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Abstract

In [10] a system of stochastic programming models was introduced for the optimal
control of a storage level. Each model in this system serves to determine the optimal
policy for only one period ahead though the time horizon consists of many future
periods. The optimal control thus obtained can be considered an open loop control
methodology. The main purpose of this paper is to present an application by giving
an optimal control method for the regulation of the water level of Lake Balaton in
Hungary. By solving almost 600 stochastic programming problems we analyze what
would have happened if we had controlled the water level using our method between
1922 and 1970, where one decision period is one month. The numerical results show
that the proposed control methodology works quite well in this case.

1 Introduction

In [10] a system of stochastic programming models was introduced for the optimal control
of a storage level. Each model in this system serves to determine the optimal policy for
only one period ahead though the time horizon consists of many future periods. The
optimal control thus obtained can be considered an open loop control methodolology.
The main purpose of this paper is to present an application by giving an optimal control
method for the regulation of the water level of Lake Balaton in Hungary. By solving almost
600 stochastic programming problems we analyze what would have happened if we had
controlled the water level using our method between 1922 and 1970, where one decision
period is one month. The numerical results show that the proposed control methodology
works quite well in this case.

Our water input stochastic process will be assumed to be Gaussian. No time homo-
geneity or independence, Markovian character or whatsoever will be supposed. Also the
Gaussian nature of the input process is not an essential feature of our control methodology.
We refer to the paper [11] where we used a multivariate gamma distribution introduced



by the authors of this paper in connection with certain reservoir system operation model.
It is possible to use also here the same multigamma or some other multivariate probability
distribution. The case of the multivariate normal distribution — the application of which
is supported by statistics in connection with Lake Balaton — is relatively simple because
of the special properties of this multivariate probability density.

2 Short description of the dynamic model system used for
the control of the storage level

Taking into account that application of our control methodology which we are going to
present in the further sections of this paper, we shall use the terms corresponding to the
water level regulation of a lake.
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Fig. 1: Lake Balaton and catchment area in the western part of Hungary. Water is released
through Sio channel into Danube river.

Fig. 1 illustrates Lake Balaton in the western part of Hungary. Small rivers and rainfall
represent positive inputs whereas evaporation represents negative input. The sum of these
with positive resp. negative signs will be considered the water input. Thus the variables
which denote water inputs in the subsequent periods can take on negative values too.
Sometimes this in fact occurs.

Water can be released through the Sio channel into the Danube river. The monthly
water quantities which can be released are limited by the capacity of the Sio channel. This
capacity will be denoted symbolically by K in this section.

Instead of water levels we shall speak about water quantities. The connection relative to
Lake Balaton between these two notions will be clarified later on. Let y be the initial water
content of the lake and &1, &, ... the monthly random water inputs. (o will be assumed to
be nonrandom in our models. Let further z1, z9,... be decision variables belonging to the
subsequent periods. These are the water quantities to be released through the channel in
the subsequent periods. We decide on z; in the beginning of the first period, on z3 in the



beginning of the second period, etc. Introduce the notations

Ce=Co+& + -+ &,
=21+ + 2, k=1,2,....

The random process &1,&,... will be assumed to be Gaussian. We prescribe further
lower bounds a1, a9, ... resp. upper bounds by, bs,... for the water quantities being in
the lake at the end of the subsequent periods. We consider the situation favourable in the
inequalities

akSCk—Zkak, k:1,2,... (2.1)
are satisfied, where the water quantities to be released z1,2s,... are subject to the in-
equalities

0< 2z <K, E=1,2,.... (2.2)
Since £1,&s,... are random variables, the fulfilment of the inequalities (2.1) cannot

be guaranteed with probability 1. Before formulating our decision principle we make a
remark concerning stochastic programming model construction.

Stochastic programming problems are formulated in such a way that first we formulate
a deterministic mathematical programming problem, which is called underlying deter-
ministic problem, then observe that some of the parameters in this problem are random
in reality; in view of this, the problem looses its original meaning, hence we formulate
another decision principle by taking into account the probability distribution of the ran-
dom variables involved. Underlying mathematical programming problems can be either
minimization (resp. maximization) problems or problems where we only wish to find at
least one vector satisfying certain constraints. In this latter case the advised stochastic
programming decision principle is to find that vector which maximizes the probability of
the fulfilment of the random constraints subject to those constraints which do not contain
random variables.

Inequalities (2.1) and (2.2) represent an underlying deterministic problem where we
want to find zq, zo9,... such that the referred inequalities be satisfied. The number of the
considered periods should be finite. Having observed that &1, &9, ... are random variables,
we formulate the stochastic programming decision principle, in accordance with the above
remark, so that we maximize the probability of the fulfilment of the inequalities (2.1)
subject to the constraints (2.2).

Since we have the possibility to use a dynamic type decision methodology i.e. we have
the possibility to decide in every period, the above mentioned principle will be turned
into a sequence of problems and conditional probabilities will be maximized where in the
condition there stand the already realised values of the stochastic process £1,&s,.... The
first problem in this sequence is the following

maximize Plap < (p — Zr <bx, k=1,... ,N) (2.3)
subject to 0< 2z, <K, k=1,...,N.

Out of the optimal solution 27, ... ,z5 we only accept 2| and formulate the next problem.
For the sake of simplicity the asterisk will be omitted except for Section 5. Assume that we



already fixed z1,...,2,. Then in order to fix z,;, we formulate the following nonlinear
programming problem

maximize Plag < — Zp <bx, k=n+1,... ,n+ N |&,...,&) (2.4)
subject to 0<z, <K, k=n+1,...,n+ N.
Here z,41,... ,2p+N are the decision variables. Having computed the optimal solution,
we only accept z,+1 as a final value. Thus our control methodology is fixed. It should be
mentioned that a positive lower bound for z; may be required. Mathematically this does
not present any difficulty. In fact if Ky is a positive lower bound for the z, then using the

new variables y, = zp — Ky, we can transform our problem into the already introduced
form (2.3), (2.4).

3 Mathematical properties of the model system introduced
in Section 2

Before starting to discuss the subject mentioned in the title of this section, we recall some
facts concerning logarithmic concave measures.

A nonnegative function f(x), * € R™ is said to be a logarithmic concave (point)
function if for every x;,x2 € R™ and 0 < A < 1, we have

FO@ + (1= Nz2) > [f (@) (22)]

A measure P defined on the measurable subsets of the space R™ is said to be logarithmic
concave if for every pair A, B of convex subsets of R™ and 0 < A < 1, we have

P(A + (1= NB) > [P(AP[P(B)]' .

Here the sign + denotes Minkowski addition i.e. in connection with two sets D, G, D+G =
{d+g : d € D, g € G}, further the constant multiple AG of the set G is defined by the
equality \G = {\g : g € G}.

In [8, 9] the following theorem was proved.

THEOREM 1. If a probability measure P is generated by a logarithmic concave proba-
bility density i.e. for every measurable set C C R™ we have

PO = [ (@)de,
C
then P is a logarithmic concave measure.

Theorem 1 implies that if A is a convex subset of R™, then

£(£) dt

A+x

is a logarithmic concave function of the variable &. This implies further that if G is an
n X N matrix and z is an N-component vector, then

[ s
A+Gz
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is a logarithmic concave function of the variable z.

