1, n} if 1 ≤ r ≤ n−1, where in all parentheses
the numbers are arranged according to increasing order. If n > m + 2, then all bases for
which r /∈ I, are dual degenerate. The bases in all other cases are dual nondegenerate.

Now we consider the following problem:

min(max) {pr}

subject to
n∑

i=0

pi = 1

n∑
i=1

ipi = S1

n∑
i=2

(
i
2

)
pi = S2

...
n∑

i=m

(
i
m

)
pi = Sm

p0, ..., pn ≥ 0 . (2.2)

The following theorem [7, 8, 9, 10] characterizes the dual feasible basis in (2.2).

Theorem 2. Let 1 ≤ r ≤ n. A basis in Problems (2.2) is a dual feasible basis if and only if
it has one of the following structures (in terms of the subscripts of the basic vectors).

Minimization problem, m + 1 even

• I ⊂ {0, ..., r − 1} if r ≥ m + 1,

• {0, i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1} if 2 ≤ r ≤ n− 1,

• {i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1, n} if 1 ≤ r ≤ n.

Minimization problem, m + 1 odd

• I ⊂ {0, ..., r − 1} if r ≥ m + 1,

• {0, i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1, n} if 2 ≤ r ≤ n,

• {i, i + 1, ..., j, j + 1, r − 1, k, k + 1, ..., t, t + 1} if 1 ≤ r ≤ n− 1.

Maximization problem, m + 1 even

• I ⊂ {r, ..., n} if n− r ≥ m,

• {i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1, n} if 1 ≤ r ≤ n− 1,
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• {0, i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1} if 1 ≤ r ≤ n.

Maximization problem, m + 1 even

• I ⊂ {r, ..., n} if n− r ≥ m,

• {i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1, n} if 1 ≤ r ≤ n,

• {0, i, i + 1, ..., j, j + 1, r, k, k + 1, ..., t, t + 1} if 1 ≤ r ≤ n, where in all parentheses
the numbers are arranged in increasing order. Those bases for which I ⊂ {0, ..., r − 1}
(I ⊂ {r, ..., n}) are dual nondegenerate in the minimization (maximization) problem if r >
m + 1 (n− r + 1 > m + 1). The bases in all other cases are dual nondegenerate.

3 Sharp bounds for the probability that at least r events

occur

In this section we consider the binomial moment problem (1.1). We assume that the distri-
bution is either decreasing or increasing or unimodal with a known and fixed modus. We give
sharp lower and upper bounds for P (ξ ≥ r) in case of three problem types: the probabilities
p0, ..., pn are (1) decreasing, (2) increasing; (3) form a unimodal sequence.

We look at the special case, where

zi = i, i = 0, ..., n , f0 = ... = fr−1 = 0, fr = ... = fn = 1 .

In case of m = 2 we give the sharp lower and upper bounds for the probability that at least
r out of n events occur. We look at the problem (1.1) but the constraints are supplemented
by shape constraints of the unknown probability distribution p0, ..., pn.

3.1 TYPE 1: p0 ≥ ... ≥ pn

We assume that the probabilities p0, ..., pn are unknown but satisfy the above inequalities.

Let m = 2. If we introduce the variables

v0 = p0 − p1, ... , vn−1 = pn−1 − pn, vn = pn,

then problem (1.1) can be written as

min(max){vr + 2vr+1 + ... + (n− r + 1)vn}
subject to

v0 + 2v1 + 3v2 + 4v3 + ... + (n + 1)vn = 1(
2
2

)
v1 +

(
3
2

)
v2 +

(
4
2

)
v3 + ... +

(
n + 1

2

)
vn = S1
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(
2
2

)
v2 +

[(
2
2

)
+

(
3
2

)]
v3 + ... +

[(
2
2

)
+ ... +

(
n
2

)]
vn = S2

v0, ..., vn ≥ 0 . (3.1)

Taking into account the equation:

1 +

(
3
2

)
+ ... +

(
k
2

)
=

(k − 1)k(k + 1)

6
,

the problem is the same as the following:

min(max){vr + 2vr+1 + ... + (n− r + 1)vn}

subject to
n∑

i=0

(i + 1)vi = 1

n∑
i=0

(i + 1)ivi = 2S1 (3.2)

n∑
i=0

(i + 1)i(i− 1)vi = 6S2

v0, ..., vn ≥ 0 .

Problem (3.2) is equivalent to the following:

min(max){vr + 2vr+1 + ... + (n− r + 1)vn}

subject to

v0 + 2v1 + 3v2 + 4v3 + ... + (n + 1)vn = 1

2v1 + 6v2 + 12v3 + ... + (n + 1)nvn = 2S1 (3.3)

6v2 + 24v3 + ... + (n + 1)n(n− 1)vn = 6S2

v0, ..., vn ≥ 0 .

Let A be the coefficient matrix of the equality constraint in (3.3). By the use of Theorem
1, dual feasible bases in the minimization and the maximization problems in (3.3) are in the
form

Bmin =

{
(a0, ar−1, an) if 2 ≤ r ≤ n
(ar−1, ai, ai+1) if 1 ≤ r ≤ n− 1

and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 1 ≤ r ≤ n

,
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respectively, where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

The basis Bmin = (a0, ar−1, an) is also primal feasible if

3S2

n− 1
≤ S1 ≤

3S2

r − 2
and 2(n + r − 2)S1 − 6S2 ≤ n(r − 1). (3.4)

In this case the sharp lower bound for P (ξ ≥ r) is

6S2 − 2(r − 2)S1

n(n + 1) .
(3.5)

We have the following two cases for the primal feasibility of the basis Bmin = (ar−1, ai, ai+1):

Case 1. Let r ≤ i ≤ n− 1. The basis Bmin = (ar−1, ai, ai+1) is primal feasible if

2(i + r − 1)S1 − 6S2 ≥ (r − 1)(i + 1)

2(i + r − 2)S1 − 6S2 ≤ i(r − 1) (3.6)

4iS1 − 6S2 ≤ i(i + 1).

In this case the sharp lower bound for P (ξ ≥ r) is

2(2i + r)S1 − 6S2

(i + 1)(i + 2)
− 2(r − 1)

i + 2
. (3.7)

Case 2. Let 0 ≤ i ≤ r − 3. The basis Bmin = (ar−1, ai, ai+1) is primal feasible if

2(i + r − 1)S1 − 6S2 ≤ (r − 1)(i + 1)

2(i + r − 2)S1 − 6S2 ≥ i(r − 1) (3.8)

4iS1 − 6S2 ≤ i(i + 1),

where i ≤ r − 3.

We remark that in this case the lower bound for P (ξ ≥ r) is 0.

Optimality Conditions for Bmax

In case of maximization problem in (3.3) the basis Bmax = (a0, ar, an) is also primal
feasible if

8



3S2

n− 1
≤ S1 ≤

3S2

r − 2
and 2(n + r − 1)S1 − 6S2 ≤ nr . (3.9)

The sharp upper bound for P (ξ ≥ r) can be given as follows:

2(n2 + nr − r3 + r2 + r − 1)S1 − 6(n− r2 + 1)S2

r(r + 1)n(n + 1)
. (3.10)

The basis Bmax = (ar, aj, aj+1) is also primal feasible if j is determined by the following
conditions:

Case 1. If r + 1 ≤ j ≤ n− 1,

2(j + r)S1 − 6S2 ≥ r(j + 1)

2(j + r − 1)S1 − 6S2 ≤ rj (3.11)

4jS1 − 6S2 ≤ j(j + 1) .