Consider now the random vector of components &, ... ,&,+n, denote by e its expec-
tation vector and by C' its covariance matrix. By assumption this random vector has
a normal distribution. Assume also that this distribution is nondegenerated. Then the
probability density of this random vector exists and it is given by

det C—1 1/2 1 =1
— —(z—e)C ! (x—e)/2 RPN
f(x) ( @) > e , xE .
Out of the components &1, ... , &,y we form two random vectors £, €5 which are the
following

&1 Ent1
Ll = (3.1)
&n Ent+N

¢ =

and partition e, & accordingly. The obtained parts will be denoted by e', e resp. ",

zF.

Thus we have
el €n+1
e"=EBE)=| : |, €=B¢H=| : |. (3:2)
€n €nt+N

The superscripts P and F are initials of the words “Past” resp. “Future”. Let us rearrange
and then partition the covariance matrix C' so that we obtain the following

Cn+ipn+1 " Cptln+N  Cn+1,1 " Cpdln
Cn+Nn+1 °° CnyNn+N CnyN,31 " CpniNn
Cln+1 te Cl;n+N C11 te Cin
Cnn+1 T Cnn+N Cnl T Cnn

F)/

Bl(€" —e")(e" —ef)] B —e)e" —e) ]\ _ (S U
_(E[(sp—el’xsF—eF)'] E[(EP—eP)(EP—eP)']>_<U’ T)' (3:3)
P

It is known that the probability distribution of the random vector &¥ given ¢ = & is a
normal distribution with expectation vector

e’ =e' +UT ! (xf —€eb) (3.4)
and covariance matrix
S—UT'U', (3.5)

where the superscripts in e® refers to the word “Conditional”. Thus the conditional
probability density of £€¥ given £€¥ = ¥ is the following

 [det(S —UuT-'U")1?

_ _»CV(ao_ — ’ _,C
f(a:F | CUP) — (27T)N % e (2F—eCY (S—UT~1U")(zF e )/2 (3.6)




The function f(z" | %) is logarithmic concave as a function of all variables in 2 and
. Now we only need the fact that it is logarithmic concave in ¥ for every fixed z¥.

Consider the following set in the space of the vectors x":
A:{mF : an+k—C0—x1—---—xn+z1+---—|—zn
S Tpy1+ -+ Tpyk
Sbn+k—C0—(L‘1—"'—$n+21+"'+2n, kZl,...,N}. (37)

Then the probability in the objective function of Problem (2.4) can be expressed in the
following manner:

Plag < (o — Zp <bg, k=n+1,..., n+ N |& =21,...,6 =)

= / f(z | 2b) de, (3.8)
A(Zn415 204 N)
where
A(zn+17 s ,Zn+N)
Zn+1

. 'Zn+1 + Zni2

Zn41 T 2py2+ -+ 2ng N
Theorem 1 and Relation (3.8) jointly imply

THEOREM 2. The probability standing in (3.8) is a logarithmic concave function of the
variables zpi1,. .., Zn+N-

In [1] the following theorem is proved.

THEOREM 3. Let A be a convex set in R™, symmetric about the origin. Let f be a
quasi-concave probability density in R™ with the property that f(—x) = f(x) for every
x € R™. Then for every y € R™ and 0 < k <1 we have the inequality

/ f(z)dx > f(x)de.
A+ky Aty

In other words, this theorem states that the probability of the set A + ty is a mono-
tonically decreasing function in [0, 00) of the variable ¢ for every fixed y.

Applying the transformation u = = — e® in the integral standing on the right hand
side of (3.8), we see that it equals the integral of the function f(u + €® | ") on those set

of vectors u' = (up41,- .. ,Upsn) that satisfy the inequalities:
n+k — Cinitial — 67(54_1 — €S+k + Zpg1 + 0+ Zpgk
S Upy1+ 0+ Upyk
< bpik _Cinitial_ngrl — —6S+k+zn+1 +- 4+ zprk, K=1,... N, (39)
where
Cnitial = Co+ 21+ +xp —21— - — 2p

is the water content of the lake beginning of Period n + 1. This set is symmetric about
the origin if in every inequality the value standing on the right hand side is the negative of



that standing on the left hand side. This is attained if and only if 2,41, ..., zp4+ N satisfy
the following equations

Atk + btk C C
f_Cinitia1_€n+1_"'_en+k+zn+1+"'+zn+k:Oa k=1,...,N.

(3.10)

In case of an arbitrary system of values z,41,...,2,+n the set (3.9) is a shift of that
set (3.9) where we use the z,11,..., 2,1 n that satisfy (3.10). Taking into account that
f(u + e® | 2¥) satisfies the condition (with respect to f) of Theorem 3, we see that the
probability (3.8) is maximized (unconstrained) if z,41,... ,2p+n satisfy (3.10).

4 Solution of the problem formulated in Section 2

We shall consider Problem (2.4). Problem (2.3) is very similar and does not need a
separate treatment. First we show that the optimization of the function (3.8) on the cube
0<z, <K,k=n+1,... ,n+ N can be reduced to maximizations of the same functions
on at most N faces of this cube. Sometimes the constrained optimal solution can be
obtained directly without any computation. In fact first we solve the system of eqs. (3.10)
with respect to zp41,... ,2n+n. If we have 0 < z;, < K for k =n+1,... ,n+ N, then
this is the optimal solution also to the constrained problem (2.4). On the other hand, if
for some k£ we have z; < 0 or for some ¢ we have z; > K, then by Theorem 3 the optimum
is attained on one of those faces of the cube which can be “seen” from the point with
coordinates zpy1,...,2n+N. These faces can be generated as follows. If z; < 0, then we
adopt the face

2z =0, 0<%z <K, j=n+1,...,k—1, k+1,... ,n+ N;
if z; > K, then we adopt the face
z; = K, 0<z <K, j=n+1,...,0—1,¢4+1,... ,n+ N.

Obviously the number of such faces is at most V.

EXAMPLE. Let n =2, N =4 and 23 > K, 0 <z < K, z5 <0, zg > K. Then our face
collection consists of the following three faces

{#3,24, 25,26 + 23 =K, 0 < 24,25,26 < K},
{#3,24,25,26 1 25 =0, 0<23,24,26 < K},
{#3,24,25,26 + 26 = K, 0 < 23,24,25 < K}.

When optimizing in the faces we can apply various nonlinear programming methods. We
have tested on this and similar stochastic programming problems the method of feasible
directions, SUMT, GRG, the flexible tolerance method and the cutting plane method.

It is worth to describe shortly the application of the SUMT interior point method. Let
us assume that we want to maximize the function (3.8) on the following face

{Zn+1y - y2n+N  Znp1 =K, 0<z <K, i=n+2,...,n+ N}



If instead of the function (3.8) we work with its logarithm, then the penalty function is
given by the following formula

n+N
_lOgP(a’k Sgk_Zk: Sbka k:n+17 7n+N|§17"' 7§n)_r Z lngk(l—Zk),
k=n+2
(4.1)
where r is a fixed positive number and z,;; = K in the sums Zy = 2z + --+ + 2,
k =1,...,n+ N. The function (4.1) is convex and this fact makes the solution of

the unconstrained minimization problems relatively comfortable. Several unconstrained
optimization methods can be applied here [7] and we have tested a number of them. The
use of a gradient free method seems to be advisable. The gradient of the function (4.1) is
expressed in [10] but the formula is sophisticated.

Function values are computed by simulation at every step using a fast random number
generation technique written in COMPASS for the CDC 3300 computer [3].

If we take a decreasing sequence rq,79,... tending to zero, then the SUMT interior
point method converges (the conditions are trivially satisfied in our case) in the sense that
(4.1) converges to the negative logarithm of the optimum value of Problem (2.4).

If N =2, then the original problem (2.4) is two-dimensional but since the faces of the
rectangle

{zn+17 Zny2 0 0 < zpyt1, 2pge < K}

are line segments we have to optimize on at most two line segments. This is done by the
use of the Fibonacci search [13].

5 Method for the regulation of the water level of Lake Ba-
laton

Having performed a large number of computations it turned out that using only two
conditioning random variables (instead of the whole past history) and optimizing for two
steps ahead i.e. choosing N = 2, a satisfactory water level methodology can be obtained.

The lake is represented by a prism the surface of which is 600 km?. We choose as
water quantity unit that quantity which increases the water level by exactly 1 mm. (This
quantity equals 600 000 m3.) All data will be given in this unit.

According to what is said above, four random variables will be involved in every op-
timization problem. They belong to four consecutive months and will be denoted by
&1,&2, &3, &4 in agreement with the earlier notations. To the earliest month corresponds &,
then comes &, etc.

The prescribed lower resp. upper bounds are as follows:

Lower bounds Upper bounds

February—June 3100 mm 3400 mm
July—January 3000 mm 3300 mm




The originally prescribed levels communicated to us were 2900 mm resp. 3400 mm for
every month.

We observed that our control methodology allowed to keep the water level between
the narrower limits 3000 mm resp. 3300 mm (with a satisfactory probability). However,
due to large input water quantities in the first half of the year, the corresponding limits
were increased by 100 mm and this improved the controllability for the most important
summer months. Thus in all cases we have to solve the following type of problem:

a3 < Cinitial +&3 — 23 < b3

61762
ay < Ginitial + &3+ 84 — 23 — 24 < by
subject to 0 < z3 < 200, 0 < 24 <200, (5.1)

maximize P (

where as, b3, a4, by are chosen according to the above table of the lower resp. upper
bounds. The subscripts of as, b3, z3 and a4, bs, z4 are chosen in accordance with the
subscripts of 3 and &4.

It will be still more comfortable to operate with the following transformed random
variables

=&, G@=%&, G=E&, =&+ (5.2)

The covariance matrix D of the random variables (1, (2, (3, {4 can be obtained from the
covariance matrix
Ci1 Ci2 €13 Ci4
O— | Gz €2 C23 Cn
€13 €23 €33 C34
Cla C24 C34 Cy4

of the random variables &1, &2, €3, £&4. We have

C11 C12 C13 C13 + C14
C12 C22 C23 C23 + C24

D = . (5.3)
C13 C23 C33 €33 1+ C34

c13 +Cla €23+ Coq €33+ C34 €33+ Caq + 2C34

With the aid of (1, (2, (3, (4, Problem (5.1) can be written in the following manner
a3 < Cinitial + (3 — 23 < b3

Cla C2
a4 < Cinitial +C4 — 23 — 24 < by
subject to 0 < z3 < 200, 0 < z4 <200. (5.4)

maximize P (

Let us rearrange and then partition the covariance matrix D in a way indicated here
below

3 G 1 Co
3
S U
' e (5.5)
¢
U! T
! LG




Since (1 = &1, (o = &5 it follows that 77 = T where T is taken out from that special case
of (3.3) in which n =2, N = 2. Then we have

E[(ﬁ)\(é)HZim)+U1TH[(§;)—(§;)]. (56)

On the next pages we present the input data (Table 1) for the 50 years between 1921
and 1970. Taking into account a longer (less reliable but improved by hydrological con-
siderations) time series, the Institute of Water Management of the Technical University of
Budapest advised the use of a Gaussian process as the mathematical model of the water
input process, after a careful statistical analysis [2].

Together with the realized values of the input process we present the corresponding
expectations and standard deviations.

Then we present a part of a 24 x 24 correlation matrix (Table 2). Assuming that the
random input of one month is stochastically independent of the inputs of such months
which are farther than one year then it turns out that all nonzero correlations will be
contained in a 24 X 24 correlation matrix. In practice, however, only correlations very
near the diagonal will be needed because the others are very small. That part of the
correlation matrix what we present here is larger than the necessary part but it well
illustrates that dependencies exist only between very near months.

As it was mentioned in Section 1 we carried out the monthly optimizations between
1922 and 1970.

First we computed twelve D matrices and to each D we also computed the correspond-
ing two maftrices U1T1_1, S — U1T1_1U{. These matrices are fixed, they do not depend
on actual values of the input time series. Then using the actual values of (; and (s we
computed all conditional expectations (5.6). Finally came the 588 optimizations (one for
every month in the years 1922-1970) out of which a large number were trivial i.e., the
solution of the eq. (3.10) specialized to our case (n = 2, N = 2) produced such z3 and z4
for which 0 < z3, 24 < 200.

As an example we consider the problem of finding the optimal water quantity to be
released in July 1953. In this case the random variables &, &2, &3, €4 have the following
meanings

&1 input water quantity in May 1953,
&9 input water quantity in June 1953,
&3 input water quantity in July 1953,
&4 input water quantity in August 1953.

The expectations, standard deviations and the correlation matrix can be obtained from
the presented tables. They are reproduced here:

E(&) =29.78, E(&) = —4.52, E(&) =—-43.44 E(&) = —38.30,
D(€) =63.11, D(&) =73.98, D(&) =173.96, D(&) = 69.58,

&1 &2 &3 &4

1.000 0.333 0.198 0.201 &
R= 0.333 1.000 0.579 0.263 &
0.198 0.579 1.000 0.352 &

0.201 0.263 0.352 1.000 &4

10



Table 1: Natural water content changes of Lake Balaton (rainfall + inflow — evaporation)

Jan. Feb. March Apr. May  June July Aug. Sept. Oct. Nov. Dec.