In this case the sharp upper bound for P (ξ ≥ r) is

j − 2r2 + 2

(r + 1)(j + 2)
+

2r(r + 2j + 1)S1 − 6rS2

(r + 1)(j + 1)(j + 2)
. (3.12)

Case 2. If 0 ≤ j ≤ r − 2,

2(j + r)S1 − 6S2 ≤ r(j + 1)

2(j + r − 1)S1 − 6S2 ≥ rj (3.13)

4jS1 − 6S2 ≤ j(j + 1) .

In this case the sharp upper bound for P (ξ ≥ r) is

j(j + 1)

(r + 1)(r − j)(r − j − 1)
− 4jS1 − 6S2

(r + 1)(r − j)(r − j − 1)
. (3.14)

3.2 TYPE 2: p0 ≤ ... ≤ pn

Now we assume that the probability distribution is increasing. Let us introduce the variables
v0 = p0, v1 = p1 − p0, ..., vn = pn − pn−1. In this case problem (1.1) can be written as

min(max){(n− r + 1)(v0 + ... + vr) + (n− r)vr+1 + ... + vn}

subject to

(n + 1)v0 + nv1 + (n− 1)v2 + ... + vn = 1

9



(
n + 1

2

)
(v0 + v1) +

[(
n + 1

2

)
− 1

]
v2 + ... +

[(
n + 1

2

)
−

(
n
2

)]
vn = S1

[(
2
2

)
+ ... +

(
n
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+ ... +

(
n
2

)]
v3 + ... +

(
n
2

)
vn = S2

v ≥ 0 . (3.15)

Taking into account the equations:(
n + 1

2

)
−

(
i
2

)
=

(n + i)(n− i + 1)

2
, 2 ≤ i ≤ n

and (
i
2

)
+ ... +

(
n
2

)
=

(n + 1)n(n− 1)− (i− 2)(i− 1)i

6
, 2 ≤ i ≤ n

problem (3.15) can be written as

min(max){(n− r + 1)(v0 + ... + vr) + (n− r)vr+1 + ... + vn}

subject to
(n + 1)v0 + nv1 + (n− 1)v2 + ... + vn = 1

(n + 1)n(v0 + v1) + (n + 2)(n− 1)v2 + ... + (n + i)(n− i + 1)vi + ... + 2nvn = 2S1

(n+1)n(n−1)(v0 +v1 +v2)+ ...+[(n+1)n(n−1)− (i−2)(i−1)i]vi + ...+3n(n−1)vn = 6S2

v0, ..., vn ≥ 0 . (3.16)

Let A be the coefficient matrix of the equality constraint in (3.16). By the use of Theorem
1, dual feasible bases in the minimization and the maximization problems in (3.16) are in
the form

Bmin =

{
(a0, ar−1, an) if 2 ≤ r ≤ n
(ar−1, ai, ai+1) if 1 ≤ r ≤ n− 1

and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 1 ≤ r ≤ n

,

respectively, where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

The basis Bmin = (a0, ar−1, an) is also primal feasible if

4(n− 1)S1 − 6S2 ≥ n(n− 1)
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2(n + r − 3)S1 − 6S2 ≤ n(r − 2) (3.17)

2(2n + r − 3)S1 − 6S2 ≤ n(n + 2r − 3) .

By the use of this basis the the lower bound for P (ξ ≥ r) can be found as

1 − r(n + 2r − 3)

(n + 1)(r − 1)
+

n(n− 1)

(r − 1)(n− r + 1)(n− r + 2)

− 2(2n3 + r3 + 3nr − 3n2r − 5r2 + 6r − 2n)S1 − 6((n− r)(n− r + 1)− r)S2

n(n + 1)(n− r + 1)(n− r + 2)
. (3.18)

The basis Bmin = (ar−1, ai, ai+1) is also primal feasible if i is determined by the following
inequalities:

Case 1. If r ≤ i ≤ n− 1, then

2(n + 2i− 1)S1 − 6S2 ≤ i(2n + i + 1)

2(n + r + i− 2)S1 − 6S2 ≥ (r − 1)(n + i + 1) + ni (3.19)

2(n + r + i− 3)S1 − 6S2 ≤ (r − 1)(n + i) + n(i− 1) .

In this case the lower bound for P (ξ ≥ r) is

1 +
2(n + 2i− 1)S1 − 6S2 − i(2n + j + 1)

(i− r + 1)(i− r + 2)(n− r + 2)
. (3.20)

Case 2. If 0 ≤ i ≤ r − 3, then

2(n + 2i− 1)S1 − 6S2 ≤ i(2n + i + 1)

2(n + r + i− 2)S1 − 6S2 ≤ (r − 1)(n + i + 1) + ni (3.21)

2(n + r + i− 3)S1 − 6S2 ≥ (r − 1)(n + i) + n(i− 1) .

In this case the lower bound for P (ξ ≥ r) can be given as

i(i + 2r − 3)− 2(r + 2i− 3)S1 + 6S2

(n− i)(n− i + 1)(n− r + 2)
. (3.22)

Optimality Conditions for Bmax

Now we give closed form formulas for the sharp upper bound for the probability that at
least r events occur. First, we ensure the primal feasibility of the basis for maximization
problem in (3.16).

11



Bmax = (a0, ar, an) is primal feasible if the following conditions are satisfied:

4(n− 1)S1 − 6S2 ≥ n(n− 1)

2(n + r − 2)S1 − 6S2 ≤ n(r − 1) (3.23)

2(2n + r − 2)S1 − 6S2 ≤ n(n + 2r − 1) .

We have the following upper bound for P (ξ ≥ r):

2r(2n + r − 2)S1 − 6S2

nr(n + 1)
− 2(r − 1)

n + 1
. (3.24)

The primal feasibility of Bmax = (ar, aj, aj+1) is ensured if j is determined by the
following conditions:

Case 1. If r + 1 ≤ j ≤ n− 1,

2(n + 2j − 1)− 6S2 ≤ j(2n + j + 1)

2(n + j + r − 1)S1 − 6S2 ≥ r(n + j + 1) + nj (3.25)

2(n + j + r − 2)S1 − 6S2 ≤ n(r + j − 1) + rj .

We remark that if Bmax = (ar, aj, aj+1), where r + 1 ≤ j ≤ n − 1 is the optimal basis,
then the upper bound for P (ξ ≥ r) is equal to 1.

Case 2. If 0 ≤ j ≤ r − 2,

2(n + 2j − 1)− 6S2 ≤ j(2n + j + 1)

2(n + j + r − 1)S1 − 6S2 ≤ r(n + j + 1) + nj (3.26)

2(n + j + r − 2)S1 − 6S2 ≥ n(r + j − 1) + rj.

In this case the upper bound for P (ξ ≥ r) is given as follows:

j(j + 2r − 1)− 2(r + 2j − 2)S1 + 6S2

(n− j)(n− j + 1)
. (3.27)

3.3 TYPE 3: p0 ≤ ... ≤ pk ≥ ... ≥ pn

In this section we assume that the distribution is unimodal with a known modus zk. First
we introduce the variables vi, i = 0, 1, ..., n:

v0 = p0, v1 = p1 − p0, ... , vk = pk − pk−1 ,

12



vk+1 = pk+1 − pk+2, ... , vn−1 = pn−1 − pn, vn = pn .

We have the following two possibilities:

1. 0 ≤ r ≤ k,

2. k + 1 ≤ r ≤ n.

In the following two subsections we give sharp bound formulas for each case.

3.3.1 Case 1. 0 ≤ r ≤ k

We assume that 0 ≤ r ≤ k. In this case problem (1.1) can be written as

min(max){(k− r + 1)(v0 + ... + vr) + (k− r)vr+1 + ... + vk + vk+1 + 2vk+2 + ... + (n− k)vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1(
k + 1

2

)
(v0 + v1) +

[(
k + 1

2

)
−

(
i
2

)]
vi + ... + kvk + (k + 1)vk+1

+

[(
k + 3

2

)
−

(
k + 1

2

)]
vk+2 + ... +

[(
n + 1

2

)
−

(
k + 1

2

)]
vn = S1[(

2
2

)
+ ... +

(
k
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+

(
k
2

)]
v3 +

(
k
2

)
vk +

(
k + 1

2

)
vk+1+[(

k + 1
2

)
+

(
k + 2

2

)]
vk+1 + ... +

[(
k + 1

2

)
+ ... +

(
n
2

)]
vn = S2

v ≥ 0 . (3.28)

This is equivalent to

min(max){(k− r + 1)(v0 + ... + vr) + (k− r)vr+1 + ... + vk + vk+1 + 2vk+2 + ... + (n− k)vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1

(k+1)kv0+(k+1)kv1+...+(k+i)(k−i+1)vi+...+2kvk+2(k+1)vk+1+...+(n−k)(n+k+1)vn = 2S1

(k + 1)k(k − 1)(v0 + v1 + v2) + ... + [(k3 − k)− (i− 2)(i− 1)i]vi + ... + 3k(k − 1)vk

+3(k + 1)kvk+1 + ... + (n− k)(n2 + nk + k2 − 1)vn = 6S2

v ≥ 0 . (3.29)
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Let A be the coefficient matrix of the equality constraints in (3.29). By Theorem 1, a
dual feasible basis for minimization problem in (3.29) is of the form

Bmin =

{
(a0, ar−1, an) if 2 ≤ r ≤ n
(ar−1, ai, ai+1) if 1 ≤ r ≤ n− 1

,

where 1 ≤ i ≤ n − 1 and a dual feasible basis for maximization problem in (3.29) is of the
form and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 1 ≤ r ≤ n

,

where and 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

The basis Bmin = (a0, ar−1, an) is also primal feasible if the following conditions are
satisfied:

4(k − 1)S1 − 6S2 ≥ k(k − 1)

2(k + r − 3)S1 − 6S2 ≤ k(r − 2) (3.30)

2(2k + r − 3)S1 − 6S2 ≤ k(k + 2r − 3) .

We have the following lower bound for P (ξ ≥ r):

1 − r(k + 2r − 3)

(k + 1)(r − 1)
+

k(k − 1)

(r − 1)(k − r + 1)(k − r + 2)

− 2(2k3 + r3 + 3kr − 3k2r − 5r2 + 6r − 2k)S1 − 6((k − r)(k − r + 1)− r)S2

k(k + 1)(k − r + 1)(k − r + 2)
. (3.31)

The basis Bmin = (ar−1, ai, ai+1) is also primal feasible if i is determined by the following
inequalities:

Case 1.1 If 0 ≤ i ≤ r − 3, then

2(k + 2i− 1)S1 − 6S2 ≤ i(2k + i + 1)

2(k + r + i− 2)S1 − 6S2 ≤ (r − 1)(k + i + 1) + ki (3.32)

2(k + r + i− 3)S1 − 6S2 ≥ (r − 1)(k + i) + k(i− 1) .

In this case the lower bound for P (ξ ≥ r) is

i(i + 2r − 3)− 2(r + 2i− 3)S1 + 6S2

(k − i)(k − i + 1)(k − r + 2)
. (3.33)
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Case 1.2 If r ≤ i ≤ n− 1, then

2(k + 2i− 1)S1 − 6S2 ≤ i(2k + i + 1)

2(k + r + i− 2)S1 − 6S2 ≥ (r − 1)(k + i + 1) + ki (3.34)

2(k + r + i− 3)S1 − 6S2 ≤ (r − 1)(k + i) + k(i− 1) .

The lower bound for P (ξ ≥ r) can be given as

1 +
2(k + 2i− 1)S1 − 6S2 − i(2k + i + 1)

(i− r + 1)(i− r + 2)(k − r + 2)
. (3.35)

Case 1.3 If k ≤ i ≤ n− 1, then

2(2i + k + 1)S1 − 6S2 ≤ (i + 1)(2k + i + 2)

2(r + i + k − 1)S1 − 6S2 ≥ k(r + i) + (i + 2)(r − 1) (3.36)

2(r + i + k − 2)S1 − 6S2 ≤ ik + (i + k + 1)(r − 1)

and the closed form formula for the lower bound for P (ξ ≥ r) is

1 +
2(2i + k + 1)S1 − 6S2 − (i + 1)(2k + i + 2)

(i− r + 2)(i− r + 3)(k − r + 2)
. (3.37)

Case 1.4 If i = k, then
2kS1 − 2S2 ≤ k(k + 1)

2(2k + r − 1)S1 − 6S2 ≥ (k + 1)(k + 2r − 2) (3.38)

2(2k + r − 3)S1 − 6S2 ≤ k(k + 2r − 3) .

In this case the lower bound for P (ξ ≥ r) is given by the following formula:

1 +
6kS1 − 6S2 − 3k(k + 1)

(k − r + 1)(k − r + 2)(k − r + 3)
. (3.39)

Optimality Conditions for Bmax

Now we give the primal feasibility conditions of a dual feasible basis for the maximization
problem in (3.29).

Bmax = (a0, ar, an) is also primal feasible if

2(n + k − 1)S1 − 6S2 ≥ nk

2(r + k − 2)S1 − 6S2 ≤ k(r − 1) (3.40)
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2(n + r + k − 1)S1 − 6S2 ≤ r(n + k + 1) + nk .

If the conditions in (3.40) are satisfied, then the upper bound for P (ξ ≥ r) can be obtained
as

2(n + r + k − 1)S1 − 6S2 − (n + k + 1)(r − 1)

(n + 1)(k + 1)
. (3.41)

The basis Bmax = (ar, aj, aj+1) is also primal feasible is j is determined by the following
conditions:

2(2j + k − 1)S1 − 6S2 ≤ j(j + 2k + 1)

2(j + r + k − 1)S1 − 6S2 ≤ r(j + k + 1) + jk (3.42)

2(j + r + k − 2)S1 − 6S2 ≥ k(j + r − 1) + rj ,

where 0 ≤ j ≤ r − 2.

In this case the upper bound for P (ξ ≥ r) can be given as

j(j + 2r − 1)− 2(2j + r − 2)S1 + 6S2

(k − j)(k − j + 1)
. (3.43)

The basis Bmax = (ar, aj, aj+1), r + 1 ≤ j ≤ k − 2 is also primal feasible if

2(k + j + r − 1)S1 − 6S2 ≥ r(k + j + 1) + kj

2(k + j + r − 2)S1 − 6S2 ≤ k(r + j − 1) + rj (3.44)

2(k + 2j − 1)S1 − 6S2 ≤ j(2k + j + 1) .

The basis Bmax = (ar, aj, aj+1), k + 1 ≤ j ≤ n− 1 is also primal feasible if

2(rj + k + 1)S1 − 6S2 ≤ (j + 1)(j + 2k + 2)

2(j + k + r)S1 − 6S2 ≥ r(j + k + 2) + k(j + 1) (3.45)

2(j + r + k − 1)S1 − 6S2 ≤ r(j + k + 2) + j(k − 1)− 2 .

The basis Bmax = (ar, ak, ak+1) is also primal feasible if

2kS1 − 2S2 ≤ k(k + 1)

2(2k + r)S1 − 6S2 ≥ (k + 1)(2r + k) (3.46)

2(2k + r − 2)S1 − 6S2 ≤ k(k + 2r − 1) .