1921 62 133 16 26 43 —35 —102 —143 —68 4 77 58
1922 102 119 128 192 -3 —52 —103 -18 118 198 96 72
1923 85 122 239 94 17 9 52 —75 =30 60 119 154
1924 38 94 262 171 104 26 —50 -7 -4 -2 10 56
1925 48 75 86 48 54 —18  —22 —56 87 -8 232 106
1926 130 165 77 23 -7 74 101 97  —11 89 173 139
1927 121 79 137 62 —25  —48  —54 32 45 -1 19 36
1928 99 126 111 31 90  —51 —97  —59 81 49 7% 73
19290 95 74 170 208 38 —24  —90 —101 —76 39 159 16
1930 79 131 106 172 —51 —95 —124  —27 —21 182 178 235
1931 178 208 302 166 37 =59 —156  —32 43 16 92 37
1932 101 35 135 65 59  —95  —97  —65 —59 74 18 48
1933 51 73 92 21 41 1 —119  —41 -8 48 240 136
1934 137 69 77 —37  —62  —19  —42 —46 27 9 103 72
1935 63 147 85 23 —21 -85 —136  —57 —13 18 31 172
1936 162 199 107 63 85 4 —90 —107 27 126 97 04
1937 105 146 343 260 -4 40 8 10 67 99 222 331
1938 214 118 71 18 79 -39  —08 58 —11 34 10 87
1939 114 77 73 —61 74 9 —137  -37 2 97 92 77
1940 68 67 339 111 96 76 22 159 247 174 243 90
1941 127 231 204 216 129 -39  —83  —35 —57 70 200 148
1942 115 215 367 307 178  —66  —57  —99 —56  —27 23 61
1943 112 179 —12 -5 —13 108 32 106 -2 -2 148 129
1944 57 113 241 11 52 96  —32 —72  —50 146 225 254
1945 191 309 215 35 —37 —79  —68  —99  —28 19 99 97
1946 68 118 60 —41 -75  —51 —63  —-93 —52 7 86 84
1947 87 182 448 117 —17  —54  —77 —148 -85  —5 22 88
1948 110 106 8 85 —19 17 136 —41  —30 46 47 37
1949 85 9 —16 4 41 -73 —77  -75 -8 -2 175 52
1950 115 188 63 63 —33 —155 —90  -58 -1 67 216 190
1951 139 154 206 —27 112 167 39 —35 18 —36 21 85
1952 114 155 166 37 —49  —38 —153 —128 —26 133 97 155
1953 110 71 18 -5 40 22 —93  —51  —59 8 —22 17
1954 73 56 192 28 175 16 22 _54 —31 21 76 124
1955 121 134 152 66 10 —46 39 81 26 140 185 77
1956 88 108 160 114 63 14 -3 —75 -85 22 54 114
1957 46 293 75 17 12 —56 19  —68 14 -2 78 36
1958 99 89 47 24 —60 89 —29 -8 -5 —19 32 85
1959 98 40 11 59 9 82 63  —55 —69 —40 46 140
1960 127 147 67 63 33 —80 40  —57 -7 141 154 207
1961 121 113 39 13 50 8§ -8 —110 —70 —11 90 51
1962 116 70 185 95 —20  —50 21 —115 —42 -1 220 149
1963 191 130 368 174 9  —17 —127 7 96 75 71 109
1964 42 73 250 123 77 2 -30 -31 —2 170 82 190
1965 164 111 131 190 193 244 145 131 72 15 187 448
1966 122 202 151 146 46 38 89 87 48 19 240 203
1967 204 184 143 141  —11 96  —55 —107 60 17 33 40
1968 104 85 50 10 —65 —100 —140 70 21 40 167 69
1969 139 313 234 48 14 84  —58 =30 11 20 72 110
1970 111 182 382 223 35  —18  —64 49 =5 12 62 85
E’g’fg;a 108.96 132.34 151.22 79.74 29.78 —4.52 —43.44 —38.30 —0.74 46.00 109.46 114.46
Standard- 4y o 6704 112.84 8351 63.11 73.98 73.96 69.58 61.95 6251 7515 80.60
deviations
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The transformed variables (5.2) have the following expectations and covariance matrix

E(() =29.78, E(() = —4.52, E((3) = —43.44, E(¢4) = —81.74,

¢1 2 (3 Ca
3982.87210011 1554.73630744  924.18788880  1806.81784260 (1
D= 1554.73630744 5473.04040002 3168.03370320 4521.83367240 Ca
924.18788880 3168.03370320 5470.08160018  7281.52175378 (3
1806.81784260 4521.83367240 7281.52175378 13934.33830761 (4

From here we obtain

g — 5470.08160018  7281.52175378
P\ 7281.52175378  13934.33830761 )

Ul — 924.18788880 3168.03370320
L7\ 1806.81784260 4521.83367240

T 3982.87210011 1554.73630744
7\ 1554.73630744  5473.04040002 )

Tl 0.00028239 —0.00008022

L7\ —0.00008022  0.00020550 )’

Ul — 0.00684480 0.57689906
7 0.14748962  0.78430377 )

The realized water input data are the following

&1 = ¢ =40, §o = (o =22,

hence the conditional expectation equals

3 _ _ [ —43.44
b [( G )= == g
-1 40 \ [ 29.78 [ —28.07
0T K 22 —a52 )] =\ —59.43 ) (57)
The covariance matrix of the conditional distribution of (3, (4 given that {; = 40, (; = 22
is the following

(5.8)

S, — yyr-yt — (363612006366 4660.51286423 1\
Lt 4660.51286423 10121.36024427

Since Cinitial = 3205, the optimization problem (5.4) can be written in the following manner

.. —205 < (3—23<95
maximize P (1 =40, (o =22
—205§C3—23—Z4 §95
subject to 0 < z3 < 200, 0 < z4 <200, (5.9)

and the above probability distribution is two-dimensional normal with expectation vector
(5.7) and covariance matrix (5.8).

If we compute z3, z4 according to (3.10) we obtain the values

zg = 27, z4 = —31.

13



It follows that the optimal z} to Problem (5.9) equals zero and z3 is the optimal solution
of the following one-dimensional problem

- —205 < (3 —23 <95
maximize P (1 =40, (o =22
—205 S C4 — 23 S 95
subject to 0 < z3 < 200. (5.10)

Table 3: Numerical results. Application of the proposed control methodology for Lake
Balaton between the years 1922-1970. The z3 are the final accepted values. Water levels
are computed with these. + sign (resp. — sign) means water level above 3400 mm (resp.
below 2900 mm)

73 74 Water Level Probability

1922 January 0. 0 2314.(-) 0.00
1922 February 0. 0 2433.(-) 0.00
1922 March 0. 0 2561.(-) 0.00
1922 April 0. 0 2753.(-) 0.00
1922 May 0. 0 2750.(-) 0.00
1922 June 0. 0 2698.(-) 0.00
1922 July 0. 0 2595.(-) 0.00
1922 August 0. 0 2577.(-) 0.00
1922 September 0. 0 2695.(-) 0.00
1922 October 0. 0 2893.(-) 0.00
1922 November 0. 129. 2989. 74.10
1922 December 0. 84 3061 90.06
1923  January 9. 22 3137 96.20
1923 February 3. 144 3256. 70.79
1923 March 155 75. 3341 61.29
1923 April 200.  54. 3235 88.62
1923 May 21. 1. 3196. 82.43
1923  June 0. 0. 3205. 71.23
1923 July 0. 0. 3153 84.81
1923 August 0. 0. 3078. 79.77
1923 September 0. 0. 3048. 80.39
1923  October 0.  40. 3108. 80.80
1923 November  67. 119. 3160. 77.34
1923 December 131. 112. 3182. 90.72
1924 January 151.  41. 3069. 96.20
1924 February 0. 99 3163. 67.16
1924 March 52.  65. 3373. 61.29
1924 April 200.  95. 3344. 85.70
1924 May 141. 0. 3307. 82.43
1924 June 4. T73. 3258. 76.86
1924 July 66. 0. 3143. 85.98
1924 August 0. 0. 3136. 79.03
1924 September 3. bT. 3129. 92.30
1924 October 26. 116. 3077. 84.40
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Table 3: (continued)