We remark that if r + 1 ≤ j ≤ k − 2 or k + 1 ≤ j ≤ n − 1 or j = k, then the optimum
value of the maximization problem in (3.29) is 1. Thus, the upper bound for P (ξ ≥ r) is 1.
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3.3.2 Case 2. k + 1 ≤ r ≤ n

Now we assume that k + 1 ≤ r ≤ n. Taking this into account problem (1.1) can be written
as follows:

min(max){vr + 2vr+1 + ... + (n− r + 1)vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1(
k + 1

2

)
(v0 + v1) +

[(
k + 1

2

)
−

(
i
2

)]
vi + ... + kvk + (k + 1)vk+1

+

[(
k + 3

2

)
−

(
k + 1

2

)]
vk+2 + ... +

[(
n + 1

2

)
−

(
k + 1

2

)]
vn = S1[(

2
2

)
+ ... +

(
k
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+

(
k
2

)]
v3 +

(
k
2

)
vk +

(
k + 1

2

)
vk+1+[(

k + 1
2

)
+

(
k + 2

2

)]
vk+1 + ... +

[(
k + 1

2

)
+ ... +

(
n
2

)]
vn = S2

v ≥ 0 . (3.47)

Similarly, this is equivalent to

min(max){vr + 2vr+1 + ... + (n− r + 1)vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1

(k+1)kv0+(k+1)kv1+...+(k+i)(k−i+1)vi+...+2kvk+2(k+1)vk+1+...+(n−k)(n+k+1)vn = 2S1

(k + 1)k(k − 1)(v0 + v1 + v2) + ... + [(k3 − k)− (i− 2)(i− 1)i]vi + ... + 3k(k − 1)vk

+3(k + 1)kvk+1 + ... + (n− k)(n2 + nk + k2 − 1)vn = 6S2

v ≥ 0 . (3.48)

Let A be the coefficient matrix of the equality constraints in (3.41). By Theorem 1, a
dual feasible basis for minimization problem in (3.41) is of the form

Bmin =

{
(a0, ar−1, an) if 2 ≤ r ≤ n
(ar−1, ai, ai+1) if 1 ≤ r ≤ n− 1

,

where 1 ≤ i ≤ n − 1 and a dual feasible basis for maximization problem in (3.29) is of the
form and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 1 ≤ r ≤ n

,
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where and 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

The optimality of the basis Bmin = (a0, ar−1, an) is ensured if the following conditions are
satisfied:

2(n + k − 1)S1 − 6S2 ≥ nk

2(r + k − 2)S1 − 6S2 ≤ k(r − 1) (3.49)

2(n + r + k − 1)S1 − 6S2 ≤ r(n + 1) + k(n− r) .

If the basis Bmin = (a0, ar−1, an) is optimal,then the lower bound for P (ξ ≥ r) can be
obtained as

k(r − 1)− 2(r + k − 2)S1 + 6S2

(n + 1)(n− k)
. (3.50)

The basis Bmin = (ar−1, ai, ai+1) is also primal feasible if i is determined by the following
inequalities:

Case 2.1 If 0 ≤ i ≤ k − 1 or k + 1 ≤ i ≤ r − 3, then the optimum value of the
minimization problem in (3.41) is 0. Thus, the lower bound for P (ξ ≥ r) is 0.

Case 2.2 Let r ≤ i ≤ n− 1.

2(r + i + k)S1 − 6S2 ≥ r(i + k + 2) + k(i + 1)

2(r + i + k − 1)S1 − 6S2 ≤ r(i + k) + ik (3.51)

2(2i + k + 1)S1 − 6S2 ≤ (i + 1)(i + 2k + 2) + r(i− r + 1) .

In this case the following is the lower bound for P (ξ ≥ r):

2(r + 2i)S1 − 6S2 − k(2i− k + 1)− r(3i− k + 2)

(i− k)(i− k + 1)
. (3.52)

Optimality Conditions for Bmax

Now we give optimality conditions of a dual feasible basis of the maximization problem
in (3.41).

The basis Bmax = (a0, ar, an) is optimal if

2(r + k − 1)S1 − 6S2 ≤ rk
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2(n + r + k)S1 − 6S2 ≤ (n + 1)(r + k + 1) + rk (3.53)

2(n + k − 1)S1 − 6S2 ≥ nk .

The upper bound for P (ξ ≥ r) is

2(n(n + r)− (r − 1)2(r + 1) + rk(k − 1))S1 − 6(n + 1− r(r − k))S2

(n− k)(r − k)(n + 1)(r + 1)

−n(n + 1)− (r − k)(n− r2 + 1)

(n− k)(r − k)(n + 1)(r + 1)
. (3.54)

The basis Bmax = (ar, aj, aj+1) is also primal feasible if the following conditions are
satisfied:

Case 2.1 If 0 ≤ j ≤ k − 1, then

2(r + j + k)S1 − 6S2 ≤ (j + 1)(r + k + 1) + rk

2(r + j + k − 1)S1 − 6S2 ≥ j(r + k + 1) + rk (3.55)

2(2j + k − 1)S1 − 6S2 ≤ j(j + 2k + 1) .

In this case the upper bound for P (ξ ≥ r) is given as

j(j + 2k + 1)− 2(2j + k − 1)S1 + 6S2

(r − k)(r − j)(r − j + 1)
. (3.56)

Case 2.2 Let k + 1 ≤ j ≤ r− 2. In this case the basis Bmax = (ar, aj, aj+1) is optimal if

2(r + j + k)S1 − 6S2 ≤ (j + 1)(r + k + 1) + rk

2(r + j + k + 1)S1 − 6S2 ≤ (j + 2)(r + k + 1) + rk (3.57)

2(2j + k + 1)S1 − 6S2 ≤ (j + 2)(r + k + 1) + rk

and the upper bound for P (ξ ≥ r) is

(j + 1)(j + 2k + 2)− 2(2j + k + 1)S1 + 6S2

(r − k)(r − j)(r − j − 1)
. (3.58)

Case 2.3 If r + 1 ≤ j ≤ n− 1, then

2(r + j + k)S1 − 6S2 ≤ (j + 1)(r + k + 1) + rk

2(r + j + k + 1)S1 − 6S2 ≥ (j + 2)(r + k + 1) + rk (3.59)

2(2j + k + 1)S1 − 6S2 ≤ (j + 1)(j + 2k + 2) .
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The closed form formula for the upper bound for P (ξ ≥ r) can be obtained as follows:

1

r − k
− (2j − k + 2)(r + k + 1) + rk

(r − k)(j − k)(j − k + 1)

+
2(2j + r + 1)(r − k − 1)S1 − 6(r − k − 1)S2

(r − k)(j − k)(j − k + 1)
. (3.60)

4 Sharp bounds for the probability that exactly r events

occur

In this section we consider the special case of the binomial moment problem (1.1), where

zi = i, i = 0, ..., n , fr = 1, fj = 0, j 6= r.

In case of m = 2 we give the sharp lower and upper bounds for the probability that exactly
r out of n events occur. We look at the problem (1.1) but the constraints are supplemented
by shape constraints of the unknown probability distribution p0, ..., pn.

In the following three subsections we use the same shape constraints that we have used
in Section 3.1-3.3.

4.1 TYPE 1: p0 ≥ ... ≥ pn

Let m = 2. If we introduce the variables

v0 = p0 − p1, ... , vn−1 = pn−1 − pn, vn = pn,

then problem (1.1) can be written as

min(max){vr + vr+1 + ... + vn}

subject to

v0 + 2v1 + 3v2 + 4v3 + ... + (n + 1)vn = 1(
2
2

)
v1 +

(
3
2

)
v2 +

(
4
2

)
v3 + ... +

(
n + 1

2

)
vn = S1(

2
2

)
v2 +

[(
2
2

)
+

(
3
2

)]
v3 + ... +

[(
2
2

)
+ ... +

(
n
2

)]
vn = S2

v0, ..., vn ≥ 0 . (4.1)
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Taking into account the equation:

1 +

(
3
2

)
+ ... +

(
k
2

)
=

(k − 1)k(k + 1)

6
,

the problem is the same as the following:

min(max){vr + vr+1 + ... + vn}

subject to
n∑

i=0

(i + 1)vi = 1

n∑
i=0

(i + 1)ivi = 2S1 (4.2)

n∑
i=0

(i + 1)i(i− 1)vi = 6S2

v0, ..., vn ≥ 0 .

Problem (4.2) is equivalent to the following:

min(max){vr + vr+1 + ... + vn}

subject to

v0 + 2v1 + 3v2 + 4v3 + ... + (n + 1)vn = 1

2v1 + 6v2 + 12v3 + ... + (n + 1)nvn = 2S1 (4.3)

6v2 + 24v3 + ... + (n + 1)n(n− 1)vn = 6S2

v0, ..., vn ≥ 0 .

Let A be the coefficient matrix of the equality constraint in (4.3). By the use of Theorem
2, dual feasible bases in the minimization and the maximization problems in (4.3) are in the
form

Bmin =


(ar−1, ar, ar+1) if 1 ≤ r ≤ n− 1
(a0, a1, an) if r = 0
(a0, an−1, an) if r = n

and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 0 ≤ r ≤ n

,

respectively, where 1 ≤ j ≤ n− 1.
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Optimality Conditions for Bmin

The basis Bmin = (ar−1, ar, ar+1) is optimal if

2(2r − 1)S1 − 6S2 ≥ (r − 1)(r + 1)

4(r − 1)S1 − 6S2 ≤ r(r − 1) (4.4)

4rS1 − 6S2 ≤ r(r + 1) .

If (4.4) is satisfied, then the lower bound for P (ξ = r) can be given as

4(r2 + 3r − 1)S1 − 6(r + 3)S2

2(r + 1)(r + 2)
− (r − 1)(r + 4)

2(r + 2)
. (4.5)

The basis Bmin = (a0, a1, an) is optimal if

S1 ≥
3S2

n− 1
and 2nS1 − 6S2 ≤ n . (4.6)

In this case the lower bound for P (ξ = r) can be obtained as

1− S1 +
3S2

n + 1
. (4.7)

The basis Bmin = (a0, an−1, an) is optimal if

3S2

n− 1
≤ S1 ≤

3S2

n− 2
and 4(n− 1)S1 − 6S2 ≤ n(n− 1) . (4.8)

The lower bound for P (ξ = r) is given as follows:

6S2 − 2(n− 2)S1

n(n + 1)
. (4.9)

Optimality Conditions for Bmax

First we remark that dual feasible bases of the maximization problem in (4.3) are of the
same type as the dual feasible bases of the maximization problem in (3.3). Therefore we will
obtain the same optimality conditions in Section 3.1. However, since the objective functions
in (3.3) and (4.3) are different we obtain different optimum values for those problems.

If the basis Bmax = (a0, ar, an) is also primal feasible, i.e., (3.9) is satisfied, then the upper
bound for P (ξ = r) can be given as

2(n2 + nr + r2 − 1)S1 − 6(n + r + 1)S2

r(r + 1)n(n + 1)
. (4.10)
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If the basis Bmax = (ar, aj, aj+1), 0 ≤ j ≤ r − 2 is also primal feasible, i.e., (3.11) is
satisfied, then the upper bound for P (ξ = r) can be given as

j(j + 1)− 4jS1 + 6S2

(r + 1)(r − j)(r − j − 2)
. (4.11)

If the basis Bmax = (ar, aj, aj+1), r + 1 ≤ j ≤ n− 1 is also primal feasible, i.e., (3.13) is
satisfied, then the upper bound for P (ξ = r) can be given as

j + 2r + 2

(r + 1)(j + 2)
− 2(2j + r + 1)S1 − 6S2

(r + 1)(j + 1)(j + 2)
. (4.12)

4.2 TYPE 2: p0 ≤ ... ≤ pn

Let us introduce the variables v0 = p0, v1 = p1−p0, ..., vn = pn−pn−1. In this case problem
(1.1) can be written as

min(max){v0 + ... + vr}

subject to

(n + 1)v0 + nv1 + (n− 1)v2 + ... + vn = 1(
n + 1

2

)
(v0 + v1) +

[(
n + 1

2

)
− 1

]
v2 + ... +

[(
n + 1

2

)
−

(
n
2

)]
vn = S1

[(
2
2

)
+ ... +

(
n
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+ ... +

(
n
2

)]
v3 + ... +

(
n
2

)
vn = S2

v ≥ 0 . (4.13)

Taking into account the equations:(
n + 1

2

)
−

(
i
2

)
=

(n + i)(n− i + 1)

2
, 2 ≤ i ≤ n

and (
i
2

)
+ ... +

(
n
2

)
=

(n + 1)n(n− 1)− (i− 2)(i− 1)i

6
, 2 ≤ i ≤ n

problem (4.13) can be written as

min(max){v0 + ... + vr}

subject to
(n + 1)v0 + nv1 + (n− 1)v2 + ... + vn = 1
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(n + 1)n(v0 + v1) + (n + 2)(n− 1)v2 + ... + (n + i)(n− i + 1)vi + ... + 2nvn = 2S1

(n+1)n(n−1)(v0 +v1 +v2)+ ...+[(n+1)n(n−1)− (i−2)(i−1)i]vi + ...+3n(n−1)vn = 6S2

v0, ..., vn ≥ 0 . (4.14)

Let A be the coefficient matrix of the equality constraint in (4.14). By the use of Theorem
1, dual feasible bases in the minimization and the maximization problems in (4.14) are in
the form

Bmin =


(ar−1, ar, ar+1) if 1 ≤ r ≤ n− 1
(a0, a1, an) if r = 0
(a0, an−1, an) if r = n

and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 0 ≤ r ≤ n

,

respectively, where 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

Bmin = (ar−1, ar, ar+1) is optimal if

2(n + 2r − 1)S1 − 6S2 ≤ r(2n + r + 1)

2(n + 2r − 2)S1 − 6S2 ≥ r(2n− r) + n + 1 (4.15)

2(n + 2r − 3)S1 − 6S2 ≤ (r − 1)(2n + r) .

If (4.15) is satisfied, then the lower bound for P (ξ = r) is the following:

2(n(n− r) + (r − 1)(2r − 7))S1 − 6(n− r + 3)S2

2(n− r + 1)(n− r + 2)

+
r(2n + r + 1)

2(n− r + 2)
+

n− 2nr − r2 + 1

n− r + 1
. (4.16)

The basis Bmin = (a0, a1, an) is optimal if

4(n− 1)S1 − 6S2 ≥ n(n− 1)

S1 ≤
3S2

n− 1
(4.17)

2(2n− 1)S1 − 6S2 ≤ n(n + 1) .

If (4.17) is satisfied, then the lower bound for P (ξ = r) is the following:

1− 2(2n− 1)S1 − 6S2

n(n + 1)
. (4.18)
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The basis Bmin = (a0, an−1, an) is optimal if

4(n− 1)S1 − 6S2 ≥ n(n− 1)

2(2n− 3)S1 − 6S2 ≤ n(n− 2) (4.19)

2(n− 1)S1 − 2S2 ≤ n(n− 1) .