73 74 Water Level Probability
1924 November 7. 87. 3080. 77.34
1924 December 0. 67. 3136. 90.50
1925 January 62. 0. 3122. 96.20
1925 February 0. 115. 3197. 70.34
1925 March 76.  62. 3207. 61.29
1925 April 5. 27. 3250. 88.72
1925 May 16. 0. 3288. 82.42
1925  June 47.  63. 3223. 76.86
1925 July 0. 0. 3201. 85.30
1925 August 14. 0. 3131. 81.95
1925 September 0. 6. 3218. 92.04
1925 October 138. 121. 3071. 84.40
1925 November 26. 97. 3277. 77.34
1925 December 200. 195. 3183. 77.45
1926  January 162.  63. 3151. 96.20
1926 February 40. 151. 3276. 70.79
1926 March 192.  89. 3162. 61.29
1926  April 0. 0. 3185. 86.00
1926 May 0. 0. 3178. 76.80
1926  June 0. 0. 3252. 69.81
1926  July 81. 0. 3271. 85.83
1926  August 130.  13. 3238. 81.95
1926 September 151.  58. 3076. 92.30
1926  October 0. 119. 3165. 84.23
1926 November 139. 131. 3198. 77.34
1926 December 200. 128. 3137. 90.72
1927 January 113.  53. 3146. 96.20
1927 February 37. 155. 3188. 70.79
1927 March 61.  68. 3264. 61.29
1927 April 85.  35. 3240. 88.72
1927 May 12. 0. 3203. 82.43
1927  June 0. 0. 3155. 72.52
1927  July 0. 0. 3101. 61.25
1927 August 0. 0. 3133. 63.79
1927 September  23.  70. 3155. 92.30
1927  October 70. 134. 3084. 84.40
1927 November 34.  98. 3069. 77.34
1927 December 0. 67. 3105. 90.44
1928 January 28. 0. 3176. 96.20
1928 February 40. 140. 3262. 70.79
1928 March 161.  77. 3212. 61.29
1928 April 23. 24 3220. 88.72
1928 May 0. 0. 3310. 82.05
1928  June 87. Tl 3172. 76.86
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Table 3: (continued)

73 74 Water Level Probability
1928  July 0. 0. 3075. 72.15
1928 August 0. 0. 3016. 48.87
1928 September 0. 0. 3097. 52.93
1928 October 16. 120. 3130. 84.40
1928 November 107. 119. 3099. 77.34
1928 December 48.  99. 3125. 90.72
1929  January 69. 17. 3150. 96.20
1929 February 20. 145. 3204. 70.79
1929 March 78.  65. 3297. 61.29
1929 April 133.  41. 3451.(+) 88.72
1929 May 200.  45. 3299. 76.92
1929  June 25.  5T. 3250. 76.86
1929  July 15. 0. 3146. 85.27
1929 August 0. 0. 3045. 75.32
1929 September 0. 0. 2969. 54.15
1929 October 0. 0. 3008. 38.95
1929 November 0. 69. 3167. 75.52
1929 December 155. 123. 3028. 90.72
1930 January 0. 5. 3107. 96.19
1930 February 0. 101. 3238. 69.87
1930 March 142. 77. 3202. 61.29
1930 April 1. 23. 3363. 88.72
1930 May 145. 0. 3167. 62.38
1930  June 0. 0. 3072. 53.06
1930  July 0. 0. 2948. 15.01
1930 August 0. 0. 2921. 2.97
1930 September 0. 0. 2900. 8.52
1930 October 0. 24. 3082. 14.85
1930 November 92. 166. 3168. 77.34
1930 December 189. 129. 3214. 90.72
1931 January 200.  80. 3192. 96.20
1931 February 122. 171. 3278. 70.79
1931 March 200. 108. 3380. 61.21
1931 April 200. 103. 3346. 79.80
1931 May 147. 0. 3235. 82.43
1931 June 0. 36. 3176. 76.62
1931 July 0. 0. 3020. 69.09
1931 August 0. 0. 2988. 17.73
1931 September 0. 0. 3031. 48.74
1931 October 0. 69. 3047. 81.97
1931 November 4. 105. 3136. 77.34
1931 December 87. 104. 3086. 90.72
1932 January 26. 15. 3161. 96.20
1932 February 26. 140. 3170. 70.79
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Table 3: (continued)

73 74 Water Level Probability

1932 March 23.  5T. 3282. 61.29
1932  April 101. 40. 3245. 88.72
1932 May 18. 0. 3287. 82.43
1932  June 47. 64. 3145. 76.86
1932 July 0. 0. 3048. 47.34
1932 August 0. 0. 2983. 33.58
1932 September 0. 0. 2924. 26.62
1932 October 0. 8. 2998. 19.06
1932 November 0. 88. 3016. 76.22
1932 December 0. 44. 3064. 86.50
1933  January 0. 0. 3115. 96.05
1933 February 0. 108. 3188. 70.05
1933 March 66. 61. 3215. 61.29
1933  April 15. 28 3220. 88.72
1933 May 0. 0. 3261. 81.88
1933 June 18.  60. 3242. 76.86
1933  July 23. 0. 3101. 85.52
1933  August 0. 0. 3060. 60.82
1933 September 0. 0. 3052. 85.17
1933  October 0.  60. 3100. 82.45
1933 November 58. 115. 3281. 77.34
1933 December  200. 200. 3217. 70.14
1934 January 200.  74. 3154. 96.20
1934 February 51. 155. 3172. 70.79
1934 March 39. 67. 3210. 61.29
1934 April 4.  27. 3169. 88.72
1934 May 0. 0. 3107. 71.05
1934  June 0. 0. 3088. 33.21
1934 July 0. 0. 3046. 40.89
1934 August 0. 0. 3000. 45.18
1934 September 0. 0. 3027. 42.11
1934  October 0. 56. 3036. 80.52
1934 November 0. 90. 3139. 77.25
1934 December 94. 107. 3117. 90.72
1935 January 66.  24. 3114. 96.20
1935 February 0. 117. 3261. 70.35
1935 March 174. 80. 3172. 61.29
1935 April 0. 0. 3195. 87.87
1935 May 0. 0. 3174. 76.89
1935 June 0. 0. 3089. 67.04
1935 July 0. 0. 2953. 23.66
1935 August 0. 0. 2896.(-) 3.21
1935 September 0. 0. 2883.(-) 1.42
1935 October 0. 20. 2901. 9.20
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Table 3: (continued)