If (4.19) is satisfied, then the lower bound for P (ξ = r) is the following:

(n− 1)(n− 2)− 4(n− 2)S1 + 6S2

2(n + 1)
. (4.20)

Optimality Conditions for Bmax

Since dual feasible bases of the maximization problem in (4.14) are of the same type as
the dual feasible bases of the maximization problem in (3.16), we give only the upper bound
formulas for P (ξ = r).

If the basis Bmax = (a0, ar, an) is also primal feasible, i.e., (3.23) is satisfied, then the
upper bound for P (ξ = r) can be given as

(3n(n− 1)− (r − 1)(r − 2))S1 − 6(2n− r + 1)S2

n(n + 1)(n− r)(n− r + 1)
− (r − 1)(3n− 2r + 1)

(n + 1)(n− 2)(n− r + 1)
. (4.21)

If the basis Bmax = (ar, aj, aj+1), 0 ≤ j ≤ r − 2 is also primal feasible, i.e., (3.11) is
satisfied, then the upper bound for P (ξ = r) can be given as

j(j + 2r − 1)− 2(r + 2j − 2)S1 + 6S2

(n− j)(n− j + 1)(n− r + 1)
. (4.22)

If the basis Bmax = (ar, aj, aj+1), r + 1 ≤ j ≤ n− 1 is also primal feasible, i.e., (3.13) is
satisfied, then the upper bound for P (ξ = r) can be given as

j(2n + j + 1)− 2(n + 2j − 1)S1 + 6S2

(j − r)(j − r + 1)(n− r + 1)
. (4.23)

4.3 TYPE 3: p0 ≤ ... ≤ pk ≥ ... ≥ pn

Now we assume that the distribution is unimodal with a known modus.

We introduce the variables vi, i = 0, 1, ..., n:

v0 = p0, v1 = p1 − p0, ... , vk = pk − pk−1 ,

vk+1 = pk+1 − pk+2, ... , vn−1 = pn−1 − pn, vn = pn .

We have the following two possibilities:

1. 0 ≤ r ≤ k,

2. k + 1 ≤ r ≤ n.
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4.3.1 Case 1.

We assume that 0 ≤ r ≤ k. In this case problem (1.1) can be written as

min(max){v0 + ... + vr}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1(
k + 1

2

)
(v0 + v1) +

[(
k + 1

2

)
−

(
i
2

)]
vi + ... + kvk + (k + 1)vk+1

+

[(
k + 3

2

)
−

(
k + 1

2

)]
vk+2 + ... +

[(
n + 1

2

)
−

(
k + 1

2

)]
vn = S1[(

2
2

)
+ ... +

(
k
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+

(
k
2

)]
v3 +

(
k
2

)
vk +

(
k + 1

2

)
vk+1+[(

k + 1
2

)
+

(
k + 2

2

)]
vk+1 + ... +

[(
k + 1

2

)
+ ... +

(
n
2

)]
vn = S2

v ≥ 0 . (4.24)

This is equivalent to
min(max){v0 + ... + vr}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1

(k+1)kv0+(k+1)kv1+...+(k+i)(k−i+1)vi+...+2kvk+2(k+1)vk+1+...+(n−k)(n+k+1)vn = 2S1

(k + 1)k(k − 1)(v0 + v1 + v2) + ... + [(k3 − k)− (i− 2)(i− 1)i]vi + ... + 3k(k − 1)vk

+3(k + 1)kvk+1 + ... + (n− k)(n2 + nk + k2 − 1)vn = 6S2

v ≥ 0 . (4.25)

Let A be the coefficient matrix of the equality constraints in (4.25). By Theorem 2, a dual
feasible basis for minimization problem in (4.25) is of the form

Bmin =


(ar−1, ar, ar+1) if 1 ≤ r ≤ n− 1
(a0, a1, an) if r = 0
(a0, an−1, an) if r = n

and a dual feasible basis for maximization problem in (3.29) is of the form and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 0 ≤ r ≤ n

,
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where 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

First we remark that the basis Bmin = (a0, an−1, an), r = n is ruled out because it
contradicts with the assumption that r ≤ k.

The basis Bmin = (ar−1, ar, ar+1) is also primal feasible if the following conditions are
satisfied:

Case 1.1 If 0 ≤ r ≤ k − 1, then

2(k + 2r − 1)S1 − 6S2 ≤ r(2k + r + 1)

2(k + 2r − 2)S1 − 6S2 ≥ r(2k − r) + k + 1 (4.26)

2(k + 2r − 3)S1 − 6S2 ≤ (r − 1)(2k + r) .

If (4.15) is satisfied, then the lower bound for P (ξ = r) is the following:

2(k(k − r) + (r − 1)(2r − 7))S1 − 6(k − r + 3)S2

2(k − r + 1)(k − r + 2)

+
r(2k + r + 1)

2(k − r + 2)
+

k − 2kr − r2 + 1

k − r + 1
. (4.27)

Case 1.2 If r = k, then

2(3k − 1)S1 − 6S2 ≥ (3k − 2)(k + 1)

2(k − 1)S1 − 2S2 ≤ k(k − 1) (4.28)

2kS1 − 2S2 ≤ k(k + 1) .

In this case the lower bound for P (ξ = r) can be given as follows:

(2k − 1)S1 − 2S2 − (k − 1)(k + 1) . (4.29)

The basis Bmin = (a0, a1, an) is also primal feasible if

2(n + k − 1)S1 − 6S2 ≥ nk

S1 ≤
3S2

k − 1
(4.30)

2(n(n + 1) + k − 1)S1 − 6S2 ≤ n(n + 1)(k + 1) .

If (4.30) is satisfied, the lower bound for P (ξ = r) is the following:
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2(n2 + nk2 + k − 1)S1 − 6(nk + n + 1)S2

k(k + 1)n(n + 1)
. (4.31)

Optimality Conditions for Bmax

Since dual feasible bases of the maximization problem in (4.25) are of the same type as
the dual feasible bases of the maximization problem in (3.29), we give only the upper bound
formulas for P (ξ = r).

If Bmax = (a0, ar, an) is also primal feasible, i.e., (3.40) is satisfied, then the upper bound
for P (ξ = r) is given by the following formula:

nr + nk + rk + r

r(k + 1)(n + 1)
− nk

r(k − r + 1)(n− r + 1)

+
2(n2 − r2 + 3r − 3 + nk − k2)S1 − 6(n + k − r − 2)S2

(k + 1)(n + 1)(k − r + 1)(n− r + 1)
. (4.32)

If Bmax = (ar, aj, aj+1), 0 ≤ j ≤ r− 2 is also primal feasible, i.e., (3.42) is satisfied, then
the upper bound for P (ξ = r) is given by the following formula:

j(j + 2r − 1)− 2(r + 2j − 2)S1 + 6S2

(k − j)(k − j + 1)(k − r + 1)
. (4.33)

Bmax = (ar, aj, aj+1), r + 1 ≤ j ≤ k − 2 is also primal feasible if j is determined by
(3.44). In this case the upper bound for P (ξ = r) is given by the following formula:

j(2k + j + 1)− 2(k + 2j − 1)S1 + 6S2

(j − r)(j − r + 1)(k − r + 1)
. (4.34)

The basis Bmax = (ar, aj, aj+1), k + 1 ≤ j ≤ n − 1 is also primal feasible if (3.45) is
satisfied. In this case the upper bound for P (ξ = r) is given by the following formula:

(j + 1)(j + 2k + 2)− 2(2j + k + 1)S1 + 6S2

(j − r + 1)(j − r + 2)(k − r + 1)
. (4.35)

The basis Bmax = (ar, ak, ak+1) is also primal feasible if (3.46) is satisfied. In this case
the upper bound for P (ξ = r) is given by the following formula:

3k(k + 1)− 6kS1 + 6S2

(k − r)(k − r + 1)(k − r + 2)
. (4.36)
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4.3.2 Case 2.

We assume that k + 1 ≤ r ≤ n− 1. In this case problem (1.1) can be written as

min(max){vr + ... + vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1(
k + 1

2

)
(v0 + v1) +

[(
k + 1

2

)
−

(
i
2

)]
vi + ... + kvk + (k + 1)vk+1

+

[(
k + 3

2

)
−

(
k + 1

2

)]
vk+2 + ... +

[(
n + 1

2

)
−

(
k + 1

2

)]
vn = S1[(

2
2

)
+ ... +

(
k
2

)]
(v0 + v1 + v2) +

[(
3
2

)
+

(
k
2

)]
v3 +

(
k
2

)
vk +

(
k + 1

2

)
vk+1+[(

k + 1
2

)
+

(
k + 2

2

)]
vk+1 + ... +

[(
k + 1

2

)
+ ... +

(
n
2

)]
vn = S2

v ≥ 0 . (4.37)

This is equivalent to
min(max){vr + ... + vn}

subject to

(k + 1)v0 + kv1 + (k − 1)v2 + ... + vk + vk+1 + ... + (n− k)vn = 1

(k+1)kv0+(k+1)kv1+...+(k+i)(k−i+1)vi+...+2kvk+2(k+1)vk+1+...+(n−k)(n+k+1)vn = 2S1

(k + 1)k(k − 1)(v0 + v1 + v2) + ... + [(k3 − k)− (i− 2)(i− 1)i]vi + ... + 3k(k − 1)vk

+3(k + 1)kvk+1 + ... + (n− k)(n2 + nk + k2 − 1)vn = 6S2

v ≥ 0 . (4.38)

Let A be the coefficient matrix of the equality constraints in (4.25). By Theorem 2, a dual
feasible basis for minimization problem in (4.25) is of the form

Bmin =


(ar−1, ar, ar+1) if 1 ≤ r ≤ n− 1
(a0, a1, an) if r = 0
(a0, an−1, an) if r = n

and a dual feasible basis for maximization problem in (3.29) is of the form and

Bmax =

{
(a0, ar, an) if 1 ≤ r ≤ n− 1
(ar, aj, aj+1) if 0 ≤ r ≤ n

,
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where 1 ≤ j ≤ n− 1.

Optimality Conditions for Bmin

First we remark that the basis Bmin = (a0, a1, an), r = 0 is ruled out because it contradicts
with the assumption that r ≥ k + 1.

The basis Bmin = (ar−1, ar, ar+1) is also primal feasible if the following conditions are
satisfied:

Case 2.1 If r = k + 1, then

2(k2 + 5k + 2)S1 − 4(k + 3)S2 ≤ k(k + 1)(k + 3)

4kS1 − 4S2 ≥ k(3k + 1) (4.39)

2(k2 + k + 2)S1 − 4(k + 1)S2 ≥ k(k − 1)2 .

If (4.34) is satisfied, then the lower bound for P (ξ = r) is the following:

k(3k + 1)− 4kS1 + 4S2

(k − 1)(k + 2)
. (4.40)

Case 2.2 If k + 2 ≤ r ≤ n− 1, then

2(2r + k)S1 − 6S2 ≥ r(r + 2k + 2) + k

2(2r + k − 1)S1 − 6S2 ≤ r(r + 2k + 1) (4.41)

2(2r + k + 1)S1 − 6S2 ≤ (r + 1)(r + 2k + 2) .

In this case the lower bound for P (ξ = r) can be given as follows:

2(2r2 − k2 − rk + 5r + k)S1 − 6(r + k − 2)S2

2(r − k)(r − k + 1)

+
r(r + 2k + 1)

2(r − k + 1)
− r(r + 2k + 2) + k

r − k
. (4.42)

The basis Bmin = (a0, an−1, an) is also primal feasible if

2(n + k − 1)S1 − 6S2 ≤ nk

2(n + k)S1 − 6S2 ≥ (n + 1)k (4.43)

2(k − 1)S1 − 6S2 ≤ n(n + 1) .

If (4.38) is satisfied, the lower bound for P (ξ = r) is the following:
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2(n + k)S1 − 6S2

(n− k)(n + 1)
− k

n− k
. (4.44)

Optimality Conditions for Bmax

Since dual feasible bases of the maximization problem in (4.40) are of the same type as
the dual feasible bases of the maximization problem in (3.45), we give only the upper bound
formulas for P (ξ = r).

If Bmax = (a0, ar, an) is also primal feasible, i.e., (3.50) is satisfied, then the upper bound
for P (ξ = r) is given by the following formula:

rk

(n− r)(n− k)(n + 1)
− nk

(n− r)(r − k)(r + 1)

2(n2 + r2 + k2 + nr + k − 1)S1 − 6(n + r − k + 1)S2

(n− k)(n + 1)(r − k)(r + 1)
. (4.45)

If Bmax = (ar, aj, aj+1), 0 ≤ j ≤ k− 1 is also primal feasible, i.e., (3.52) is satisfied, then
the upper bound for P (ξ = r) is given by the following formula:

j(j + 2k + 1)− 2(2j + k − 1)S1 + 6S2

(r − k)(r − j)(r − j + 1)
. (4.46)

If Bmax = (ar, aj, aj+1), k + 1 ≤ j ≤ r − 2 is also primal feasible, i.e., (3.54) is satisfied,
then the upper bound for P (ξ = r) is given by the following formula:

(j + 1)(j + 2k + 2)− 2(2j + k + 1)S1 + 6S2

(r − k)(r − j)(r − j − 1)
. (4.47)

If Bmax = (ar, aj, aj+1), r + 1 ≤ j ≤ n− 1 is also primal feasible, i.e., (3.56) is satisfied,
then the upper bound for P (ξ = r) is given by the following formula:

1

r − k
− (2j − k + 2)(r + k + 1) + rk

(r − k)(j − k)(j − k + 1)

− 2(2j + r + 1)S1 − 6S2

(r − k)(j − k)(j − k + 1)
. (4.48)

5 Examples

We present four examples to show that if the shape of the distribution is given, then by the
use of our bounding methodology, we can obtain tighter bounds for P (ξ ≥ r) and P (ξ = r).
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Example 1.

We assume that the probabilities p0, ..., pn form a unimodal sequence. Let n = 10, k = 6,
r = 4, S1 = 5.556 and S2 = 16.779.

First we consider the following binomial moment problem, where the shape information
is not given.

min(max)
10∑
i=4

pi

subject to
10∑
i=0

pi = 1

10∑
i=1

ipi = 5.556

10∑
i=2

(
i
2

)
pi = 16.779

p0, ..., p10 ≥ 0 . (5.1)

The optimum values of problem (5.1) provides us with the following lower and upper
bounds:

0.445 ≤ P (ξ ≥ 4) ≤ 0.967 . (5.2)

Now, we assume that the probability distribution in (5.1) is unimodal, i.e., p0 ≤ ... ≤
p5 ≤ p6 ≥ p7 ≥ ... ≥ p10. In this case the lower and upper bounds are given as follows:

0.707 ≤ P (ξ ≥ 4) ≤ 0.772 . (5.3)

One can easily see that these bounds are the optimum values of problem (5.1) together
with the shape constraint p0 ≤ ... ≤ p5 ≤ p6 ≥ p7 ≥ ... ≥ p10.