73 74 Water Level Probability

1935 November 0. 35. 2932. 43.31
1935 December 0. 24. 3104. 50.99
1936 January 60.  22. 3205. 96.20
1936 February 118. 161. 3286. 70.79
1936 March 200. 108. 3193. 61.11
1936  April 4. 14. 3252. 88.72
1936 May 21. 0. 3315. 82.42
1936  June 86.  70. 3233. 76.86
1936  July 22. 0. 3121. 85.78
1936 August 0. 0. 3014. 70.77
1936 September 0. 0. 3041. 29.59
1936 October 0. 48. 3167. 81.86
1936 November 164. 146. 3100. 77.34
1936 December 72. 105. 3122. 90.72
1937 January 75.  26. 3152. 96.20
1937 February 30. 148. 3269. 70.79
1937 March 177, 83. 3435.(+) 61.29
1937 April 200. 147. 3495.(+) 46.19
1937 May 200.  70. 3291. 64.33
1937  June 2. 47. 3328. 76.86
1937  July 134. 0. 3203. 85.61
1937  August 32. 7. 3180. 81.95
1937 September  52.  50. 3195. 92.30
1937  October 115.  133. 3179. 84.40
1937 November 173. 137. 3228. 77.34
1937 December  200. 180. 3359. 86.97
1938 January 200. 195. 3373. 15.74
1938 February 200. 200. 3291. 42.93
1938 March 175.  85. 3187. 61.29
1938 April 0. 2. 3205. 88.36
1938 May 0. 0. 3284. 80.17
1938  June 58.  69. 3188. 76.86
1938  July 0. 0. 3090. 78.52
1938 August 0. 0. 3148. 55.80
1938 September  56.  87. 3081. 92.30
1938 October 0. 112. 3115. 84.26
1938 November 67. 109. 3057. 77.34
1938 December 0. b58. 3144. 89.97
1939 January 80. 2. 3178. 96.20
1939 February 58. 148. 3198. 70.79
1939 March 71.  67. 3200. 61.29
1939 April 0. 18. 3139. 88.57
1939 May 0. 0. 3213. 58.54
1939  June 0. 62. 3222. 76.84
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Table 3: (continued)

73 74 Water Level Probability
1939  July 13. 0. 3072. 85.77
1939 August 0. 0. 3035. 46.82
1939 September 0. 0. 3037. 76.64
1939  October 0.  55. 3134. 80.96
1939 November 114. 134. 3112. 77.34
1939 December 76. 104. 3113. 90.72
1940 January 61.  22. 3120. 96.20
1940 February 0. 126. 3187. 70.59
1940 March 59.  61. 3466.(+) 61.29
1940 April 200. 153. 3377. 30.64
1940 May 174. 3. 3300. 82.43
1940 June 70. T2 3305. 76.86
1940  July 149. 0. 3179. 86.13
1940 August 15. 14. 3322. 81.95
1940 September 200. 160. 3369. 87.77
1940 October 200.  200. 3343. 36.85
1940 November 200. 200. 3386. 20.00
1940 December 200. 198. 3276. 9.88
1941 January 200. 117. 3203. 96.10
1941 February 88. 148. 3346. 70.79
1941 March 200. 137. 3350. 53.40
1941  April 200.  31. 3366. 88.68
1941 May 163. 0. 3332. 82.40
1941  June 106.  79. 3187. 76.86
1941 July 0. 0. 3104. 80.08
1941 August 0. 0. 3069. 62.99
1941 September 0. 0. 3012. 87.72
1941  October 0. 24. 3082. 69.05
1941 November 40. 122. 3242. 77.34
1941 December 200. 172. 3190. 87.28
1942 January 172.  61. 3133. 96.20
1942 February 24. 156. 3324. 70.79
1942 March 200. 127. 3491.(+) 57.56
1942 April 200. 154. 3598.(+) 12.74
1942 May 200.  67. 3576.(+) 9.21
1942 June 200. 149. 3310. 40.00
1942 July 59. 0. 3194. 85.74
1942  August 0. 0. 3095. 81.53
1942 September 0. 0. 3039. 81.06
1942 October 0. 19 3012. 76.90
1942 November 0. 34. 3035. 73.46
1942 December 0. 4r. 3096. 87.32
1943 January 29. 1. 3179. 96.20
1943 February 53. 144. 3305. 70.79
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Table 3: (continued)

73 74 Water Level Probability

1943 March 200. 106. 3093. 60.62
1943  April 0. 0. 3088. 38.15
1943 May 0. 0. 3075. 34.71
1943  June 0. 0. 3183. 26.88
1943  July 37. 0. 3178. 85.99
1943 August 20.  20. 3052. 81.95
1943 September 0. 0. 3050. 44.39
1943 October 0. 42 3048. 81.86
1943 November 0. 85. 3196. 77.27
1943 December 171. 120. 3153. 90.72
1944  January 122, 45. 3088. 96.20
1944 February 0. 111. 3201. 59.45
1944 March 98. 71. 3344. 61.29
1944 April 200.  60. 3155. 88.53
1944 May 0. 0. 3207. 73.24
1944  June 0. 36. 3303. 76.49
1944 July 156. 0. 3115. 86.10
1944  August 0. 0. 3043. 77.91
1944 September 0. 0. 2993. 60.29
1944  October 0. 12. 3139. 59.20
1944 November 129. 151. 3235. 77.34
1944 December 200. 188. 3289. 83.48
1945 January 200. 177. 3280. 91.76
1945 February  200. 191. 3389. 70.61
1945 March 200. 160. 3404.(+) 35.50
1945 April 200.  69. 3239. 82.96
1945 May 16. 1. 3187. 82.43
1945 June 0. 0. 3108. 68.17
1945  July 0. 0. 3040. 31.79
1945 August 0. 0. 2941. 34.46
1945 September 0. 0. 2913. 2.81
1945 October 0. 8. 2932. 16.88
1945 November 0. 36. 3031. 56.57
1945 December 0. 94. 3128. 90.56
1946 January 9. 8. 3187. 96.13
1946 February 8. 9. 3297. 51.19
1946 March 9. 9. 3348. 54.57
1946 April 9. 9. 3298. 21.09
1946 May 9. 6. 3214. 8.79
1946 June 6. 0. 3157. 5.07
1946  July 0. 0. 3094. 11.64
1946 August 0. 0. 3001. 33.03
1946 September 0. 0. 2949. 45.03
1946  October 0. 0. 2956. 74.23
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Table 3: (continued)

73 74 Water Level Probability
1946 November 0. 0. 3042. 69.54
1946 December 0. 0. 3126. 75.57
1947 January 0. 0. 3213. 96.19
1947 February 0. 0. 3395. 53.64
1947 March 0. 0. 3843.(+) 54.73
1947 April 0. 0. 3960.(+) 79.00
1947 May 0. 0. 3943.(+) 32.30
1947  June 0. 0. 3889.(+) 7.49
1947 July 0. 0. 3812.(+) 12.31
1947 August 0. 65. 3664.(+) 18.64
1947 September 200. 120. 3379. 1.73
1947  October 200. 106. 3174. 83.50
1947 November 96.  92. 3099. 77.34
1947 December 12.  84. 3175. 90.72
1948 January 113. 5. 3172. 96.20
1948 February 50. 148. 3228. 70.79
1948 March 116.  74. 3120. 61.29
1948  April 0. 0. 3205. 58.97
1948 May 0. 0. 3186. 80.22
1948 June 0. 0. 3203. 68.84
1948  July 0. 0. 3339. 85.07
1948 August 200. 5. 3098 81.95
1948 September 0. 0. 3068. 83.20
1948 October 0. 63. 3114. 83.28
1948 November 68. 113. 3093. 77.34
1948 December 27.  91. 3104. 90.72
1949 January 36. 3. 3153. 96.20
1949 February 12. 139. 3150. 70.79
1949 March 0. 45. 3134. 61.24
1949 April 0. 0. 3138. 60.86
1949 May 0. 0. 3179. 58.30
1949  June 0. 12 3106. 74.20
1949  July 0. 0. 3029. 86.44
1949 August 0. 0. 2954. 29.03
1949 September 0. 0. 2870.(-) 8.73
1949  October 0. 12 2868.(-) 2.69
1949 November 0. 30. 3043. 18.30
1949 December 32. 128. 3063. 90.72
1950 January 21.  39. 3157. 96.20
1950 February 30. 143. 3315. 70.79
1950 March 200. 113. 3178. 59.82
1950 April 0. 0. 3241. 87.05
1950 May 6. 0. 3202. 82.41
1950 June 0. 0. 3047. 71.63
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Table 3: (continued)