Example 2.

In this example we assume that the probabilities p0, ..., pn form a unimodal sequence and
we find lower and upper bounds for P (ξ = 4).

Let n = 10, k = 6, r = 4, S1 = 5.556 and S2 = 16.779.

We consider the following binomial moment problem, where the shape information is not
given.

min(max) {p4}
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subject to
10∑
i=0

pi = 1

10∑
i=1

ipi = 5.556

10∑
i=2

(
i
2

)
pi = 16.779

p0, ..., p10 ≥ 0 . (5.4)

The optimum values of problem (5.4) provides us with the following lower and upper
bounds:

0 ≤ P (ξ = 4) ≤ 0.685 . (5.5)

If we add the shape constraint, p0 ≤ ... ≤ p5 ≤ p6 ≥ p7 ≥ ... ≥ p10, to problem (5.4), then
the lower and upper bounds can be given as follows:

0.061 ≤ P (ξ = 4) ≤ 0.128 . (5.6)

Example 3.

Let n = 10, k = 6, r = 8, S1 = 5.556 and S2 = 16.779.

First we consider the following binomial moment problem, where the shape information
is not given.

min(max)
10∑
i=8

pi

subject to
10∑
i=0

pi = 1

10∑
i=1

ipi = 5.556

10∑
i=2

(
i
2

)
pi = 16.779

p0, ..., p10 ≥ 0 . (5.7)

The optimum values of problem (5.7) provides us with the following lower and upper
bounds:
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0.007 ≤ P (ξ ≥ 8) ≤ 0.578 . (5.8)

Now, we assume that the probability distribution in (5.7) is unimodal, i.e., p0 ≤ ... ≤
p5 ≤ p6 ≥ p7 ≥ ... ≥ p10. In this case the lower and upper bounds are given as follows:

0.244 ≤ P (ξ ≥ 8) ≤ 0.311 . (5.9)

These bounds are the optimum values of problem (5.7) together with the shape constraint
p0 ≤ ... ≤ p5 ≤ p6 ≥ p7 ≥ ... ≥ p10.

Example 4.

In this example we assume that the probabilities p0, ..., pn form a unimodal sequence and
we find lower and upper bounds for P (ξ = 8).

Let n = 10, k = 6, r = 4, S1 = 5.556 and S2 = 16.779. We consider the following binomial
moment problem, where the shape information is not given.

min(max) {p8}

subject to
10∑
i=0

pi = 1

10∑
i=1

ipi = 5.556

10∑
i=2

(
i
2

)
pi = 16.779

p0, ..., p10 ≥ 0 . (5.10)

The optimum values of problem (5.10) provides us with the following lower and upper
bounds:

0 ≤ P (ξ = 8) ≤ 0.578 . (5.11)

If we add the shape constraint, p0 ≤ ... ≤ p5 ≤ p6 ≥ p7 ≥ ... ≥ p10, to problem (5.10),
then the lower and upper bounds can be obtained as follows:

0.082 ≤ P (ξ = 8) ≤ 0.157 . (5.12)
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6 Applications

In this section we present two examples for the application of our bounding technique, where
shape information about the unknown probability distribution can be used.

Application 1. Application in Reliability

Let A1, ..., An be independent events and define the random variables X1, ..., Xn as the
characteristic variables corresponding to the above events, respectively, i.e.,

Xi =

{
1 if Ai occurs
0 otherwise

Let pi = P (Xi = 1), i = 1, ..., n. The random variables X1, ..., Xn have logconcave discrete
distributions on the nonnegative integers, consequently the distribution of

X = X1 + ... + Xn

is also logconcave on the same set.

In many applications it is an important problem to compute, or at least approximate,
e.g., by the use of probability bounds the probability

X1 + ... + Xn ≥ r, 0 ≤ r ≤ n. (6.1)

If I1, ..., IC(n,k) designate the k-element subsets of the set {1, ..., n} and Jl = {1, ..., n}\Il,
l = 1, ..., C(n, k), then we have the equation

P (X1 + ... + Xn ≥ r) =
n∑

k=r

C(n,k)∑
l=1

∏
i∈Il

pi

∏
j∈Jl

(1− pj), 0 < r ≤ n, (6.2)

where C(n, k) =

(
n
k

)
.

If n is large, then the calculation of the probabilities on the right hand side of (6.2) may be
hard, even impossible. However, we can calculate lower and upper bounds for the probability
on the left hand side of (6.2) by the use of the sums:

Sk =
∑

1≤i1<...<ik≤n

pi1 ...pik =

C(n,k)∑
l=1

∏
i∈Il

pi, k = 1, ...,m, (6.3)

where m may be much smaller than n. Since the random variable X1+...+Xn has logconcave,
hence unimodal distribution, we can impose the unimodality condition on the probability
distribution:

P (X1 + ... + Xn = k), k = 0, ..., n. (6.4)
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Then we solve both the minimization and maximization problems considered in Section 3.3
to obtain the bounds for the probability (6.2). If m is small the bounds can be obtained by
formulas. Note that the largest probability (6.4) corresponds to

kmax =

⌊
(n + 1)

p1 + ... + pn

n

⌋
.

Note that a formula first obtained by C. Jordan (1867) provides us with the probability
(6.2), in terms of the binomial moments Sr, ..., Sn:

P (X1 + ... + Xn ≥ r) =
n∑

k=r

(−1)k−r

(
k − 1
r − 1

)
Sk. (6.5)

However, to compute the binomial moments involved may be extremely difficult, if not
impossible. The advantage of our approach is that we use the first few binomial moments
S1, ..., Sm, where m is relatively small and we can obtain very good bounds, at least in many
cases.

Application 2. Bounding the price of an option

We refer to the paper by Prékopa [12], where in Section 6 an option price bounding method
is presented. The price of the asset is supposed to follow the multiplicative Brownian motion
process:

S(t) = S(0)eσB(t)+µt

where B(t), t ≥ 0 is the standard Brownian motion process, σ > 0, µ real constants and
S(0) is the initial price.

If t is the time now and T is the future time, X is the strike price and r is the rate of
interest (assumed to be constant), then the price of the European call is

c = e−r(T−t)E ([S(T )−X]+ | S(t) = S) . (6.6)

Since the process B(t), t ≥ 0 has independent increments, we can write

c = e−r(T−t)E

([
S

S(T )

S(t)
−X

]
+

)
, (6.7)

where
S(T )

S(t)
= eσ(B(T )−B(t))+µ(T−t). (6.8)

Let Y = σ (B(T )−B(t)) + µ(T − t). Then (6.8) can be written as

c = e−r(T−t)E
(
[SeY −X]+

)
= e−r(T−t)E

(
[SeY −X] | Y ≥ log

X

S

)
P

(
Y ≥ log

X

S

)
.
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(6.9)

If we replace the probability distribution of Y by a discrete distribution with equidistant
support, and assume that a few moments of Y as well as a few conditional moments of Y ,
given that Y ≥ log X

S
, are known or can be estimated from empirical data, then we apply

our bounding technique with shape constraint to obtain bounds for

E

(
SeY −X | Y ≥ log

X

S

)
(6.10)

P

(
Y ≥ log

X

S

)
(6.11)

The bounds for (6.10) can be obtained from our former paper Subasi, Subasi, Prékopa
[13] and bounds for (6.11) can be obtained by the use of the method presented in Section
3.3 of this paper.

Mandelbrot [6] argues for the use of other symmetrical distribution for the random vari-
able Y . Note that in order to apply our bounding methodology we do not need the exact
knowledge of the distribution of Y , we only need a few of its conditional moments.
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