73 74 Water Level Probability
1950  July 0. 0. 2957. 3.19
1950  August 0. 0. 2899.(-) 4.42
1950 September 0. 0. 2898.(-) 1.31
1950 October 0. 21. 2965. 15.50
1950 November 0. 72 3181. 73.61
1950 December 200. 141. 3171. 90.72
1951 January 164.  73. 3146. 96.20
1951 February 53. 163. 3247. 70.79
1951 March 156.  8T. 3297. 61.29
1951 April 153.  36. 3117. 88.72
1951 May 0. 0. 3229. 55.99
1951 June 22, TT. 3375. 76.86
1951  July 200.  T72. 3214. 79.08
1951 August 63. 31 3116. 81.95
1951 September 0. 0. 3134. 91.64
1951 October 35. 114. 3062. 84.40
1951 November 0. 7. 3083. 77.31
1951 December 0. 75. 3168. 90.65
1952 January 105. 9. 3177. 96.20
1952 February 56. 147. 3276. 70.79
1952 March 188.  85. 3254. 61.29
1952  April 91. 29. 3200. 88.72
1952 May 0. 0. 3151. 80.94
1952  June 0. 0. 3113. 52.77
1952 July 0. 0. 2960. 45.98
1952  August 0. 0. 2832.(-) 3.99
1952 September 0. 0. 2806.(-) 0.00
1952  October 0. 0. 2939. 0.00
1952 November 0. 94. 3036. 72.80
1952 December 9. 105. 3182. 90.72
1953 January 147.  36. 3145. 96.20
1953 February 35.  157. 3181. 70.79
1953 March 51.  66. 3148. 61.29
1953 April 0. 0. 3143. 74.44
1953 May 0. 0. 3183. 61.06
1953  June 0. 15. 3205. 74.70
1953  July 2. 0. 3110. 85.70
1953 August 0. 0. 3059. 68.30
1953 September 0. 0. 3000. 81.39
1953 October 0. 16. 3008. 62.19
1953 November 0. 52 2986. 74.67
1953 December 0. 12. 3003. 65.02
1954 January 0. 0. 3076. 75.22
1954 February 0. 78. 3132. 66.33
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Table 3: (continued)

73 74 Water Level Probability

1954 March 0. 59. 3324. 61.29
1954  April 170.  47. 3182. 88.72
1954 May 0. 0. 3357. 78.57
1954  June 170.  91. 3202. 76.86
1954  July 10. 0. 3214. 86.11
1954 August 46. 2. 3114. 81.95
1954 September 0. 0. 3083. 90.38
1954  October 0. 72 3104. 83.96
1954 November 48. 104. 3132. 77.34
1954 December 76.  99. 3180. 90.72
1955  January 135.  25. 3166. 96.20
1955 February 55.  153. 3245. 70.79
1955 March 146.  81. 3251. 61.29
1955 April 81.  30. 3236. 88.72
1955 May 10. 0. 3236. 82.43
1955 June 0. 30. 3190. 76.50
1955  July 10. 0. 3229. 75.02
1955  August 51. 0. 3259. 81.93
1955 September 168.  66. 3117. 92.30
1955  October 30. 142. 3227. 84.40
1955 November 200. 177. 3212. 76.88
1955 December 200. 153. 3089. 89.97
1956 January 54.  46. 3123. 96.20
1956 February 0. 137. 3231. 70.75
1956 March 122. 72 3269. 61.29
1956  April 102.  35. 3281. 88.72
1956 May 62. 0. 3282. 82.42
1956  June 38. 54 3258. 76.86
1956  July 52. 0. 3203. 85.75
1956 August 28. 2. 3100. 81.95
1956 September 0. 0. 3015. 85.18
1956  October 0. 8. 3037. 65.20
1956 November 0. 77. 3091. 76.88
1956 December 24.  93. 3181. 90.72
1957 January 130.  18. 3097. 96.20
1957 February 0. 110. 3390. 69.59
1957 March 200. 145. 3265. 33.55
1957  April 60. 0. 3222. 88.70
1957 May 0. 0. 3234. 81.82
1957  June 0. 34. 3178. 76.69
1957  July 0. 0. 3197. 69.06
1957  August 12. 0. 3117. 81.93
1957 September 0. 0. 3131. 89.26
1957 October 29. 105. 3076. 84.48
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Table 3: (continued)

73 74 Water Level Probability

1957 November 10.  87. 3144. 77.34
1957 December 81. 100. 3099. 90.72
1958 January 37.  11. 3162. 96.20
1958 February 26. 140. 3225. 70.79
1958 March 105.  69. 3160. 61.29
1958 April 0. 0. 3190. 85.50
1958 May 0. 0. 3130. 77.41
1958  June 0. 0. 3219. 41.55
1958  July 54. 0. 3136. 85.69
1958 August 0. 0. 3053. 80.72
1958 September 0. 0. 3048. 61.90
1958 October 0. 47. 3029. 81.78
1958 November 0. 58. 3061. 76.47
1958 December 0. 68. 3146. 90.26
1959 January 85. 7. 3159. 96.20
1959 February 32.  147. 3167. 70.79
1959 March 23.  b8. 3155. 61.29
1959 April 0. 0. 3214. 76.17
1959 May 0. 0. 3223. 80.95
1959  June 0. 19. 3305. 76.18
1959  July 142. 0. 3225. 85.94
1959  August 74.  15. 3096. 81.95
1959 September 0. 0. 3027. 84.28
1959  October 0. 21. 2987. 72.79
1959 November 0. 16. 3033. 65.57
1959 December 0. 57. 3173. 88.28
1960 January 126.  20. 3174. 96.20
1960 February 68. 155. 3253. 70.79
1960 March 160.  85. 3160. 61.29
1960 April 0. 0. 3223. 84.94
1960 May 0. 0. 3256. 82.15
1960 June 5. bT. 3171. 76.86
1960  July 0. 0. 3211. 61.20
1960 August 25. 0. 3129. 81.90
1960 September 0. 0. 3122. 91.38
1960 October 15. 104. 3248. 84.40
1960 November 200. 187. 3202. 76.09
1960 December 200. 126. 3209. 90.70
1961 January 195. 59. 3135. 96.20
1961 February 39. 165. 3209. 70.79
1961 March 100.  76. 3149. 61.29
1961 April 0. 0. 3162. 78.30
1961 May 0. 0. 3212. 69.47
1961  June 0. 38. 3220. 76.58
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Table 3: (continued)

73 74 Water Level Probability
1961  July 8 0. 3132. 85.64
1961 August 0 0. 3022. 74.58
1961 September 0. 0. 2952. 32.90
1961 October 0. 0. 2941. 29.68
1961 November 0 21. 3031. 51.68
1961 December 0. 85. 3082. 90.27
1962 January 25. 1T. 3173. 96.20
1962 February 47.  142. 3197. 70.79
1962 March 66.  66. 3316. 61.29
1962 April 159.  44. 3251. 88.72
1962 May 33. 0. 3199. 82.43
1962 June 0. 0. 3149. 71.48
1962  July 0. 0. 3170. 58.56
1962 August 0. 0. 3055. 81.58
1962 September 0. 0. 3013. 43.63
1962 October 0. 9. 3012. 68.51
1962 November 0. 51. 3232. 75.10
1962 December 200. 170. 3181. 88.90
1963 January 167.  67. 3205. 96.20
1963 February 125.  159. 3210. 70.79
1963 March 102.  86. 3476.(+) 61.29
1963 April 200. 163. 3450.(+) 18.92
1963 May 200. 5l 3259. 80.07
1963  June 0. 38. 3242. 76.79
1963  July 8. 0. 3107. 85.13
1963 August 0. 0. 3114. 61.20
1963 September 0. 73. 3210. 92.30
1963 October 138. 137. 3147. 84.40
1963 November 137. 129. 3081. 77.34
1963 December 31.  98. 3159. 90.72
1964 January 110.  21. 3091. 96.20
1964 February 0. 103. 3164. 68.93
1964 March 42.  6l. 3372. 61.29
1964 April 200.  91. 3295. 86.60
1964 May 85. 0. 3286. 82.43
1964 June 48.  67. 3237. 76.86
1964  July 20. 0. 3187. 85.71
1964 August 2. 0. 3154. 81.95
1964 September 6.  45. 3146. 92.30
1964 October 42, 111. 3274. 84.40
1964 November 200. 200. 3156. 70.11
1964 December 127. 101. 3219. 90.72
1965 January 188.  38. 3195. 96.20
1965 February 112.  164. 3194. 70.79
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Table 3: (continued)

73 74 Water Level Probability

1965 March 79. 79. 3246. 61.29
1965 April 66.  29. 3370. 88.72
1965 May 156. 0. 3407.(+) 82.38
1965 June 200. 103. 3451.(+) 76.82
1965 July 200. 127. 3396. 18.60
1965 August 200. 102. 3327. 76.21
1965 September 200. 110. 3199. 90.88
1965 October 129. 161. 3085. 84.40
1965 November 46. 105. 3226. 77.34
1965 December 200. 150. 3474.(+) 90.28
1966 January 200. 200. 3396. 0.00
1966 February 200. 200. 3398. 37.48
1966 March 200. 133. 3349. 45.48
1966 April 180.  20. 3314. 88.72
1966 May 98. 0. 3263. 82.41
1966 June 8. 60. 3293. 76.86
1966  July 102. 0. 3280. 85.83
1966 August 132. 6. 3234. 81.95
1966 September 143.  58. 3140. 92.30
1966 October 59. 147. 3099. 84.40
1966 November 57. 106. 3282. 77.34
1966 December 200. 200. 3285. 72.05
1967 January 200. 163. 3289. 94.38
1967 February 200. 188. 3273. 70.52
1967 March 190.  99. 3225. 61.29
1967 April 53.  21. 3314. 88.72
1967 May 96. 0. 3207. 82.41
1967 June 0. 0. 3303. 72.86
1967  July 148. 0. 3100. 85.94
1967 August 0. 0. 2993. 72.95
1967 September 0. 0. 3053. 15.55
1967 October 0. 70. 3070. 83.66
1967 November 30. 106. 3073. 77.34
1967 December 0. 83. 3113. 90.70
1968 January 43. 0. 3174. 96.20
1968 February 41. 141. 3218. 70.79
1968 March 96.  68. 3172. 61.29
1968 April 0. 0. 3182. 85.85
1968 May 0. 0. 3117. 75.28
1968  June 0. 0. 3017. 34.75
1968  July 0. 0. 2877.(-) 3.64
1968 August 0. 0. 2947. 0.00
1968 September 0. 6. 2968. 60.31
1968 October 0. 59. 3008. 62.78
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Table 3: (continued)

73 74 Water Level Probability

1968 November 0. 87. 3175. 76.82
1968 December 167. 126. 3077. 90.72
1969 January 37.  40. 3179. 96.20
1969 February 64. 146. 3428.(+) 70.79
1969 March 200. 152. 3462.(+) 23.48
1969 April 200. 101. 3310. 56.84
1969 May 89. 2. 3234. 82.43
1969 June 0. 33. 3318. 76.56
1969  July 158. 0. 3103. 85.96
1969 August 0. 0. 3073. 72.91
1969 September 0. 0. 3084. 88.47
1969 October 0. 98. 3104. 84.30
1969 November 55. 105. 3121. 77.34
1969 December 62.  98. 3168. 90.72
1970 January 120.  22. 3160. 96.20
1970 February 42.  151. 3300. 70.79
1970 March 200. 105. 3482.(+) 60.79
1970 April 200. 158. 3505.(+) 13.90
1970 May 200.  76. 3340. 61.28
1970  June 72.  5T. 3250. 76.86
1970  July 18. 0. 3168. 85.32
1970  August 0. 0. 3217. 80.32
1970 September 117. 77. 3095. 92.30
1970  October 0. 125. 3107. 84.40
1970 November 52. 101. 3117. 77.34
1970 December 52.  95. 3150. 90.72

The Fibonacci search gives in 15 steps the result
z3 = 2.

In higher dimensional cases the values of the objective function are determined by sim-
ulation. In the two-dimensional case numerical integration is satisfactorily effective. We
use a reduction formula and then one-dimensional numerical integration. The reduction
formula states that if ¢(z,y;7) is the two-dimensional normal probability density function
with standard marginal distributions and r is the correlation coefficient (|r| < 1), then we

e /ab /de(x,y; r)dy dz = /ab [@ (%) - @ (%)] ple)dr.

where ¢(z) and ®(z) denote the one-dimensional standard normal probability density
resp. distribution function. The one-dimensional numerical integration is done by the
Romberg-Havie procedure [5]. The computational precision is 103.

In Table 3 we summarize the results of the 588 optimizations. The + resp. — signs
mean that the water level is higher resp. lower than originally desired. Wee see that only
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Fig. 2: Variation of the controlled water level of Lake Balaton (illustration for three years).

a few such signs occur. Moreover the first months of 1922 do not count because we need
a few periods for the running-in of this control methodology. In 1946-47 the lock was
repaired which caused a high water level. The variation of the controlled water level is
illustrated in Fig. 2.
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